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Wave equation for a dissipative force quadratic in velocity
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Some recent works on the path-integral formulation of nonconservative forces quadratic in velocity
are examined critically. It is argued that the ambiguity resulting from ordering the operators in the
Lagrangian and the Hamiltonian for this force is more serious than it is usually believed, and that
one can construct a number of Hermitian Hamiltonians all satisfying Ehrenfest s theorem, but form-
ing a set of noncommuting operators. A similar problem is encountered in the ordering of the La-
grangian for the path-integral approach. This is in addition to a number of well-known difficulties
such as violation of the position-velocity uncertainty, and the differences between the invariances of
the equation of motion, and the Lagrangian. An alternative way is suggested in which the damping
force is replaced by a purely time-dependent term which produces the same classical motion, thus
avoiding the above-mentioned difficulties. Using this formulation, wave functions and time-
dependent energies are found for a quadratically damped harmonic oscillator, and for a particle mov-
ing in a dissipative medium when the friction is proportional to an arbitrary power of velocity.

I. INTRODUCTION

There is a wealth of literature on the subject of canoni-
cal formulation of frictional forces, ' and the difficulties
associated with their quantization. At the classical
level, it is well known that (a) the Lagrangian and the
Hamiltonian are not unique, ' (b) that the Hamiltonian
is, in general, not the energy of the system, and (c) the
symmetries of the equation of motion are not necessarily
shared by either the Lagrangian or Hamiltonian. ' In the
quantum description of dissipative motions, one is faced
with the nonuniqueness of the canonical formalism which
in this case causes a major difficulty, since equivalent clas-
sical Hamiltonians give rise to entirely different quantal
systems. " It is questionable whether the energy or the
Hamiltonian operator should be regarded as the generator
of the unfolding of the system in time, ' and whether the
Schrodinger equation should reAect the symmetries of the
actual motion or those of the Hamiltonian or Lagrangian.
In addition to these, there are other objections raised
against some of the approaches in quantum friction, for
instance, violation of the velocity-position uncertainty, in-
compatibility of the equations of motion and the canonical
commutation relations, ' and the nonlinearity of the wave
equation. Nearly all of these questions are studied using
either Heisenberg's equations of motion or the
Schrodinger equation. If the method of path integration
is utilized, then it is not easy to discover the inconsisten-
cies or investigate whether or not the symmetries and in-
variances of the resulting solutions are compatible with
those of the classical motion. In this paper we present a
critical study of some of the recent works' ' done on
the quantization of dissipative forces quadratic in velocity
in Sec. II. Section III deals with an alternative formula-
tion of the quantum-mechanical problems which hopeful-
ly bypasses these difficulties and is patterned after the
solution of the Schrodinger-Langevin equation. In Sec.

IV, we first show that for a frictiona1 force proportional to
any power of velocity the conventional canonical quanti-
zation is not satisfactory, and then proceed to show that
by the method proposed in this paper one can find the
Schrodinger equation for such a damped motion.

II. PROBLEMS WITH CANONICAL QUANTIZATION

The equation of motion for a one-dimensional motion
of a particle in a potential field V(x) and subject to a
quadratic dissipative force ( —,)yx is given by

mx+(1/2)myx +(d V/dx)=0 .

The Lagrangian"

(2.1)

I. =(—,')mx exp(yx) —f dy exp(yy)dV(y)/dy (2.2)

and this Hamiltonian, with V(x) =0, does change when x
is replaced by x+xo, the Schrodinger equation and its
solution will not have the same symmetry as the classical
equation of motion. We note that in classical mechanics

is one of a two-parameter family of Lagrangians which
generate Eq. (2.1).' First we note that classical
equivalent Lagrangians (Hamiltonians) are not equivalent
in quantum mechanics and they describe different dynam-
ical systems. ' Also we observe that the invariances of
the equation of motion (2.1) are different from the invari-
ances of I,. This can readily be seen when V =0, i.e., for
x+(—,')yx =0, and I. =[(—,')mx exp(yx)]. Both of these
equations are invariant under time translation, i.e.,
t ~t+ to, but whereas the equation of motion remains in-
variant under the displacement of coordinate x~x +xo,
L does not. Since the Harniltonian corresponding to L is'

H =(1/2m)p exp( —yx)+ f dy exp(yy)d V(y)/dy

(2.3)
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the Hamiltonian (2.3) cannot represent the energy of the
system, the proof follows immediately from Hamilton's
canonical equations, and the fact that for (2.1) the energy
is not conserved. For quantum-mechanical systems this
point will be considered in some detail. The first step in
quantizing the motion defined by (2.3) is to find a Hermi-
tian Hamiltonian, and there are a number of rules of asso-
ciating a Hermitian operator with H(x,p), i.e., ordering
the factors of p and x in (2.3). In some recent works'
the validity of the Ehrenfest theorem for the Hermitian
operator constructed from (2.3) is used to justify the

correctness of the quantum-mechanical Hamiltonian. Let
us examine both the question of ordering the factors and
the validity of Ehrenfest's theorem for the Hamiltonian
(2.3). Since the second term in (2.3) is a function of x
alone, it is sufficient to consider the ordering of the
simpler Hamiltonian

H =(1/Zm)p exp( —yx) . (2.4)

Using the Dirac rule of association, ' ' and noting that
p, exp( —yx), exp[( ——,

' )yx]p exp[( ——,
' )yx], and

p exp[( ——,
' )yx]p are all Hermitian, we can write

Hi =Oi[(p /2m)exp( —yx)]=(6imyh') '[p, exp( —yx)]=(1/2m)exp( —yx)[p +iAyp —( —,')iri2y2]

where 0 denotes a Hermitian ordering of the argument. But H~ is not the only possible ordering of H, since:

H2=0i[(1/2m)p exp( yx—)]=i(2yirim) '[exp[( ——,')yx]p exp[( —
—,')yx],p exp[( —

—,')yx]p]

= (1/2m)exp( yx)[—p +ifiyp —( —,', )R y ] .

Thus

(2.5)

(2.6)

and

H2=Hi+(7/2m)fi y exp( —yx) (2.7)

[H2,Hi]=(63/2m )(iriy) exp( —2yx)(iriy ip) . — (2.g)

One can construct an infinite number of these noncommuting Hamiltonian operators. If we assume that one of them,
say Hi, is a constant of motion, as the classical H [Eq. (2.4)] is, then others do change with time as (2.8) indicates.

Using either H ~ or H2, we find the Heisenberg equations of motion:

and

P = ( 1/i fi) [p,H& ]=yH,

mx =(m /i/i)[x, H~]=( —,')[exp( —yx)p +p exp( —yx)], j= 1,2, .

(2.9)

(2.10)

L = lim(1/e )[(x„+i
—x„)exp(yx„)(x„—x„ i)]

e~O
(2.11)

or

L = lim(1/e )exp[( —,
' )yx„+ i](x„+i —x„)

e~O

X exp[( —,
' )yx„](x„—x„ i )exp[( —,

' )yx„ i] (2.12)

and these different Lagrangians do not commute with
each other.

The expectation value of these operators amounts to
what can be called Ehrenfest's theorem, and thus
H =aHi+(1 —a)H2, with 0&a &1 is an infinite set of
noncommuting Hamiltonians all satisfying Ehrenfest's
theorem.

The question of nonuniqueness of ordering the La-
grangian in the path-integral approach has been discussed
by a number of authors (see Schulman's book' for refer-
ences to the original papers). A careful analysis of the
method of path integration indicates that in the Lagrang-
ian L =(—,')mx exp(yx), the two x's and exp(yx) cannot
be taken at the same time, ' thus L can be written as the
limit of a number of different quantities such as

III. QUADRATIC DAMPING AS AN EXTERNALLY
APPLIED FARCE

H =(1/2m)p + V(x)+( —,')my/ [x —g(t)], (3.1)

where x and p are the coordinate and the momentum of
the particle, respectively, and g(t) is a solution of the
equation

mg+( —,')my/ +BV(g)/Bg=0 . (3.2)

The Hamiltonian (3.1) describes a conservative system
driven by an external damping force.

A comparison of the equation of motion

mx+dV/dx+( —,')my/ =0 (3.3)

As an alternative approach to the methods discussed
earlier, let us consider a particle of mass m moving in a
potential V(x) and subject to an external field which
causes loss of energy. Here we do not try to find a
specific model which produces a damping proportional to
x, but we assume as in the case of linear dissipation that
there are a number of models which provide us with the
mechanism for damping. Since the damping is as-
sumed to be external, we write the Hamiltonian as
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with (3.2) indicates that x =g(t) is the particular solution
of (3.3). Therefore if x(0)=g'(0) and x(0)=g(0) are the
initial conditions of (3.3), then x (t)=g(t) will be the
unique solution of the problem for all times. No ambigui-
ty is encountered when we quantize (3.1) with the result-
ing Schrodinger equation

dinate

y =x g—(t)

as the Schrodinger equation

( ir—i /2m)d p„/dy +( —,')mQ y p„=E„p„. (3.12)

( —irt /2m)B g/Bx

+ [V(x)+(y/2)mg (x g)]g—=ifidglrit . (3.4)

Since there is no potential energy the energy of the parti-
cle is kinetic and is given by

( fi /2—m)t) Q/t)x =( ,')mg (t—)P (3.6)

This equation for V(x) =0 can be solved exactly with the
result that

g(x, t) =expIi/iit'[mg(x —g)+( —,')f 'mg dt]] . (3.5)

Thus (3.10) represents a wave packet whose center
moves according to the classical equation (3.8). From Eq.
(3.10) we can calculate the mean value of some of the
dynamical quantities. Thus the mean energy of the sys-
tem in its nth state is given by

F.„=f dxP„*[(—fi /2m)B /Bx +(—,')mQ x ]Q„,

(3.13)

and this can be found by substituting for f„ from (3.10)
and carrying out the integration over x;

and is a decreasing function of time. The classical motion E„(t)=e„+(,')m—(g +Q g ) . (3.14)

g+( —,')yg'=0 (3.7)

is invariant under the displacement of the coordinate
g(t)~g(t)+xo, x~x+xo. This latter invariance does
not appear in the Lagrangian or the Hamiltonian Eq.
(2.4). Therefore any method of quantization based on the
canonical formulation' ' will not yield a wave function
having the symmetries of (3.7). But (3.5) has this invari-
ance of the classical equation of motion. Next let us
study the quantum damped motion of a harmonic oscilla-
tor which satisfies the classical equation

Next let us consider the expectation values of the position
and the momentum of the particle.

(x) = f dxf„*xg„=g(t) (3.15)

(p ) = f dxP„*(—tA'8/Bx)g„=mg(t) . (3.16)

The velocity of the particle can also be obtained from the
ratio (jlp), where j and p are the probability current and
probability density, respectively,

g+( —,')yg +Q'/=0 . (3.8) j/p=g(t) . (3.17)

The time-dependent Schrodinger equation for this prob-
lem is

The quantities j and p are determined from (3.10), and are
related to P„by g ~ P„~ and

~
P„~

( —fi /2m)B g/Bx +[(—,')my/ (x —g)

+(—,')mQ x ]g=iiiiBQ/r}t . (3.9)

We expect the solution to be that of a harmonic oscillator
whose energy is dissipated and asymptotically decays to
one of its eigenstates. Therefore let us consider the fol-
lowing solution of (3.9) in terms of a wave packet P„,

IV. PATH-INTEGRAL FORMULATION

The two wave functions that we obtained in the last
section are also derivable from the path-integral formal-
ism. Let us discuss the details for the motion of a
damped oscillator. To this end from the Hamiltonian
(3.1) we find the Hamilton-Jacobi equation.

BS/3t+ (1/2m)(BS/Bx)
g = [exp(i/iri[ m g(x g) e„t- —

+ —'rn ——'mQ dt „x— t
+ V(x)+ ( —,

' )m yg '(t)[x —g(t)] =0 . (4.1)

(3.10)
For the quadratically damped oscillator, V(x)

=(—,')mQ x and the solution of (4.1) turns out to be

where

e„=[n +(—,')]iiiQ, n =0, 1,2. . .
S(x, t) =(—,')m Q[x g(t)] cot(Qt)+—mxg+g (t),

(3.11) whet. e

(4.2)

are the harmonic oscillator eigenvalues.
By substituting Eq. (3.10) in (3.9) we find the

differential equation satisfied by P„. This can be con-
veniently expressed in terms of the "coherent state" coor-

(4.3)

The action 5 for two times t2 and t] and the correspond-
ing positions x2 and x] takes the following form:

S(2, 1)=(mQ)/2sin(QT) I [(xi —gi) +(xi —gi) ]cos(QT) —2(xi —gi)(xi —gq) I + m (xqgi —xi(i)+g (ti) —g (ti) (4 4)



36 WAVE EQUATION FOR A DISSIPATIVE FORCE QUADRATIC. . . 485

where T =tz —t&, g, =g(t, ), and gz ——g(tz). The kernel E(2, 1) for a Lagrangian quadratic in x, and x is given by'

E (2, 1)=F(tz, t i )exp[(i/A)S (2, 1)],
where

F(tz, ti)= J exp[(i/fi)S(2, 1)]Dx(t) .
0

Now consider the initial wave packet at the time ti ——0

g„(xi,O) =(2'n!)' ' '(a /rt)" H„[a(xl —gi)]exp[ —( —,
' )a (x& —g&)'+(im /A)x|gi],

where a =m0/R, gi=g(0), and gi=g(0). The wave function at t is given by

Q„(xz, tz ) = J E (xz, tz,'x 1,0)g„(xi,O)dx i

By substituting (4.7) in (4.8) and carrying out the integration over xi we get

g„(xz, tz) =a'i [(2"n!)' vr' ] 'H„[a(xz —gz)]

X exp[ —( —,
' )a (xz —gz) iQ[—n +(—,

' )]tz+(i/fi)[mxzgz+g (tz) —g (0)]I

provided that

F(t)=1/[2nisin(Qt)]"i '

The wave function (4.9) is identical to (3.10) apart from a constant phase.

(4.5)

(4.6)

(4.7)

(4.8)

(4.9)

(4.10)

V. MOTION IN A VISCOUS FORCE PROPORTIONAL
TO AN ARBITRARY POWER OF VELOCITY

In this section we first consider the nonuniqueness of
the Hamiltonian when the damping force is proportional
to x ', a&1,2, and then study the canonical quantization
of this system to show some of the difficulties mentioned
in Sec. II. For this problem the Harniltonian is an impli-
cit function of p and x, and is defined by the relation

H = i waif (x)d/d—x —(i /2)A(df /dx) .

The "Schrodinger equation" obtained from (5.7) is

(5.7)

[x,x] is different for the two Hamiltonians, and is not
given by the inequality (hx) (b,x) )A' /4m, but is state
dependent. Following the usual procedure for "quantiz-
ing" (5.2), we first symmetrize H and construct a Hermi-
tian Hamiltonian operator for the classical motion (5.4)

p = f dH[C(H) —/3(2 —a)x]' ' (5.1)
d g/dx+ [( ,' )(df /fdx) is—lhf]$=0— (5.8)

H =p [C —P(2 —a)x]'i' "=pf (x) . (5.2)

where C is an arbitrary function of H. In particular if we
choose C to be independent of H we find (5 9)

which can be solved to yield f(x);

P(x) =f "i"exp is/1 f dx If (x)

The corresponding "wave function" for (5.6) in momen-
tum space is given by

Using (5.2), the Hamilton canonical equations yield

x =H /p and p =Ppx " (5.3)
P(p) = exp I [iD (1 r)IPr]—

X[E'p D'" "(1lr—)"pt"+ "Ir+1]}. (5.10)

x+Px '=0 . (5.4)

A classical Hamiltonian equivalent to (5.2) can be found
by choosing C (H) to be linear in H, i.e.,

C(H)=DH .

This time we find the following Hamiltonian

H = —ri3x /[D (1 —r)]+D'" "(1/r)"p'

(5.5)

(5.6)

where r =(2—a)/(1 —a). Again (5.6) leads to the equa-
tion of motion (5.4).

Before considering "wave equations" for these
equivalent Hamiltonians we observe that the commutator

Remembering that H is a constant of motion, and elim-
inating p between this pair we find the equation of motion
to be

m g +d V(g)ldg+F(g, g, t) =0 . (5.12)

Clearly (5.8) and (5.10) are wave functions for different
systems, and e and e' in these equations have no simple
relation to the energy of the particle. Noting that the
canonical quantization is unsatisfactory, let us consider a
formulation of this problem using the method discussed in
Sec. III. The Schrodinger equation for this case is similar
to (3.4). In fact the wave equation for a general damping
force F (g, g, t), according to the present formulation is
given by

[(—A /2m)B /Bx + V(x)

+F(g, g, t)[x —g(t)] }/=i%'Bg/Bt, (5.11)

where g is a solution of
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If the potential V(x) in (5.11) and (5.12) is zero, then the
wave function has the same form as (3.5) except now g is
a solution of (5.12) with V=0.

VI. DISCUSSION

In the last section, we showed that for a dissipative
force proportional to x ', we can construct diferent classi-
cal Hamiltonians and by canonical quantization we obtain
different wave functions. However, this procedure is not
satisfactory since the energy of the system is not given by
the expectation value of the Hamiltonian, and there is also
a violation of the velocity-position uncertainty relation.
The case of quadratic damping has the additional

difhculty due to the ambiguity of ordering of the factors.
When the damping force is proportional to x, it has been
shown by a number of arguments that the Schrodinger-
Langevin equation is a suitable candidate for the wave
equation. ' This wave equation which is nonlinear ad-
mits an interesting solution for the damped motion of os-
cillator which is similar to (3.10). The solution describes
the wave function of a forced harmonic oscillator, where
the forcing term is damped. By starting from this wave
function as a model, we found that we can apply the
canonical quantization to Hamiltonian (3.1) or to a simi-
lar Hamiltonian for x ' and F(x,x, t) forces to obtain the
wave equation. The resulting Schrodinger equation is
linear and time dependent, and has a number of desirable
properties that we mentioned in Sec. III. The similarity
between the present formulation for a general damping

where H, is the classical Hamiltonian. The simplest ex-
ample to study is that of a particle moving in a viscous
field proportional to x . In this case the wave function is
given by (3.5), and thus

j g ~

=1, but as the classical
equation (3.7) shows:

~

x(x)
~

'=exp[( —,')yx] . (6.2)

This is to be expected, since here we have a "free" particle
driven by a damping force. Exactly the same picture
emerges from the solution of the Schrodinger-Langevin
equation for a free particle, thus in all these models,
when V =0, the actual form of damping has no eff'ect on
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force, F(x,x, t), and the Schrodinger-Langevin equation
becomes more apparent when we study the classical limit
of the wave equation obtained from Van Vleck's deter-
minant. This gives us a probability distribution, but this
distribution is not proportional to

~

x(x)
~

of the classi-
cal motion. Let us consider the limit of

~ f ~

as trt~O.
In this limit, according to Van Vleck, we have

(6.1)

~P. Havas, Nuovo Cimento, 5, 363 (1957).
R. M. Santilli, Foundations of Theoretical Mechanics (Springer-

Verlag, New York, 1978).
~F. Negro and A. Tartaglia, Phys. Rev. A 23, 1591 (1981).
4M. Razavy, Hadronic J. 6, 406 (1983).
5W. E. Brittin, Phys. Rev. 77, 396 (1955).
M. Razavy, Phys. Rev. 171, 1201 (1968).

7R. W. Hasse, Repts. Frog. Phys. 41, 1027 (1978).
8J. Messer, Acta Phys. Austriaca 50, 75 (1979).
H. Dekker, Phys. Reps. 80, 1 (1981).
W. Sarlet, J. Math. Phys. I9, 1049 (1978).

IF. J. Kennedy and E. H. Kerner, Am. J. Phys. 33, 463 (1965).
M. Razavy, Z. Phys. B 26, 201 (1977).
A. Tartaglia, Phys. Lett. 77A, 1 (1980).
A. Tartaglia, Eur. J. Phys. 4, 231 (1983).

' C. Stuckens and D. H. Kobe, Phys. Rev. A 34, 3565 (1986).
' M. Razavy, Can. J. Phys. 50, 2037 (1972).
~7P. A. M. Dirac, The Principles of Quantum Mechanics, 4th ed.

(Oxford University Press, London, 1958).
~~J. R. Shewell, Am. J. Phys. 27, 6 (1959).
'9L. S. Schulman, Techniques and Applications of Path Integra-

tion (Wiley, New York, 1981), Chap. 8.
M. Razavy, Can. J. Phys. 58, 1019 (1980).

'P. Ullersma, Physica, 32, 27 (1966)~

M. Razavy, Nuovo Cimento, 64B, 396 (1981).
M. D. Kostin, J. Chem. Phys. 57, 3589 (1972).
M. Razavy, Can. J. Phys. 56, 311 (1978).
B. K. Skagerstam, J. Math. Phys. 18, 308 (1977).

6J. H. Van Vleck, Proc. Nat. Acad. Sci. U.S.A. 14, 178 (1928).


