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A laser with parameters modulated at a frequency f may respond not only at that frequency and
its harmonics nf, but also at that of its subharmonics f/n Whe. n the order n of its subharmonics
increases indefinitely, the response of the laser becomes irregular, though the system remains
deterministic. Many approaches have been used to characterize these different behaviors and the
associated attractors, in a COq laser containing an elasto-optic modulator. A quite important
similitude has been remarked between the bifurcation diagram of the laser and that of the logistic
map x„+&——1 —px„.More complex chaotic features have also been observed, e.g. , generalized bi-
stability between different attractors, and crisis when a chaotic attractor collides with an unstable
periodic cycle. The inAuence of the rate of change of the driving parameters has also been stud-
ied. The experimental results show excellent agreement with those provided by the two-level mod-
el of the laser.

I. INTRODUCTION

The laser with modulated parameters appears to be
not only an excellent device for the investigation of
chaotic phenomena but also a useful system for all the
applications in which modulated laser radiation is re-
quired (e.g. , telecommunications, target designation,
etc.). From the point of view of applications, the CO,
laser with modulated losses has long been a subject of in-
terest in connection with intracavity spectroscopy and
with the hope to produce giant laser pulses. More par-
ticularly, in an attempt to explain the high sensitivity of
intracavity laser spectroscopy, Arimondo and Glorieux
showed that the laser containing a saturable absorption
cell could exhibit damped relaxation oscillations. ' By
modulating the laser at that particular frequency, very
strong nonlinear effects can be produced. This excita-
tion of the laser near its resonance frequency or some
(sub)harmonics is the basis of the experiments of chaos
in this system.

In fact chaos has been observed in modulated CO2
lasers, semiconductor diode lasers, and Nd P50i4
(Ref. 9) nuclear-spin flip' and YAG:Nd + lasers, "
where YAG represents yttrium aluminum garnet. A
wide variety of effects has been observed, some of which
are specific to a particular laser system, while some oth-
ers appear to be general properties of systems exhibiting
bifurcations.

The purpose of this paper is to present in a unified
way the effects we observed in a modulated CO2 laser, to
characterize them, and possibly to give an efficient mod-
elization together with numerical simulation of the vari-
ous phenomena which were experimentally observed.

For the last few years, the CO& laser with internal
modulation has been investigated experimentally and
theoretically in the framework of the interest recently
developed for chaos and related nonlinear phenomena.
Arecchi et al. have shown subharmonic bifurcations and

generalized bistability in a CO2 laser containing an elec-
trooptic modulator ' and they measured the dimension
of the strange attractor describing the chaotic regime,
using the Procaccia-Grassberger method. Midavaine et
al. observed period-doubling cascades culminating in
chaos with periodic windows in a CO& laser frequency
modulated by an elasto-optic modulator inserted inside
the laser cavity and recently Hennequin et al. reported
the observation of crises in this system. On the theoret-
ical side, Ivanov et al. predicted chaos in a solid-state
laser with periodically modulated losses, ' and recently
Erneux et al. calculated the inhuence of the modulation
frequency in this kind of laser, showing a new set of bi-
furcations. ' Multistability has also been predicted by
Matorin et al. '

In Sec. II we present the waveguide CO& laser, the
elasto-optic modulator, and the signal processing tech-
niques which have been used throughout the experi-
ments. The direct observation of the period-doubling
cascade as measured on the intensity delivered by the
laser is described in Sec. III. Digital recording of the
signal allows one to compare their time development
and, by choosing similar sequences, to exhibit the sensi-
tivity to initial conditions of the system. It is also possi-
ble to reconstruct the strange attractor from these time
series. Such reconstructions are presented in Sec. IV to-
gether with other on-line observations at fixed parame-
ters, e.g. , statistical analysis of the distribution of points
in Poincare sections of the reconstructed attractor.
Periodic sampling of the signal at the same frequency as
that of the external modulation allows one to visualize
directly on an oscilloscope the bifurcation diagrams of
the laser with modulated losses or frequency. The bifur-
cation diagrams obtained using the modulation ampli-
tude or the laser detuning as control parameters are
given in Sec. V. This approach using bifurcation dia-
grams proved very useful in assigning various phenome-
na observed in the chaotic region and which are present-
ed in the following sections.
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A two-level model of the laser using adiabatic elimina-
tion of the polarization appears to describe quite accu-
rately the modulation characteristics of the COz laser
with modulated losses or frequency. Extensive numeri-
cal simulations have been made on the basis of this mod-
el and helped in understanding and clarifying some
effects observed on the laser output. The following sec-
tions are devoted to these effects, namely, "generalized
bistability, " crises, and dynamical deformation of bifur-
cation diagrams. In Sec. VII we show that our laser sys-
tem may be characterized by several attractors for one
set of operating conditions. Depending on the initial
conditions, the system evolves towards one attractor or
another and exhibits hysteresis. Both the experimental
setup and the numerical model exhibit different kinds of
crises, i.e., abrupt changes in the qualitative properties
of an attractor as shown in Sec. VIII. In Sec. IX a brief
discussion of the effects related to the dynamical defor-
mation of the bifurcation diagram is given.

used, a 100 mV voltage applied to the ceramics stack
produces a frequency shift of 1.8 MHz which corre-
sponds to a change of the optical length of the cavity of
19 nm, while the same voltage induces a 0.5% loss
modulation via stress-induced birefringence. These
modulation rates are strongly dependent on the modula-
tion frequency because of the vibration modes of the
crystal. Moreover, as the laser dynamics present some
resonance frequencies, the efficiency of these modula-
tions strongly varies with their frequency.

The laser intensity is monitored by an HgCdTe photo-
voltaic detector and stored in a digital oscilloscope in
series of 1024 samples of 8 bits. The intensity spectrum
of the laser may be measured with an Advantest TR
4131 E spectrum analyzer. Both systems are connected
to a microcomputer for further data processing. In the
purpose of monitoring the changes in the attractors, the
laser intensity and its time derivative obtained by analog
differentiation can also be visualized on an oscilloscope
used in the X-Y mode.

II. EXPERIMENTAL SETUP

The experimental setup consists essentially of a
sealed-off waveguide CO2 laser in the cavity of which an
elasto-optic modulator is inserted. The laser cavity is 25
cm long and a dc discharge runs 4 mA through 7 kV
typically. The 19-cm-long active medium is composed of
a mixture of CO2, CO, Xe, and He at a pressure of 50
Torr inside a 2-mm-bore alumina tube closed by
antireflection-coated windows. The laser power is cou-
pled out through a 90% reflecting mirror and also via
specular reflection on the grating. It reaches 300 mW
typically and the signal-to-noise ratio is in excess of 60
dB. The mode width depends on gain and pressure in-
side the cavity medium. It varies from 200 MHz to the
free spectral range of the cavity (500 MHz) depending
on operating conditions. The cavity length and thus the
laser frequency are adjusted by applying a voltage to the
piezoelectnc ceramic which holds the end mirror.

The elasto-optic modulator is made of a ZnSe crystal
squeezed by a stack of piezoelectric ceramics fed by a
high stability programmable synthesizer. The stress due
to these ceramics induces birefringence in the crystal in
a way similar to the electro-optic effect. ' In fact, the
motion of the ceramics changes the laser output through
two phenomena: (i) The reflecting power of the grating
depends on the polarization of the incoming beam and
the orientation of the grating fixes the polarization direc-
tion of the laser beam, and thus the modulation of the
optical axes of the crystal induces a loss modulation; and
(ii) the length of the crystal and consequently the optical
length of the cavity are changed when the crystal is
pressed and thus the layer may be frequency modulated.

The relative efficiency of these modulations depends
on the frequency of the voltage applied to the ceramics
which press on the crystal. Depending on this frequen-
cy, various mechanical vibration modes of the crystal
can be excited. It is possible to select either amplitude
(AM) or frequency (FM) modulation for the laser by
correctly choosing the vibration mode of the elasto-optic
crystal. When a modulation frequency of 330 KHz is

III. DIRECT OBSERVATION OF THE SIGNALS

Various quantities may be used as control parameters.
The most commonly used in our experiments are the
modulation amplitude and the laser detuning.

In this section we shall describe the evolution of the
laser output as the modulation amplitude V is increased,
with an elasto-optic modulator working in the frequency
modulation mode. Similar results have been obtained
when the modulation is operated in the AM mode. This
evolution is illustrated on Fig. 1. We start from a situa-
tion in which the laser is oscillating cw in the absence of
modulation (V=O). At low modulation [Fig. 1(a)] the
laser response is linear and the output intensity is
sinusoidally modulated. When V is increased, the output
period suddenly doubles; then if V is further increased
[Fig. 1(b)], the modulation on the laser output is larger;
then a new bifurcation occurs, where a 4T component
appears [Fig. 1(c)]. For a very little increase of the
modulation, a 8T component appears [Fig. 1(d)]. At
slightly larger modulation amplitudes, any regularity in
the laser intensity is lost; it appears first as a 4T "noisy"
signal, then a 2T "noisy" signal where the maxima of
this signal lay in two bands which eventually melt into a
single band and the maxima may have any value in this
band. In this situation the signal appears as a noisy T-
periodic sine wave. At higher modulation rates, the
chaotic behavior still evolves and disappears when V still
increases. At this point, the output intensity is 3T, then
6T periodic, before returning to a chaotic regime. Other
periodic behaviors, e.g. , 5T, may appear at higher modu-
lation rates but there the system is mostly chaotic with a
"noisy" 3T behavior.

Such a scenario of a period-doubling cascade leading
to chaos and periodic regimes was also observed by
Arecchi et al. in a COz laser with loss modulation using
an intracavity electro-optic modulator. The period-
doubling cascade and the inverse cascade may be con-
sidered as an experimental indication that the irregular
part of the evolution, i.e. , that illustrated from (e) to (g)
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FIG. 3. Dependence of the bifurcation points vs the laser cavity detuning indicated by the PZT voltage. The asymmetry is due
to the nonlinearity of the PZT. Generalized bistability is observed in the circled regions.

reasonable to conjecture that each variable reflects rath-
er faithfully the characteristics of the attractor. ' It is
in agreement with the measurement of the correlation
entropy reported in Refs. 4 and 6.

IV. RECONSTRUCTION OF THE ATTRACTORS.
STATISTICAL ANALYSIS

It is not possible to measure the values of all the vari-
ables in our experimental system and thus the attractors
cannot be reconstructed in the phase space of the vari-
ables. However, time series of a single measured quanti-
ty X(t) allow the rebuilding, in a new phase space, of
trajectories which are topologically identical to those in
the original phase space. For instance, it is possible to
draw a representation of the attractor using as represen-
tation space either X(t), X(t+r), X(t +2r), . . . or X(t)
and its successive derivatives X(t), X(t), . . . , where X is
one of the variables of the flow and ~ is an arbitrary
time.
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FIG. 4. Sensitivity to initial conditions in the laser with
modulated parameters. Four different trajectories correspond-
ing to nearly initial conditions have been plotted with different
lines for a time duration of about 30 ps.

The latter method was used extensively during the ex-
periments in a slightly modified version. Only a projec-
tion of the reconstructed attractor was visualized by
monitoring the output intensity and its time derivative
on an X-Y oscilloscope. Unfortunately the access to the
second derivative is not easy because of the strong signal
attenuation in simple analog differentiating circuits.
Consequently, the results of the reconstruction via the
time derivatives will not be reported here. However,
this method, which allows on-line monitoring of the at-
tractor evolution, appeared extremely useful for the ob-
servation of the crises as reported in Sec. VIII.

The reconstruction via successive values of l(t) is very
easy to carry out with almost immediate processing of
the datas because of the direct access to the variables.
The time v between the different terms of the time series
is obviously a multiple of the sampling time At of the di-
gital oscilloscope. In the results presented below, it was
empirically chosen in order to reflect the most clearly
the dynamics of the system. Practically, a value of 12ht,
which is about one-fifth of the modulation period, gives
the best results. Series of 25)& 1024 points were recorded
for five different values of the modulation amplitude in
the region of chaotic behavior as indicated in Fig. 5. All
the diagrams were normalized to the maximum intensity
in the displayed series. The shape of the attractor recon-
structed from the experimental datas indicates that the
system is certainly low dimensional because the trajec-
tdries already do not cross in a three-dimensional pseudo
phase space. The stratification property is clearly seen
in all diagrams as is usual for strange attractors. More-
over, the similarity between the attractors before and
after the 3T-periodic regime [Figs. 5(b) and (e), respec-
tively] indicates that there exists some continuity in the
characteristics of the attractor on both sides of the 3T
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LASER INTENSI TY

FIG. 6. Statistical analysis of the sampled laser intensity for
various values of the modulation amplitude. All scales in arbi-
trary units.
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FIG. 5. Reconstruction of the attractor from a time series
of the laser intensity I(t), l(t+~), I(t+2v. ). The scales have
been normalized in each case. (a) Just above the accumulation
point, (b) in the middle of the first chaotic region, (c) just be-
fore and (d) after the 3T region, (e) in the second chaotic re-
gion.

doubling cascade, i.e., the appearance of a wide distribu-
tion following period-2T and period-4T bifurcations.
The statistics inside chaos have some similarity with
these obtained by Farmer in the case of the logistic
map, namely, a bounded distribution with sharp asym-21

metric peaks: Starting from the lower (upper) limit to-
wards the center of the intensity range, every maximum
in the histogram appears as a discontinuity and is fol-
lowed by a slow decrease of the probability distribution.
Boundary crises in which the attractor suddenly expands
may also be seen in the middle of the explored range of
m values.

V. BIFURCATiON DIAGRAMS

regime. This point may be surprising since, as will be
seen in Sec. V, the 3T regime is not the periodic window
associated with deterministic chaos following a period-
doubling cascade. Note also that in Fig. 5(d) the attrac-
tor explores three regions of the phase space as in the in-
verse cascade situation.

Even if such diagrams do not provide quantitative in-
formation on the chaotic behavior, they give us addition-
al evidence that the irregular behavior of the laser is not
due to noise. In fact Poincare sections of these diagrams
are much easier to describe and may also provide insight
into the properties of the different regimes exhibited by
the laser with internal modulation. These sections will
not be discussed here since the same information may be
gained from the bifurcation diagrams which will be
presented in Sec. V. Before going into this approach, it
is interesting to present the result of a statistical analysis
of chaos. In that purpose, the laser output intensity is
periodically sampled and histograms of these samples
have been drawn for different values of the modulation
amplitude from the first period-doubling bifurcation to
chaos well above 3T-periodic region. The histograms
shown in Fig. 6 exhibit the main features of the period-

The observation of bifurcation diagrams (BD's) pro-
vides the most convenient tool to investigate the
inhuence of various control parameters on a chaotic sys-
tem. Such diagrams are easily obtained in our experi-
ments using a stroboscopic method. A sample and hold
module is synchronized on the modulation signal and
stores a signal proportional to the laser output intensity
at some definite time of the modulation sine wave. As it
is synchronized on the modulation, if the response of the
system is T periodic, the sampler delivers a single-valued
output. In case of n T-periodic response, n different
values are successively available at the sampler output.
When the laser is chaotic, any periodicity in the sampler
output is lost and series of apparently random values,
which reAect the statistics of chaos, are obtained.

In fact, this stroboscopic picture is quite equivalent to
a projection of a Poincare section in the phase space as-
sociated with the intensity I, the population inversion D,
and the phase modulation P. The periodic sampling re-
stricts the points considered to those corresponding to a
well-defined value of P. As the population difference D
is not experimentally measurable, the BD's are shown in
a two-dimensional picture where the values of the sam-
pled intensity only are displayed versus the control pa-
rameter. These plane representations of the system evo-
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lution appear quite convenient to describe the evolution
of the attractors with the laser cavity length or the
modulation amplitude as control parameters.

A. Bifurcation diagrams versus modulation amplitude

When the voltage applied to the elasto-optic modula-
tor is used as a control parameter, one BD summarizes a
set of recordings of the time development of the laser
output intensity such as that presented on Fig. 1. A typ-
ical BD is shown on Fig. 7 for increasing values of the
modulation. At very low modulations, the system is ap-
proximately linear and responds at the same period as
that of the excitation T. Above some threshold indicat-
ed as V& on Fig. 7, the response is also periodic but at
2T, i.e., twice the modulation period. A new bifurcation
is observed for V = Vz and the BD is then made of four
branches but the two lower amplitude branches can
hardly be distinguished because of the particular sam-
pling time chosen for this experiment. The 8T response
is just visible. Then the system enters the chaotic regime
at V3, this appears as a "broadening" of the branches of
the BD. After a small increase of V, the whole domain
between zero and the maximum intensity is explored
( V4). As V is further increased to V&, the chaos sudden-
ly disappears and a 3T-periodic regime appears, two
branches of which overlap near zero. The next bifurca-
tion leads to a 6T response and then to chaos again.

This bifurcation diagram presents strong similarities
with that of the logistic map ' ' and the comparison
between them can be done on three properties: the har-
monic cascade, the inverse cascade, and the universal se-

qu ence.
Concerning the period-doubling cascade, the two BD's

behave in a similar way; the bifurcations occur on de-
creasing ranges with ratios of the same magnitude.
However, the 8T domain, which appears clearly on the
logistic map BD, almost disappears in the experimental
BD. This may be due to the noise which scrambles the
regimes of high subharmonic order as shown in Ref. 22.
Note also that the width of the subharmonic zones of
the logistic map decreases asymptotically in a geometric
progression of ratio 4.7. The width of the 8T region is
thus expected to be about 100 times smaller than that of
the T-periodic regime. The inverse cascades also are
similar in the two BD's. In the chaotic regime, the laser
system samples a wider and wider region, going through
the noisy 8T, 4T, and 2T regimes as the logistic mapping
does. The statistics of the sampled points inside the ful-
ly chaotic region follow tendency laws similar to those of
the corresponding part in the BD of the logistic map.

However, this similarity disappears as long as the
universal sequence is concerned. The 3T regime is the
only "window" which is clearly visible on the BD, al-
though 5T regimes were also observed. As is suggested
by the evolution of this "window" with laser cavity de-
tuning, this regime is not that associated with the 3T
window of the scenario of transition to chaos through
the period-doubling cascade' but it is rather due to
another attractor whose basin of attraction evolves with
the laser cavity detuning. Two points confirm the as-
signment of the 3T behavior to a new attractor instead
of to the periodic window inside a chaotic region: (i) Its
width may be as large as that of the 2T regime while in
the logistic mapping, it is about 100 times narrower, and
(ii) there is a discontinuity between the sampled values in
the 3T regime and the maxima in the statistics of the
chaotic samples while in the logistic map and similar
systems, the 3T values correspond to the strongest peaks
in that distribution. It is then likely that at least two at-
tractors may exist in the laser with modulated parame-
ters. Depending on the laser operating conditions, they
may coexist or compete and these processes give rise to
generalized bistability and crises (see Secs. VII and VIII).

B. Bifurcation diagrams versus laser frequency

V2 Vg

MODULATION AMPLITUDE

FIG. 7. Bifurcation diagram with the modulation amplitude
as a control parameter.

New types of BD's may be observed using the laser
frequency as control parameter while the modulation
amplitude is kept fixed. A whole family of new BD's is
obtained and the two following examples provide an
overview of the interests and limits of this approach.

In the first BD [Fig. 8(a)] a large modulation ampli-
tude was used and the cavity length is swept on about
one mode spacing (b, l =5 pm) by varying the voltage
applied to the PZT which holds the end mirror. In the
operating conditions of Fig. 8, the gain is relatively weak
and the output power drops to zero in the far wings of
the mode. The corresponding BD exhibits a complete
sequency of bifurcations. Starting from high voltages,
the following bifurcations are successively encountered:
first a period-doubling bifurcation and chaos, then a 3T
regime and a new chaotic zone, and, later, the same se-
quence in inverse order: 3T, chaos, 4T, 2T, and eventu-
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FI~. 8. Bifurcation diagrams obtained with the laser detuning as a control parameter for (a) high modulation amplitude and (b)

and (c) low modulation amplitude. The most nonlinear regime has been obtained in the slope of the laser mode when the laser gain
is low (c) and on top of the mode (zero detuning) when it is high (b). The detuning is swept over one mode width (-200 Mhz).

ally a T regime which is not shown on Fig. 8. The BD is
symmetric with respect to central tuning but appears
asymmetrical because of the nonlinearity of the PZT.

BD's obtained with smaller modulation amplitudes
display more precisely the dependence of the regime on
the detuning. In those presented on Fig. 8(b) and 8(c)
only the T~2T bifurcations occur when the laser fre-
quency is swept. The mode pattern of the laser is clearly
visible on these Figs. 8(b) and 8(c) where the two traces
related to the backward and forward sweeps of the cavi-
ty length are shifted from one another because of the
PZT hysteresis. The most nonlinear response occurs in
the slope of the mode pattern (2T regime) while the laser
response is more linear (T regime) on the top and in the
far wings [Fig. 8(b)]. In the conditions of Fig. 8(c), the
cavity is slightly misaligned but the laser still oscillates
monomode. Thus it may be assumed that only the loss
rate of the cavity is changed. In this situation the sensi-
tivity to nonlinearity is reversed and the largest non-
linearity is obtained for a laser cavity tuned to the center
of the molecular line.

Numerical simulations will confirm that the loss rate
of the cavity strongly affects the shape of the BD's—in
particular, the most nonlinear points in the laser mode
may move from the central frequency to the wings of the
laser mode. The influence of the cavity detuning is also
clear when BD's obtained by varying the modulation
amplitude are compared for different values of this de-

tuning. In these conditions three characteristic BD s are
presented on Fig. 9. When the laser cavity is tuned at
the center of the emission line [Fig. 9(a)], the diagrams
exhibit a sequence T-2T-chaos without details in the
subharmonic cascade or in the 3T regime. When the de-
tuning is small (=20 MHz) the 2T and 4T periods are
easily seen and a large 3T regime appears [see Fig. 9(b)].
As the laser is detuned by about 100 MHz [Fig. 9(c)],
the BD presents generalized bistability and sudden
changes called "crises" as studied in more detail in Sec.
VII and VIII.

All these examples show that the BD's are very
efficient tools to characterize the various regimes of the
CO2 laser with modulated parameters. Because of the
time scale of the phenomena in this laser system, they
readily provide a large amount of results which should
be compared with the predictions of the theoretical mod-
el.

VI. NUMERICAL SIMULATIQNS

The results obtained with the experimental device are
compared here with those derived from numerical simu-
lation on the basis of the well-known two-level model
previously discussed by many authors. "' ' ' The be-
havior of the CO2 laser can be described by a set of two
coupled nonlinear differential equations:
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GDI =I —2~0
1+6

DID=y 1 —D—
1+6

In these equations G is the gain and I and D are, re-
spectively, the intensity and the population inversion.
Their equilibrium values are Ip ——G /2Kp —( 1+5 ) and
D p=(2& /pG)(1+6 ). trp is the cavity damping rate and
6 is the detuning from resonance expressed in units of
the polarization relaxation rate y~.

Due to the reasons discussed in Sec. II, the elasto-
optic modulation mainly induces a loss modulation and
v is consequently written as a function of the frequency
of the driving sine wave voltage as

(a)

K=Kp[ I +m sin(2vrft +P)] (2)

where m is the modulation index. Then the nonauto-
nomous differential system takes the following form:

ADI =21rpI —1 —m sin(2~ft+P)1+6'

DID =yij 1 —D—
1 +62

where 3 =G/2KO is the pump parameter of the CO2
laser.

The experimental parameters have been estimated to
values which describe as well as possible our experimen-
tal situation. The frequency f is fixed at 400 kHz, the
cavity damping rate Ko of our waveguide cavity is es-
timated to be 6.10 s ', and at 50 Torr the population
relaxation rate y

~~

is calculated to be 2. 5 X 10 s ' from
the work by Dupre et al. The usual value of the mode
width of the laser is 200 MHz corresponding to 6=0.4.
In order to obtain a pump parameter just above 1 when
6=0.4, the A parameter has to be fixed around 1.2.
Practically, in numerical simulations, 3 has been varied
between 1 and 1.2.

The equations have been numerically solved by the
Merson's method with initial conditions given by the
m =0 steady-state solutions. The calculated signal
versus time is stored as soon as the transient is
su%ciently damped, i.e., after a time corresponding to
100 periods of the driving signal.

Figure 10 shows the calculated signal when m is in-

(c)

))))))))))))))))))))~l
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FIG. 9. Influence of the laser frequency on the BD obtained
with the modulation amplitude as a control parameter in con-
ditions of relatively low laser gain. The cavity detuning is, re-
spectively, (a) 0, (b) 25, (c) 100 Mhz.

FIG. 10. Time dependence of the laser intensity calculated
for the following values of the modulation index with A =1.1,
a=2.083. 10 ', f=400 kHz, and 5=0. (a) m =0.01, period 1;
(b) m =0.015, period 2; (c) m =0.02, period 4; (d) m =0.02127,
period 8; (e) m =0.022, chaotic signal (quasiperiodicity 2T ), (f)
m =0.0246, chaotic signal; (g) m =0.0337, period 3; (h)
m =0.0338, chaos.
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y ~~( I+ &')
I (t) = Y(t) exp

2Kp

m
cos(2mft +P)—cosP

(4)

the coupled equations take now the form

Y= Y(Di —1),
Di ——A, D, [e+Y —X(t)],

(Sa)

(Sb)

where

3
&

and D
&

are the reduced pump parameter and popula-
tion inversion, respectively. In these equations the dot
means time derivation with respect to the dimensionless
time t ' = 2Kpt;

Kpm
X(t)=exp, cos ~fr +P —cosP

Kp

is the forcing term. If Equation (Sb) is not modified, the
first one takes now a simpler expression due to the fact
that a part of the exponential contribution to the intensi-
ty is analytically included.

As an heuristic method, an iteration map may be used
to predict some features that are likely to appear in the
BD of the differential system. However, it should be
kept in mind that there may be significant differences be-
tween the differential and the iterative systems. Using
a first-order Taylor expansion of Y and D& with respect
to the dimensionless time t', the system takes now the
form of a three-dimensional map:

Y„+]
——Y„D„,

D„+,= A, +D„(1—e —Y„X„) (6)

creased from 0.01 (a) to 0.0338 (h). These di8'erent kinds
of signals are in good agreement with the corresponding
experimental recordings shown on Fig. 1, and the 2"T
cycles (a), (b), (c), and (d) are easily obtained as well as
the 3T cycle (g). Chaos with quasiperiodicity 2"T has
also been found.

The best way to illustrate the simulated response of
the laser is to build a BD by stroboscopic sampling of
the laser intensity and of the population inversion at
each period of the excitation signal when either m or 6
are chosen as control parameters. Changing the phase P
allows the exploration of the intensity or of the popula-
tion inversion variations during a period of the driving
signal.

In order to reduce the integration time needed to ob-
tain BD's, some transformations have been performed on
the laser equations. The shape of the experimental sig-
nal suggests that at least at low m values, the intensity is
approximately varying as the exponential of the sine
wave modulation [see Fig. 10(a)].

Writing I(t) as

where the forcing term L, is given by

mKp
X, =exp . cos

Kp
n +P —cosP

is near one-half. When Kp is increased, 6 is consequently
decreased in good agreement with the experimental
study in which it is possible to vary Kp for instance, by
the choice of the operating cavity mode of the laser.

Figure 12(a), calculated with A =1.11, shows that the
response of the system is again T periodic when 6 is near
zero. On the other hand, when 3 is decreased to 1.06

I„is easily deduced from these equations.
This map does not correspond to a Poincare section of

the three-dimensional system since the dimension of the
phase space is not reduced; it gives only a step-by-step
(1/X = f /21ro) calculation of the solution as it is done,
in fact, with numerical integration methods. For exam-
ple, at low m values, the limit cycle of period 1 is
covered in N iterations. Since N is 300 with the chosen
experimental parameters, the first-order Taylor expan-
sion of the modified differential system may be con-
sidered, at least at low m values, as a good approxima-
tion of the differential system. Note that it is not true if
one uses the original system of Eq. (1).

Due to its simplicity, this three-dimensional map
seems to be a useful tool and has been largely used on a
personal computer for the analysis of the different types
of response of the numerical system. However, it is cer-
tain that this iteration map does not give the same solu-
tions for I and D as the differential system, but it has
been verified that, for different sets of parameters, the
two methods give quite similar BD's, except a systematic
shift of the bifurcation points towards lower m values as
shown on Fig. 11 which presents calculated BD's ob-
tained by the two methods: (a) numerical solution of Eq.
(3) and (b) map of the modified system as given by Eq.
(6). Period-doubling bifurcations look very similar to the
experimental ones. The only difference is the width of
the 5T region. The discontinuity observed at the first bi-
furcation point is not due to a lack of convergence and
will be explained in Sec. VIII. As 6 is increased, it has
been observed that the 5T region is first shifted towards
lower m values, then gets narrower and disappears.

It has been shown experimentally in Sec. III that the
laser frequency, which is related to the effective pump
parameter 2 ~, has a strong influence on the BD pattern.
An easy way to study this dependence is to calculate the
BD with 6 as a control parameter and to study its evolu-
tion for various m values. Figure 12 gives an example of
BD when m is fixed to a value low enough (m &0.01)
such that only one period doubling is achieved. These
numerical simulations are in good agreement with the
experimental work (see, e.g. , Fig. 8). It appears in the
calculations that the limit cycle representing the laser
response loses its stability to give a cycle of period 2
when one reaches a value of 6 such that the dimension-
less eigenfrequency of the system

]/2
1 1

2Kpy —12' 1+6'
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FICx. 12. Calculated BD in the AM mode vs 6 as a control

parameter for (a) A = 1.11, m =0.011; (b) A = 1.06, m =0.011.
Other parameters as in Fig. 11.

FICx. 11. Calculated BD's in the AM mode for A =1,1,
@=2.083. 10 ', f=400 kHz, and 5=0.08 vs m as a control pa-
rameter using (a) the iteration map, (b) the difterential system.
m is increased from 0 to 0.03.

ing diagrams obtained with loss modulation except a
much lower efficiency of the FM mode, about one order
of magnitude with our set of parameters.

VII. GENERALIZED MULTISTABILITY

[Fig. 12(b)], its response remains 2T periodic even for
5=0. This behavior will be discussed in Sec. VII.

As has been shown in Sec. II, the elasto-optic modula-
tor induces not only a loss modulation (AM) but also a
frequency modulation (FM) of the laser. It appears that
the latter is much less efficient at least at low modulation
amplitudes; this confirms an earlier theoretical predic-
tion. Nevertheless, in the FM mode, the modulation
should be the most efficient the larger the cavity detun-
ing is. Numerical simulations using the same simplified
model as in Eq. (1) have been performed to set the quali-
tative differences between the BD's, with 6 written as

5=5o+m5, sin2mft,

where 5& is the half width of the laser cavity mode.
They show no qualitative difference with the correspond-

We have observed experimentally that when the de-
tuning 6 is of the order of one half the mode width, the
BD is much more complicated than the one obtained
from the logistic map. In fact, the behavior of the laser
sometimes depends not only on the parameters but also
on their previous history. This is the phenomenon of
generalized multistability which was previously predict-
ed by Matorin et al. ' and by Solari et al. and ob-
served by Arecchi et al. ' ' and Dangoisse et al.
lasers with periodic modulation. Figure 13 shows two
BD's recorded when the amplitude modulation is linear-
ly (a) increased or (b) decreased. The scenario is qualita-
tively the same in the two recordings. The period-
doubling cascade clearly appears as well as a 3T-periodic
"window" inside the chaotic region. These BD's look
clearly different in the region of chaos and 3T-periodic
"windows" depending on whether the control parameter
is increased or decreased. More specifically, in bifurca-
tion diagrams obtained by increasing the modulation
amplitude, a narrow 3T window follows a relatively
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FIG. 13. Experimental evidence of GB between the 3T and
the chaotic regime obtained in increasing (top) or decreasing
(bottom) the driving amplitude. The 3T "window" is much
wider in (b).

FIG. 14. Attractors map showing some of the different
coexisting regimes obtained with the iteration map in the
(A, m) phase plane. The other parameters are the same as in
Fig. 11. This diagram may be explored in different ways as fol-
lows:

(1) By increasing m from 0, period 2 is reached at point B and
chaos in C after period-doubling bifurcations. The line
refers to a T-2T bifurcation.

(2) Again by increasing m, period 2 is reached in E in a
"discontinuous" bifurcation and chaos in F after period-
doubling bifurcations. Coming backward from F, the system
remains in period 2 until D is reached, where it recovers the in-
itial period-1 limit cycle. At each point of the —.—- — lines a
saddle-node bifurcation may occur. The ———line corre-
sponds to a discontinuous bifurcation.

(3) Period 2 is reached in H in a normal bifurcation. In I the
system jumps on a new period-2 limit cycle after a discontinu-
ous bifurcation. From I, in the backward direction, the limit
cycle of period 2 is observed until G is reached. The bistability
region is marked with double hatchings.

Note that the same regime may be obtained through continu-
ous or discontinuous transitions as illustrated by the dotted
lines. Path (a) Period 2 is reached at point K after a discon-
tinuous bifurcation, path (b) The same period-2 limit cycle is
achieved following a "normal" bifurcation.

broad chaotic region with quasiperiodicity 2T, while
when the sweep is reversed, the 3T window is extended
to a range of the modulation amplitude m where the sys-
tem was chaotic during the forward sweep. Thus for
some range of m, there is a "generalized bistability"
(GB) between the "noisy" 2T and 3T regimes. The
width of this bistability region depends on the laser fre-
quency as shown on Fig. 3. However, the bistability is
not measurable when the laser cavity is tuned on the top
of the gain profile and the GB appears rather when the
cavity is detuned by about 100 MHz. The bistable re-
gion broadens while increasing the detuning and can
even cover up the whole chaotic region resulting in an
almost direct transition from the 3T window to the
8T-4T-2T sequence. By selection of the laser mode, it
has also been experimentally observed that GB disap-
pears when the laser operates with high losses.

GB, which is observed only when two attractors are
coexisting, indicates that at least two attractors are
present for some values of the experimental parameters.
A numerical study has been undertaken to characterize

these various attractors as a function of the control pa-
rameters. In this study we have obtained the di8'erent
solutions for I and D when the pump parameter and the
modulation index are varied, i.e. , in the (A, m) phase
plane, using the three-dimensional map described in Sec.
VI. Checks have been regularly made to ensure that the
inap and the differential equations (l) provide very simi-
lar BD's. The range of variation of A and m are limited
to values below 1.2 and 0.03, respectively. All the limit
cycles are calculated in the same conditions: For given
values of m and A (or k), the map is iterated so as to ob-
tain its limits with a given accuracy, the initial condi-
tions being provided by the limit found for the previous
m (or A) value when A (or m) is fixed. The results of
this study are schematically represented in Fig. 14. It is
shown that the limit cycle of period T (period l attrac-
tor) is, if not destroyed, elsewhere in the plane, a solu-
tion of the system. In fact, with increasing the modula-
tion index m while A is kept constant, this limit cycle
loses its stability and gives rise to chaos via a sequence
of period-doubling bifurcations. The A, parameter ap-
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pears to be a determinant factor in the behavior of the
system. When A is fixed and m varied step by step, the
passage to period 2 is obtained for the smallest m value
when A. is near one half (A =1,053). Figure 14 shows
also the dashed lines corresponding to the first period-
doubling bifurcation for the period-1 attractor. Two
cases have to be considered: when A, is less than one
half, period 2 is achieved via a "normal" bifurcation
similar to that of the logistic map. On the contrary,
when A, is greater than one half, the system is attracted
by a period-2 attractor which is a limit cycle of period 2
born in a saddle-node bifurcation. This saddle-node bi-
furcation creates simultaneously an attracting period-2
orbit as well as an unstable period-2 orbit. The coex-
istence of attractors in the same laser system has recent-
ly been discussed in details by Solari et al. We have
observed GB between the period-1 and -2 attractors as is
shown on Fig. 15. This behavior explains the appear-
ance of a discontinuity in the BD of Fig. 11 when m is
increased. In fact, it is not due to a "normal" bifurca-
tion but to a jump from a limit cycle of period T to
another one with period 2T born previously in a saddle-
node bifurcation. For m values in the range
0.008 —0.012, the two attractors coexist for the same
values of the parameters. If m decreases, the system
stays on the period-2 attractor before "falling down" on
the period-1 attractor near the point where the saddles
and nodes annihilate (see Fig. 15). Beyond these points,
the period-2 attractor no longer exists. When m is kept
constant, the BD calculated while increasing (or decreas-
ing) A looks like a closed loop similar to the remerging
Feigenbaum trees but exhibiting a discontinuity
with associated GB as the system falls (or jumps) from
period 2 (1) to period 1 (2). When A and m are simul-
taneously varied, it has been checked that the system
may go from the point ( 3,m =0) to ( 2, m =0.014)
without encountering any discontinuity in the BD [route
(b) in Fig. 14] contrarily to the previous description

80

K

40

CZ

[route (a)]. In the regions where A, =n l3 with n =1,2,
saddle-node bifurcations giving rise to period-3 attrac-
tors have also been detected. These attractors lose their
stability via period-doubling sequences as m is increased.
The only way to jump to period-3 attractor is to choose
the initial conditions in its basin of attraction. When

3
the period- 3 attractor coexists with the chaotic re-

gion of the period-2 attractor. Period-5 attractors may
also appear in the BD as a function of m. For instance,
one of them is visible in the region near 3 =1.1 and
m =0.015 in Fig. 11. We have not tried to detect attrac-
tors other than those described here, but "hidden" coex-
isting attractors could appear with an adequate choice of
the initial conditions. It seems and it should be checked
carefully that the behavior of the system is qualitatively
the same when using other sets of parameters for e and

A few checks have been performed for comparison
with the differential system. They show that in the
range of parameters investigated in this study, its behav-
ior is qualitatively the same.

If y~~
is varied when f and Kp are kept constant, the A,

scale is then shifted with respect to the 3 scale, thus all
the positions where the different attractors interact
should be modified and period-3 attractors should ap-
pear in the BD after a collision with unstable limit cy-
cles. The map of Fig. 14 is of great help for the inter-
pretation of the BD's obtained as a function of the con-
trol parameters m and 6. For instance, the interpreta-
tion of the BD versus 5 (see Fig. 12) is the following:
When increasing 5 (5&0) or A. , the system is first on a
limit cycle of period 1 which gives rise via a period-
doubling bifurcation, as explained above, to a limit cycle
of period 2 before going back on the period-1 limit cycle
resulting in a closed loop also called "remerging"
Feigenbaum trees. ' The same scenario is reproduced
for the positive values of 5. According to the m value,
the BD has either simple loops (m &0.012), or more
complicated ones (m &0.019) in which the system un-
dergoes successive period-doubling bifurcations and pos-
sibly becomes chaotic, before going back to the period-T
limit cycle in the opposite way when 6 is decreased to
zero.

In the case where the pump parameter is reduced to
1.06, the system goes from a period-1 attractor to a
period-2 attractor and remains on a period-2 attractor
when the system is tuned at exact resonance (5=0). As
a result, for small m values, the BD exhibits only one
closed loop on the top of the mode contour of the laser.

VIII. CRISES

OI
0.005 0.01 0.015

MODULRTION INDEX

FICr. 15. Numerical evidence of GB between the T and 2T
regime obtained with the iteration map. m is increased and de-
creased between 0.005 and 0.015 with 3 =1.1, 6=0.12. The
other parameters are left unchanged.

As was pointed out by Greboggi, Ott, and Yorke, the
evolution of attractors born in saddle-node bifurcations
gives rise to crises. ' A crisis is a sudden change in
the behavior of an attractor. Crises are characterized by
a collision between a chaotic attractor and an unstable
fixed point or periodic orbit. When this orbit is just at
the boundary of the basin of attraction of the chaotic at-
tractor, the crisis is called a boundary crisis. On the
contrary, if the unstable periodic orbit is inside the basin
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of attraction, the crisis is called an interior crisis. The
attractor and its basin of attraction are simultaneously
destroyed by a boundary crisis. On the opposite, in an
interior crisis one observes only a sudden expansion of
the explored region of the phase space, since regions pre-
viously located outside the attractor are now visited.
Such crises were observed in model electronic circuits by
Hilborn and by Rollins and Hunt and should be dis-
tinguished from noise-induced jumps between different
coexisting at tractors.

We report in this section on the observation and char-
acterization of different crises on attractors in an AM
COz laser, previously described in Ref. 7. Then numeri-
cal simulations in good qualitative agreement with the
experimental recordings will be presented. As men-
tioned above, the effect of boundary and interior crises
on a chaotic attractor are different and this allows us ex-
perimentally to distinguish clearly between the two kinds
of crisis. The BD, as well as the phase diagrams in
which the laser output I is displayed versus its time
derivative I, proved useful in the investigation of crises.
In the last representation, a crisis is revealed by a sudden
appearance of new explored regions in the (I,I ) plane.

Let us first discuss the crisis giving rise to the 3T-
periodic regime (see Fig. 11). This 3T-periodic regime is
not the normal periodic window surging by a tangent bi-
furcation inside the chaotic domain. '

This statement is supported by three experimental
facts: (i) there are conditions in which generalized bista-
bility between the chaotic attractor and the 3T limit cy-
cle exists, (ii) the width of the region in which the 3T re-
gime occurs is much broader than that associated with
the usual 3T-periodic window (for instance in the logistic
map), and (iii) the sampled values in the 3T regime are
often well outside the region visited by the chaotic at-
tractor. This statement is confirmed by the numerical
simulations reported above which show that this
"periodic window" is, in fact, a period-3 attractor. The
appearance of the 3T attractor follows a boundary crisis
which destroys not only the 2T attractor but also its
basin of attraction.

Different situations of crises have been observed as the
cavity detuning is varied. They appear as expansions of
the attractor but not as its destruction and consequently
are interior crises. When the laser is only slightly de-
tuned from resonance, at some critical value of the con-
trol parameter a new branch appears in between the two
branches previously visited by the system (see Fig. 16).
Another illustration of this crisis is given by the
[I(t),I(t)] diagram in the vicinity of this event as
displayed on Fig. 17. The evolution of the laser attrac-
tor in the experimental conditions of these diagrams is
summarized in the lower part of this figure. After the
period-doubling cascade, the attractor becomes chaotic
for a modulation amplitude V,d ——185 mV. As V,d is
increased, the attractor evolves smoothly until it reaches
the critical value V„;„,=204 mV where a new branch of
the phase diagram suddenly appears in between the two
main branches. As V,d increased further, the laser at-
tractor follows more and more frequently this branch
which appears brighter in Fig. 17. Eventually this new

CRIB(5

FIG. 16. Experimental display of a BD showing a period-
doubling sequence to chaos and a crisis leading to an expansion
between the two branches of the chaotic regime.
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FICx. 17. (I,I ) plot in the crisis region at (a) 200 mV, (b) 204
mV, and (c) 208 mV driving voltages. The crisis is the same as
that displayed in Fig. 16. (d) The situation of the crisis with
respect to the "bistable" region is shown in the lower right
part.

branch and the two main branches before the crisis
smear out together. When the modulation is increased
further, the laser jumps to the 3T-periodic regime in the
boundary crisis discussed above and later on again to
chaos. When the modulation amplitude is decreased, the
3 T-periodic cycle region broadens and extends to a
modulation range where the laser was previously chaot-
ic. This is the GB effect discussed above, and a crisis is
also observed when V,„;„,is reached from above. In Fig.
17(c) it is shown that the region in between the upper
and lower chaotic branches is not evenly explored just
after the crisis. This does not appear in Fig. 16 because
that photograph was mainly overexposed to show more
clearly the new (intermediate) branch.

When the detuning of the laser frequency is large, a
third situation of cr'isis is observed. The corresponding
scenario is illustrated by Fig. 2 of Ref. 7. After the
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period-doubling sequence the regime becomes chaotic
and for a critical value of the control parameter, the ex-
plored region of the phase diagram expands suddenly.

Figure 18 shows the evolution of the rebuilt
[I(t),I(t+r)] attractor. As the initial attractor is not
destroyed, one could conclude that we are concerned
with an interior crisis. A more detailed analysis of this
crisis can be undertaken easily. The assignment of the
observed changes of the BD to an internal crisis due to a
collision of the chaotic attractor with unstable periodic
cycles is supported by the direct observation of the time
dependence of the laser intensity just after the crisis.
This is particularly clear in the case of the crisis report-
ed in Fig. 19 where the newly explored branches of the
attractor correspond to intensity peaks much larger than
the original 2T chaotic regime.

Then, as shown in Fig. 4 of Ref. 7, this original chaot-
ic regime is interrupted by intermittent bursts of
(quasi)periodic pulsations. At some irregular times, the
laser temporarily jumps into a 5T unstable cycle regime,
until it is eventually trapped again in the chaotic 2T at-
tractor. Due to the narrowness of the crisis region this
behavior has been distinguished from a noise-induced
crisis. In the conditions of this figure, the two re-
gimes (chaotic 2T and 5T unstable cycle) are easily dis-
tinguished because they correspond to spikes with quite
different intensities. This behavior is also illustrated in
Fig. 5 of Ref. 7, which is a kind of return map showing
the transition between the two regimes. It is associated
to the crossing of the attractor with the plane I =0 since
the amplitude of the nth maximum I„is plotted versus
that of the next maximum I„+&.For driving amplitude
V less than the crisis value, all (I„,I„+&)points remain
located on a "curve" as shown in Fig. 5(a) of Ref. 7.
When V is increased, this "curve" expands. As V= V„
it reaches a point where the system escapes the 2T
chaotic attractor. It explores points well outside the re-
gion shown in the figure. A typical scenario near the

FIG. 19. Experimental BD in a large range of variation of
the driving voltage. The crisis corresponds here to a sudden

expansion of the chaotic attractor.

critical point is illustrated in Fig. 5(b) of Ref. 7 where
the numbers indicate the chronology of the crisis and
refer to the successive values of n. From points 3, 4, and
5, the system evolves on various limits of the "2T attrac-
tor." From point 9, it is well outside the attractor.

The experimental investigation of a number of crises
of this kind indicates that the scenario is always the
same for different bursts of n T-pseudoperiodic pulses
and thus may be considered as a signature of the partic-
ular crisis under investigation.

IX. DYNAMICAL EFFECTS

f
~ .

r
gr

FIG. 18. Evolution of the [I(t),I ( t + )] phrase diagram,
shown, respectively, (a) before, (b) and (c) during, (d) after &he

crisis.

Up to now we have considered that the experimental
observations were made at constant control parameter.
In fact, if one wants to observe BD's, a slow sweep of
the control parameter is needed. The aim of this section
is to study the alteration of the BD's produced by the
slow variation of the control parameters. Due to the
hysteresis of the PZT used to sweep the cavity length,
only the modulation index has been used as a control pa-
rameter in the following experimental results.

We have more particularly studied the influence of the
sweep rate on the first bifurcation T~2T. Figure 20
shows three different recordings obtained for the sweep
frequencies of 3 Hz, 30 Hz, and 300 Hz, respectively. A
voltage plateau at the end of each sawtooth allows the
system to recover the stationary state before applying
the next sweep in the backward direction. Even at the
lowest frequency, one notices differences between the
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bistable zone evolves as the square root of the sweep rate
of the control parameter as predicted by Kapral and
Mandel on the nonautonomous logistic map.

(2) A very asymmetric shift of the branches of the BD.
This effect is particularly evident on the lower branch of
the BD shown on Fig. 20. This shift varies also with the
sweep rate of the control parameter, in a similar way to
the corresponding effect observed with the logistic map.

(3) Dynamical effects also arise in presence of GB in a
similar way to those appearing in bistability between
fixed points. The commutation points are dynami-
cally shifted and the width of the bistable region
broadens notably together with the increase of the sweep
rate. For instance, the 3 T-periodic regime, which is
hardly observed with the increase of the amplitude
modulation, becomes considerably broader and fills a
larger part of the BD when the amplitude modulation is
decreased.

All these different effects have generally the same
dependence with the sweep rate of the control parameter
as that observed with the nonautonomous logistic map
or with the differential system described in Sec. VI. The
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FIG. 20. Influence on the T-2T bifurcation of the sweep fre-
quency (a) 3 Hz, (b) 30 Hz, and Ic) 300 Hz.
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direct and reverse traces.
The experimental study shows that at least three

different types of dynamical effects are induced by the
sweep of the control parameter.

(1) A dynamically induced bistability which appears as
follows: with increasing the modulation amplitude, the
T-periodic solution is first dynamically stabilized, then
the system jumps suddenly on the 2T trajectories, while
the reverse happens with the decrease of the amplitude
modulation; the 2T-periodic regime is during a short
time dynamically stabilized, then the system moves back
slowly towards the T-periodic regime. Preliminary re-
sults show that the width of the dynamically induced
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20.
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FICx. 21. Calculated BD's for A =1.05 and 6=0 when m is
swept as in Fig. 20. Other parameters as in Fig. 11.
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differentia system has been solved, keeping unchanged
all the parameters except A fixed at a value (1.05) for
which static GB does not appear. Figure 21 shows the
forward and backward BD's calculated in the conditions
of Fig. 20, i.e., with almost the same values of the sweep
frequency of the amplitude of the modulation index,
fixed at 3.3 Hz, 30 Hz, and 333 Hz, respectively. All
these diagrams show some common properties in good
agreement with the experimental recordings. The for-
ward BD exhibits an abrupt jump from period 2"T to
period 2" +'T with possibly an overshot at very high
speeds, while the backward transition from period 2" +'T
to 2"T is rather smoothed. But, except in the region of
induced bistability, the forward and backward BD ob-
tained at a given sweep frequency are quite superim-
posed contrarily to the experimental ones. Even at low
speed rate [Figs. 20(b) and 20(c)], the speed effects are
only noticeab1e in the vicinity of the bifurcation points
since the other points of the BD's keep almost the same
amplitude independently of the sweep rate.

X. CONCLUSION

The direct observation of the bifurcation diagrams of
the CO2 laser with periodically modulated parameters
provides an easy and efficient way to investigate the
different regimes of this system and more particularly
those in which the laser output is chaotic. In particular,

generalized bistability, crises, and swept-parameter-
induced postponement of bifurcations have been studied
in this laser. Most of the phenomena which have been
observed are in good agreement with numerical simula-
tions based on a rate equation model of the laser.

The CO2 laser with modulated losses appears as a con-
venient system for studying chaotic effects because of its
high signal-to-noise ratio and because of the time scale
of the phenomena to carry experiments which would be
extremely difficult in other experimental domains. It is
also a rich system displaying a wide variety of behaviors
and new results are still expected, especially in the
domain of generalized bistability and noise-induced tran-
sitions.
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