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The nonrelativistic formulation of Cherepkov [J. Phys. B 14, 2165 (1981)] of the spin-resolved
photoionization cross sections is extended from the Hund’s coupling case (a) to case (c) for the
description of the ion molecular state. The spin-polarization parameters are analyzed in terms of
a generalization of the partitioning scheme developed by Thiel [Chem. Phys. 77, 103 (1983)] for
the study of the 3 asymmetry parameter. This scheme allows a detailed analysis of different / con-
tributions to spin-polarization parameters and, in the case of a single predominant term, a

straightforward evaluation of these parameters.

In the framework of the frozen-core static-

exchange approximation, this formulation is used for the calculation and the interpretation of the
spin-polarization parameters in the case of the mnp outer-shell and d inner-shell photoionizations
of the HBr and HI molecules in the energy region of Cooper minima and shape resonances.

I. INTRODUCTION

The first molecular spin-polarization measurements
were performed in 1980, on CO, and N,0.! More re-
cently, halogens (I,, Br,) and methyl halides CH;Br and
CH;I have been studied.?? In 1981, Cherepkov4 de-
rived, in the framework of a general nonrelativistic
theory, the spin-polarization parameters for diatomic
molecules. Up to now, this formalism has been applied
only to calculate the 4 and & spin-polarization parame-
ters for the photoionization of HI,’ in the spin-orbit au-
toionization region between the two *II thresholds of the
ion ground state.

Since 1969,° photoelectron spin-polarization measure-
ments and ab initio calculations have allowed a better
understanding of the influence of the spin-orbit interac-
tion on the atomic photoionization process. A detailed
review of the contributions devoted to atomic and
molecular photoelectron spin polarization was written by
Cherepkov’ in 1983. For closed-shell atoms, such as
rare gases® !! and mercury,!?~'* experiment and the re-
sults of relativistic and nonrelativistic'® theories can be
compared. For atoms with atomic number Z = 54, it ap-
pears! that nonrelativistic theories predict reasonable
values for the spin-polarization parameters for subshells
with orbital angular momentum / > 0.

The main difference between atoms and molecules
comes from the nonspherical molecular field which re-
moves the energy degeneracy between substates of
different quantum numbers A. (A is the projection on
the internuclear axis of the electronic orbital angular
momentum /.) This loss of symmetry increases the num-
ber of theoretical quantities (such as, e.g., transition mo-
ments) which describe the photoionization process.

In this paper, we extend Cherepkov’s formalism in
two directions: we take into account the mixing between
different / generated by the molecular field, and we de-
scribe the ionic molecular state either as Hund’s cou-
pling scheme (a) or (c). We generalize, to the spin-
polarization parameters 4 (denoted P in this paper), &,
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and y, the partitioning scheme introduced by Thiel!” for
the photoelectron angular-distribution asymmetry pa-
rameter 3. This allows us to analyze the different atomic
and molecular contributions to the spin-polarization pa-
rameters.

We have applied the above method to the ab initio
study of the photoionization of the inner 3d and 4d, and
outer 74p and 75p subshells of HBr and HI. These hy-
drogen halides are compared with the well-known
isoelectronic Kr and Xe atoms. This allows us to dis-
cuss our spin-polarization results in terms of atomic and
molecular contributions.

In Sec. II, we review the theoretical approach leading
to the polarization parameters. In Sec. III we present
the results of our calculations and we compare them to
available atomic and molecular experimental data.

II. THEORETICAL APPROACH

In this section we summarize the theoretical frame-
work of our approach. Let us first highlight the major
points. The key expression is the spin-resolved
differential cross section [Eq. (1)]. For general discussion
and a link with atomic formulas, we expand in (5) the P
polarization vector appearing in (1) in terms of spin-up
and -down laboratory-frame transition moments. Usual-
ly Eq. (1) is expressed in terms of five parameters o, 3,
P, v, and & [Eq. (6)]. There are these parameters which
are calculated theoretically and measured experimental-
ly. Particularly important are Egs. (15)-(17) which es-
tablish expressions of the spin-polarization parameters in
a very simple form of a product of a geometrical factor
which is energy independent and an energy-dependent
dynamical factor. The present formulation allows us
also to separate the contributions of different asymptotic
or molecular channels of the final state to differential
cross-section parameters. This is known as the parti-
tioning scheme. In Egs. (18) and (19) we give the expres-
sions of parameters summed over all asymptotic chan-

nels. They are similar to the expressions derived by
Cherepkov.* Tables III and IV contain the numerical
4759 ©1987 The American Physical Society
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values of the geometrical factors for easy reference and
direct estimation of parameters in the case of a single
dominant term. The section ends with some examples
and with the relations between parameters in the Hund’s
case (a) and (c).

A. Summary of the nonrelativistic formalism
of Cherepkov (Ref. 4); extension of the partitioning
scheme of Thiel (Ref. 13) to spin-polarization parameters

The Z axis of the laboratory coordinate system (Fig. 1)
is defined using the photon properties (direction of prop-
agation, spin, or vector of the electric field). The angle
between the direction of propagation k of the electron
ejected from the molecule and the Z axis is 6, and the
three components of the electron spin-polarization vec-
tor P, . are PX. . (6;), PY. . (6,) and PZ, . (6;).
The angles of P, , .. with respect to the coordinate sys-
tem are 6p and ¢p. Following Cherepkov,* Hecken-
kamp et al.,'® and Huang!® [Eq. (4.1)], the differential
photoionization cross section of a molecule for the ejec-
tion of the photoelectron into a given infinitesimal solid
angle with a spin polarization P, ., can be written in

the following form:

O ,+q+

o+ =CpTr(pTT*)= -

A
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FIG. 1. Laboratory coordinate system. In this coordinate
system, Z axis is in the direction of photon spin for circularly
polarized photon (s, ), or of electric vector e for linearly polar-
ized light, or of the light propagation k, for unpolarized light.
k, P, and 6, are the linear momentum, polarization, and ejec-
tion angle of the electron. The angles 6, and ¢, define the
orientation of the polarization in the laboratory frame and the
reaction plane is defined by direction of Z and k.

F o+ (B.0; )14 cosbp PZ, . (6;)+ sinfp cosdp P+ (60)

+ sinfp singp PY,  (6,)] . (1)

In (1) g is the photon spin-density matrix defined by
Huang'® (Egs. 2.1 and 4.1),

1+ cosfp sinfp exp( —idp)

[STES

P=7 |sinf, explidp) 1— cosfp ’

and T is the transition moment defined as a column vec-
tor with the components T, and T for the spin projec-
tion u of the photoelectron. F,. . is proportional to
the differential spin-unresolved cross section. Note that
the angular-distribution asymmetry parameter 8 appear-
ing in F,,,, is not to be confused with the subscript 3
of the transition moment defined above [see also Eq. (5)].

J
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A+Q+,#(k,r)=
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In (2) k and r are defined in the laboratory frame, / is the
electron angular momentum, and m and u are the pro-
jections of the angular and spin momentum of the eject-
ed electron onto the Z laboratory axis. The wave func-

1.1 . _
-2_-1 lexp[—lnll]z‘b(,\#-)n*- l.m.i.m
12 *f27 N

[

Cr is a constant detailed in Egs. (5) and (6) below. The
subscripts A™ and Q% are the projections onto the inter-
nuclear axis of the electronic orbital and electronic plus
spin angular momenta of the final ionic state (omitted in
the following whenever no ambiguity is possible), a‘f\if(ﬁ
and 0, .+ are differential and integrated cross sections.

We now establish a relation between the laboratory-
frame transition moment [Eq. (3a) below] and the polar-
ization vector P appearing in (1). We start by introduc-
ing the final-state continuum molecular wave function in’
laboratory frame (see, e.g., Fano and Dill,' Dill and
Dehmer?® [Egs. (39) and (41)], and Tully et al.?' [Egs.
(2.12) and (2.13)]):

.1 . — >
i exp[ —imy Wiy, (Ko DX, Y (K)

(k,PX,Y) ()Y, (R) 2)

; () (—) (—)

tions Wio+ o Yava+ i m 20 Sy 0t 1 im 1ym
ize the N-electron final state, and 7, is the Coulomb
phase shift. The spin function X, is that of the ejected

electron in the laboratory frame. Compared with Egs.

character-
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(2) and (3) of Cherepkov* the present Eq. (2) contains a
double summation over /|, m and /,, m instead of a sim-
ple summation in Cherepkov’s formulation. The second
summation appears as a consequence of the nonspherical
nature of the molecular potential. The dipole transition
moment from an initial state WA" to a final state
\IIA*'Q*' defined in (2) can be written as

h An
T\ g M (k)= 2 Yy ()i exp(—im )T\ 0N (k)

(3a)
where
172
T(—)mph,A k)—-' 4_77
A+ﬂ+,lm/.¢( 2i 3
(=) Y ~ \PA”
¢'A+n+ i X | 7Y on(T) | :

(3b)

In (3) mP? is the projection of the photon spin-angular
momentum on the Z laboratory axis. We have the abso-
lutely equivalent form of (2) and (3) in the molecular
frame if we replace projections mP", m, and u and vec-
tors k and r in the laboratory frame by projections m”,
A, and p' and vectors k' and r’ in the molecular frame.
The transformation between the two functions is made
through rotational matrices (see, e.g., Cherepkov4 and
Rose??).

Now TA”')"f 'A"(k) is a complex number and can be
written in polar form as

T(_)mph;;A”(k): | T(f)m

ATOH ATOt k)| exp[18A+Q+ (k)] .

4)

The transition moment (4) represents one of the com-
ponents of spin a or B of the column-vector transition
moment 7T introduced in (1). Replacing this column vec-
tor in (1) we can identify the different components PZ,
PX, and PY of the electron spin-polarization vector P

§lectmg the subscript ATQ™" and the superscripts

A/I
| To(k) |24 | Th(k) |2
F(B,6;)= o /Cs , (5a)
P20, )— | To(k)|?— | Tp(k) | (b
k F(B,0,)0 /Cg ’
| To(k)| | Tg(k) | cos(8,—8p)
PX(0,)=
() F(B,6,)0 /C ’ (5¢)
| To(k) | | Tp(k)| sin(8,—8p)
PY(6,)=
() F(B,6,)0 /Cg ’ (5d)
where Cg=(47%?/3#%ic)AE is the usual energy-

dependent constant appearing in the cross section and
AE is the difference between the initial- and final-state
energies (i.e., the photon energy) and e, #, and ¢ are the
electron charge, Planck’s constant, and the velocity of
light. In (5) the polarization P gives the probability to

find the spin of the photoelectron oriented in a given
direction. The transition moments T, and Ty (calculat-
ed in laboratory frame) correspond to the separate prob-
ability to reach the spin a or 8 components of the final-
state wave function of the photoelectron from the initial
one. Equations (5) establish a link between these quanti-
ties.

Now let us rewrite (5) in terms of the polarization pa-
rameters P, y, and £ [we reintroduce here the subscript
ATQ to connect (6) to relations (18¢c) and (19)],

F,.0+(B0x)=14cB,+q+Py(cosby) , (6a)
L Para =7 prg Palcos6y)
F iq+(B,0;) ’
o' 7A+Q+P%( cosfy )

PA+Q+(0k) 7 FA+n+(B,0k)

Pz (0 )= (6b)

ATQt

3¢’ ¥ a+q+ €080y sinb;
= , (6¢c)
2 FA+Q+(B,9k)

4 £, +q+P3(cosby)
3 Foor(B60)

P

A+Q+(0k)

§A+n+ cosf; sinf;
=—4c . (6d)
FA+Q.+(B’9k)

In (6) B, ++ is the asymmetry parameter and }_’mm'
Yp+q+» and §,.,+ are spin-polarization parameters.
P,(cosf,) and P}(cosf,) are, respectively, the second
Legendre polynomial and the associated Legendre func-
tion. The constants ¢ and ¢’ depend on the polarization
of the light and its helicity: c¢ equals 1 for linearly polar-
ized light and — 1 for circularly and unpolarized light
whereas ¢’ equals +1 for circularly polarized light de-
pending on the helicity and zero for linearly and unpo-
larized light (i.e., PX and PZ are zero). Therefore P, the
term independent of the electron ejection angle, is
nonzero only for circularly polarized light. For circular-
ly polarized light, the angular behavior with respect to
0, is such that at the magic angle where P,(cosf,) is
zero, the differential cross section without spin yields the
total cross section o AtQt and the two measured spin-
polarization components PZ and PY are proportional, re-
spectively, to P and £&. We should also mention the for-
mulas for elliptically polarized light given by Hecken-
kamp et al.'®

Various authors have wused different nota-
tions®> 7 11:18:23.24 f4r the spin-polarization parameters P,
v, and & introduced in (6). We present in Table I the
correspondences between these notations. In the first
column we give the notations used in the present paper.
We have chosen one of the most widely used notations
except in the case of the average polarization P. The
usual notation for averaged polarization is 4 but in mol-
ecules it can be confused with the spin-orbit coupling
constant A of the ion state. The notation P has been
chosen since it has already been used in the book of
Kessler?> and this notation contains some information
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TABLE 1. Relations between polarization parameters introduced by several authors.

Lefebvre-Brion Heckenkamp
This work et al.® et al.® Cherepkov® Cherepkov® Lee® Huang et al.f
P A A A A Ty +28) 8
14 a Y —3y—9) —3(E+8)
£ —§ g —£ n/2 § n/2

*Reference 5.

*Reference 18.

‘Reference 24. The expression of ¥ in this paper is incorrect.
dReferences 4 and 7.

‘Reference 23.

'Reference 11.

about its physical meaning.

The formulas (6) are formally the same as the atomic
formulas of the photoelectron spin-polarized cross sec-
tion. The difference appears in the detailed expressions
of polarization parameters and in the definition of two
nonequivalent molecular and laboratory frames. The
laboratory frame is as in atoms defined by photon
characteristics. The molecular frame has no definite
orientation since in gas phase the molecules are random-
ly oriented. This is translated in the formulation by
averaging over the molecular-frame orientation. Simple
interpretation of the parameters is given if we compare
Egs. (6) and (5). The PZ parameter contains P and y
and corresponds to the square difference of spin-up and
-down transition moments of Eq. (4). It can be written
as P[1—(y/P)P,(cosf;)] which shows the similarity
with the spin-unresolved differential cross section and
consequently between P and o and y /P and 8. P¥ and
PY contain information concerning the difference of
phases between laboratory transition moments with spins
up and down.

In the following, we write explicitly the polarization
parameters of Eq. (6) transforming the formulas (2)—(4)
to the molecular frame and averaging over the arbitrary
orientation of the target. In the molecular frame the z
axis corresponds to the internuclear axis of diatomic

molecules. The transition moment has the form
T(— )my,A" (k)
At
1 4 1/2
™ (—) ' A"
=% |3 <¢A+Q+M X, [ P'Y @) [0

7

As mentioned above this transition moment is related to
(3b) by a transformation from the laboratory to the
molecular frame using the rotational matrices?? as de-
tailed by Cherepkov.* In the Cherepkov’s formalism, as
in any differential cross-section formalism, the derivation
concerns transition moments (i.e., integrated over r
quantities) where the second summation over / appearing
in (2) is hidden. In other words, how these short-range
quantities are calculated has no influence on the formal-
ism which essentially treats the asymptotic behavior of
the electrons. Therefore Eq. (7) is formally equivalent to

Eq. (7) of Cherepkov.* Consequently, Cherepkov’s for-
malism is still valid when molecular / mixing is intro-
duced as in Eqgs. (2), (3), and (7). It is also interesting to
mention that if the initial and final states are not one
configuration states the transition moment can be writ-
ten in terms of a first-order density matrix as defined by
Lowdin?® times a one-electron transition moment as de-
tailed in Egs. (42) and (43) of Rageev and Le Rouzo.”’
This more complicated form of the moment will not
change the formalism of Cherepkov.*

Now we turn to the use of the partitioning scheme of
Thiel'” for the polarization of the spin of the photoelec-
tron. This scheme is interesting since we can separate
the contribution of different / to a given polarization pa-
rameter and therefore we can single out the main contri-
butions and interpret their physical meaning. Following
Fano and Dill"® and Thiel'” we split the cross section
into a dynamical factor introduced in Eq. (9) below and
a geometrical factor defined in Eqgs. (13) and (14). This
separation is not only formal. The dynamical factor has
to be calculated at each photon energy whereas the
geometrical factor is an energy-independent quantity de-
pending on the number and type of channels considered
in the calculation.

To obtain the dynamical part we start from the transi-
tion moment (7) in the molecular frame. It is a complex
quantity which can be rewritten in polar form as

ym¥ A"
71/\"'(,;z+ JAp! (k)

= | TA+);1"+ 1/;# )| eXp[15A+n+ Mﬂ(k)] .(®

In (8) 8A+n+ I (k) is the argument of the complex num-

ber. Using thls transition moment, we write the dynami-
cal factor of the cross section as

L1y, Ry Il A,
ATQ T u —MA+Q+,;I.

1,15,h R,

D N

exp(—id)! ) . 9)

The cosine part of (9) (noted in the following as .D) con-
tributes to the 3 and y parameters whereas the sine part
(noted in the following as (D) contributes to £&. In (9)

Ak
MA+Q+ 2, represents the modulus of the product of two

transmon moments

Ly ity
M2 = T'

Y oAl
(=)Imj3,A

] TA*Q*,IZAZ;;‘ | /B

ATQT?

(10)

A+Q+ 1 Ap
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where BA+Q+ is given by

ymY, A" 2
A+n+ - 2 2 | TA+Q+ Ay l (1n
Am? '

115,4, kz . .
and ® ! AtQt 1S the difference of phases of the two tran-
sition moments,

11y, A A A" mY, A"

1722 2 2’

¢A+ﬂ+ (T’II 7’12)+8A+Q+ ! k” A+Q+,12}leu' ’

(12)

where the difference between Coulomb phases is given
by
1]"'12

t —1
Z e

—— 12’
L,+7j) 12

My, —"M,=—
where /|, —I, >0 and k is the momentum of the electron.
In the left-hand side of Egs. (10), (11), and (14) below, we
have omitted m? and A" as superscripts. This is possi-
ble as we have the selection rule A”+m’'=A%"+A
which fixes unequivocally m? when A" and A are given.
A" of the initial state is well known and unique for all
the final channels.

Following Thiel'” the next step is to replace A, and A,
by a;=|A;| and a,=|A,| in Egs. (99-(12). To per-
form this simplification, we rewrite (11) in the following
form:

—m?
BA+Q+= 12 (1+80,A+81a) | T(A+);,n+ 111\1# ! 2.
,a

’

"

(117

The geometrical factor contains the integration over the
rotational matrices linking the molecular-frame transi-
tion moments (7) and the laboratory-frame transition
moments of Eq. (3). It contains also the spherical har-
monics Y, (k) (see Cherepkov*’). When averaged over
the arbitrary orientations of molecules in the gas phase
and modified to take into account the modulus of A
through the factor F, it takes the following form:
lllz,alaz,m.{m;

At

=Vv30i" QL A D2+ 1) FE T

G

X(_1)12+“1+’"1
oL 2|, L 2
0 0 0 —a, mi—ml|" (13

where F is similar to the factor introduced by Thiel!’

and for completeness is reproduced in Table II. Three
geometrical factors are defined

Y, v
GI Izaaz Glllz’alaz'"’lmz 1 1 2
g At —m{ m] m{—mj
(14a)
,a,a . 1.1,,a,a
§GA+ L= M= 2(m ] —m ) G T

(14b)
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TABLE II. Numerical values of the ,F factor in Eq. (13) for
different symmetries. The initial state is assumed to be a =
state.

At a, a; <F
0 0 0 2—8;1
0 0 1 4
0 1 0 4
0 1 1 2(2—81 1)
1,2,3 ay a) 2 Slllzﬁa]az
?For this term we have to take into account two contributions:
one with a;=a;=1 and the other with a;= —a,=1.
Liyaa 1 —12 ¥ \2q1/2
At L Lo A S O
1 1 1
“1_m? m? mT—m]

1 lz,a,az,m {m{

><G (14¢)

Note that the geometrical factor of P is so simple [see
Eq. (19b) below] that we do not reproduce it here. Now
the spin-polarization parameters defined in (6) can be
rewritten using (9) and (14),

I1ly,apay Li,aya Lil,aay

Bl =G Dl 1s)
1,0 a, Liy,aa, Ily,a1ay

YA+Q+,#'—VGA+ DA+Q+,M’ s (16)
I L,a,a L1,aa 11,0 a
17227172 2' 172 1°2°%172

§A+Q+,y gG DA+Q+,#' (17)

In Eq. (17) i? comes from the geometrical factor Eq.
(14b) and the imaginary part of the exponential Eq. (9).
As we define ratios (R in Sec. IIB we prefer that .G be
defined as a real number. We can now write the recom-
bination formulas (18) for the 3 parameter

11,

115,aa
1 _ 112,01
BA+Q+_ 2 Z,BA+Q+,;L' ’ (183)
apoy KB
(a;>ay)
a1* 22319
BA+Q+= 2 EBA+Q+ ) (18b)
I,
Iy >1y)
1.1 aja
12 1%2
BA+Q+= 2 BA+Q+: 2 BA+Q+ . (18c)
1,1, ag,a,
Iy >1y) (ay;>a,)

Similar relations are valid for ¥ and £. Finally, using (9)
and (10) the total cross section and the average polariza-
tion can be written in the following form:

— AL
0A+n+—CE12 EMA+Q+
A

—20 +ﬂ+—20A+Q+—20A+n+ , (19a)

LA
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FA+Q+= 2%(_1)#’—1/2”1 YMK’:‘?ﬁ,#,
LA o
BIx B A pl
=3P g+ =2P L= P g+ (19b)
Ik A I
where Cg is defined in connection with Eq. (5). In the

case of doublet states the sum over u' in the above for-
mulas reduces to only one term.

We have completed the generalization of the partition-
ing scheme of Thiel.!” One of the advantages of this
scheme is that it can establish a link between molecular-
and laboratory-frame quantities. The label / in Egs. (3b)
and (7) is common to the two frames. The projection of
the spin-polarization vector P in the laboratory frame
[Egs. (5 and (6)] can therefore be written as
PX= S, P "2 (and similar expressions for P¥ and

P?) and an analysis can be done in terms of different /
valid in the two frames. The expressions of spin-
polarization parameters in terms of /,/, [as, for example,
Eq. (18a)] have to be preferred as they have a meaning in
the laboratory frame which is the one where the experi-
ment is performed. They are connected to the probabili-

la a m!
TABLE III. Diagonal terms of the geometrical factor 6G,\+l ? and the ratios R '
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ty that an electron exhibits a spin up or down as shown
in relations (5) and through (6) to the spin- and angle-
resolved differential cross section [Eq. (1)].

In the particular cases where either the atom (rare
gases) or the remaining ion (alkaline metals) has closed
shells, if the atom is in LS coupling and the five parame-
ters introduced above are known from experiment, then
we can derive backwards the transition moments and the
phase factors from experiment. However, in molecules,
due essentially to the / mixing, the number of transition
moments is much larger and such a procedure is impos-
sible without severe approximations. Nevertheless, using
the partitioning scheme devised above, we can distin-
guish between contributions of different / and a to a
given parameter [see Egs. (18) and (19)]. As illustrated
in Sec. II B, this scheme can also be used to separate
atomic (in fact, mixed atomic and molecular) contribu-
tions which satisfy the atomic-transition selection rule
Al ==1 from the purely molecular one.

Finally, let us briefly discuss the case when there is no
spin-orbit coupling in the continuum. Cherepkov* has
given particular formulas valid for doublet ionic cores.

¥

n1my

“and R

mimy
"

The column of 4G corresponds to the column of .R and .R as m| and mj correspond to a, and a,

through the dipole-selection rule.

Il‘al(z2

BY A+
a,a; oo TOo T So 5w 56
At 4
11 1 —0.400 —1.200 —0.400
2 —0.286 —0.495 0.286 1.400 1.212 0.286
3 —0.267 —0.327 0.400 1.461 0.894 0.0
4 —0.260 —0.246 0.442 1.478 0.701 —0.104
5 —0.256 —0.199 0.462 1.486 0.576 —0.154
T & 56 o 1) oo
A 1 0.200
2 —0.143 —1.212 —0.571
3 —0.200 —0.894 0.0 1.033 1.155 0.333
4 —0.221 —0.701 0.208 1.237 1.031 0.091
5 —0.231 —0.576 0.308 1.329 0.888 —0.026
mT'" r
1My
ml m} m} m} mim} mimj mim} m} m}
AT u't —1-—1 0 —1 0O 0 1 —1 1 0 1 1
i, —12 1.0 0.5 0.0 0.0 —05 ~10
A_sp
N m Il/m;
ml m? ml mY mi m} mi m? mi m} mi m}
AT u —1 -1 0 —1 0O O 1 —1 1 0 1 1
In_,, —1/2 0.0 —0.125 0.0 —0.25 —0.125 0.0
A ;)

“For transitions in Hund’s case (a) and assuming that the initial state isa '=* (A"’ =0 and ="' =0) we

have u'=—2"% and 2*=% giving Q= —
A

land Q" =—

% for the ionic states of symmetry Il -~ and
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Similar relations can be derived for more general ionic
spin states,

BA+Q+=BA+Q+" P—A+Q+:_P—A+n*' ’
(20)

Ya+ta+= " Va+tq+n —E’-A*n*: —§A+ﬂ+' ’

where Q% and Q% are the sum of projections of the an-
gular and the spin momenta onto the internuclear axis
with A*'=A* and =+'=—3* (2% not to be confused
with the label of the molecular state £*). Particularly in
the case of a triplet ionic state it can be demonstrated
that in this approximation the contribution to the polar-
ization parameters from the state with =% =0 projection
of the spin is zero.

B. Discussion of the generalized partitioning scheme
and of some particular cases

A simple way to apply the partitioning scheme devised
above is to develop numerical tables for the geometrical
factors of each polarization parameter of the same type
as the one introduced by Thiel!” for the 8 asymmetry pa-
rameter. These tables give a rough estimate of any po-
larization parameter if the mixing between /’s is not too
strong. This is done in the present section for Hund’s
case (a) and related to Hund’s case (c) in Sec. IIC. Of
course, the qualitative estimates can be compared with a
complete calculation taking into account all terms of the
partitioning scheme.

In Tables III and IV we give the numerical values for
IT and A ionic cores of the diagonal and off-diagonal
geometrical factors BGﬁ\llf'a‘az [Eq. (14)] and of the mul-
tiplicative factors ,R and (R defined below. Concerning
pG, Tables III and IV are an extension of the table of
Thiel'’ for B to a A ionic core. The ratios ,R and ¢R are
defined using Egs. (14) as

mi,m 1.1,,a,a 1.l,aa
YR“rl 2=1/GA1+2#'1 Z/BGAI+2 172 , (213)
Y Y
miy,my; 1112v‘1|“2 115,000,
Ry P =G LT /G (21b)
The ratios ,R and (R are only functions of m " and u' as

can be checked from (14). The relations between indices
m?,u' and @,Q% (where Qt*=A*+3%) are given by
the dipole selection rule for the Hund’s case (a) for the
angular and spin momenta, namely, A" +m"=A%1t 4+ A
with = |A| and 3A"=3* 44’ In the case of Tables
IIT and IV we suppose that the initial state is totally
symmetric and a singlet, i.e., 3A"=0 which means
p'=—Z=%. Taking pu'=—1, ie, 2T=1, we obtain
Qt=—Lor Q*=—3, for Il and A states with negative
angular momentum projection. The ,R and R
coefficients of Tables III and IV can be calculated for
other initial and final states. Strictly speaking yR and (R
should appear in a separate table. However, for ease of
calculation of the geometrical factors of ¥ and &, we
have kept them in the bottom of Tables III and IV.
Using (14) and (21) let us now calculate these ratios in
particular cases. For simplicity, we use the absolute
value for ,R and (R. The dipole selection rule restricts
m” to the values 0, =1 and the difference m} —m7 to

the values 0, 1, +2. Calculating explicitly the ratios
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we have

| REVEN | = | (RY% | =0 (selection rule) ,

|§R;t'1'0 | = |§R2"i1 | =%, (22a)

|§Ra:’],¥] | — igRi’l’il | :_% ,
and

|yR2"O | = | yR,ffl’11 | =0 (selection rule) ,

| RN =1, (22b)

+1,0 | _ 1
|7Ru' 0 | - lng'ﬂ | —% .

In the case of B and ¥ we have the same dynamical fac-
tor containing a cosine of a phase difference and a
geometrical factor which can be obtained from Tables
IIT and IV. We can compare further B and y for a *Il; ,,
ionic core if we write the following molecular partition:

Yn,,, =B +0.57 —0. 58°7—B% | (23a)

Bn3/2=BUG+B7TU +Brr1r+ﬁ8cr +ﬁ61r+385 . (23b)
In (23a) we have written directly y in terms of B com-
ponents and have omitted the ionic core label in the
right-hand side of the equation. A linear combination
aff+by eliminates the contribution from a particular
term in (23). Such linear combinations can be used to
analyze directly experimental results in terms of molecu-
lar channels.

Now we turn to the use of Tables III and IV as a
qualitative tool to obtain a rough estimate of spin-
polarization parameters. The procedure is the same as
the one used by Thiel for B. First we estimate the lead-
ing transition moments and divide them by the cross sec-
tion as in Eq. (10). Eventually in order to study the en-
ergy variation we calculate the trigonometric function of
the Coulomb phase difference using Eq. (12’). Then we
multiply these dynamical quantities with the geometrical
factors and the ratio factor to get an approximate value
of a parameter. If we restrict the summations to only
one transition moment, the geometrical factor obtained
from these tables will give the contribution to the spin-
polarization parameter since the dynamical factor is 1.

Finally, let us discuss an example of a ’Il;,, ionic
core, the same as the one discussed by Cherepkov* and
Heinzmann et al.? The expressions of £ and y for a
1, ,, ionic core can be separated into an atomiclike and
a molecularlike contribution. Using the notations of
Egs. (7)-(9) and neglecting the subscript ATQ™" in the
right-hand side of the equation, we have for &

g?{]/z_ 1‘/3 /S[Mds,mf sin( (Dds,mr)

-7

+2V2M %8 sin(Pd87)] (24a)
From (24a) and (18a) it is obvious that £*'=£% showing
that if atomiclike character is expected, £% will be the
leading term in the partitioning scheme. If in ®* 7 and
®%#:%9 we neglect the molecular-type eigenphases, these
eigenphases become atomiclike and we recover the
Heinzmann et al.? equation (11) with inverted sign,
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?110] =% %\/6Mdd’5”sin(<1>dd'5")

‘/—
_ __173Mdd,1r0 Siﬂ( ¢dd,770)

+o 5 ‘3/5 M40 sin(@44:0T)

— ZMPP T sin(PPPTY) | | (24b)

The molecular contribution has two components £%¢ and
&PP and it is reduced to zero if we disregard the molecu-
lar eigenphase due to the phase difference between func-
tions of same / but different A.

In the case of ¥ the atomic-molecular partitioning is
more difficult as we have atomic and molecular contribu-
tions to the same /;/, term. Let us start by writing the
exact formula for y for a *Il,,, core neglecting in the
right-hand part of (25) the ionic core index as above

v, ,=v HrELr?, (25a)
with the notations
'yddzé(Mdd’a”+Mdd‘88)+ \/73 Mdd,rro cos(q)dd,mf)
+ —3‘—7@M‘“v5ﬂ cos(®9e37) | (25b)
,yds: _ ‘/23 Mds,aa COS( q)ds,o(r)
—V3/5M® 7™ cos(Pe5) | | (25¢0)
yPP=2MPP% %M”"’“” cos(PPP-T7) | (25d)

As the initial orbital is p, using the atomic selection rules
we find that in (25) % and y% contain atomic and
molecular contributions whereas ¥’ contains only
molecular ones. A further simplification of (25) occurs if
we neglect the molecular eigenphases [see Egs. (12) and
(12"],

q)a'd,ﬂ-a_:o , (26a)
(bds,oo — q>dS,TT(7 =ny—7; , (26b)
q)pp,fra:O . (260)

From (26) we see that by neglecting the molecular eigen-
phases we do not reduce the number of terms in (25) but
rather maximize ¥% and y? and change the value of the
Cross term yds. This cross term is the only one which is
dependent on the difference of the Coulomb phase and
therefore has a rapid variation with the energy near the
threshold.

We have completed our analysis of a p excitation giv-
ing the II;/, ionic state. Another example, namely exci-
tation from a d shell, will be discussed in Sec. III C.
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C. Extension of the formalism to Hund’s coupling case (c)

The formulas of Cherepkov have been deduced in
Hund’s coupling cases (a) or (b) for both the initial, the
final, and the ionic states, i.e., in the case where the
quantum numbers A, S, and 2 (projection of the spin an-
gular momentum S on the internuclear axis) are well
defined in the absence of rotation. In the following, we
continue to describe the initial state in Hund’s case (b)
because the initial state is assumed to be here the ground
state of the neutral molecule, namely, '>* for the mole-
cules studied in this paper. In Secs. IIA and IIB the
spin-polarization parameters have been defined for
specified values of the quantum numbers AT and Q7
=A"1 437 of the substates of the ion. Note that in fact
each spectroscopic substate | Q71 | is doubly degenerate
(for a nonrotating molecule) with two components corre-
sponding to the signed values Q" and — Q™. In his pa-
pers, Cherepkov has characterized the ion state by AT,
S*, and Mg which is denoted here = 7.

To obtain a final ionic state with a given value of Q ™,
the total final state must be described by the (Q,,w) cou-
pling (see Ref. 28, p. 338) and characterized by the value
of =0, +0=0" +w, where w=A+pu’. The case of a
()? ionic state is discussed in Ref. 5. For example, from
Fig. 1 of Ref. 5 we see that the final states of the
configuration (7)* (e0), which are ionized in the 2[13/2
substate have two possible values of Q: Q=1 and 2. If
the initial state is O* (12(')*4r ), the final states of the
dipole-allowed transition have only Q=1. In the case
where the influence of rotation is neglected, A also
remains a good quantum number and the wave functions
corslverging to a core with a definite Q% value are given
by

VLE[:/J(‘AQ)MPAQ)] . 27

It is easy to see that, because the intensity comes only
from the IAQ state, the formalism of Cherepkov, estab-
lished for a final state with A and S specified, remains
valid for a state with the value of Q specified.

In the general case of an ionization of a /'’ shell, if the
electronic energy splitting, AE, between the molecular
electronic ion states, corresponding to nondegenerate
A" different values, is large relative to the spin-orbit
splitting (AT 4), the Hund’s coupling case (a) is well
adapted. If Q*'=Q1 41, we obtain from (20)

o =0
AtQTt Atat41?
(28a)
BA+Q+:I3A+Q++1 ’

and the relations between the spin-polarization parame-
ters are that given by Cherepkov*2* and Eq. (20),

Eptgr=—8 1q+ ’
ATQ ATQT +1 (28b)
§A+=0,n*50’

and similar relations for the other spin-polarization pa-
rameters. The corresponding partial cross section lead-
ing to the ion in the A state is
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TABLE V. Projection of the (J,M,) atomic wave functions in the J,;t Q* Hund’s case (c) molecular
wave functions expressed as combinations of Hund’s case (a) wave functions (p configuration).

J M, Atomic functions J;- [ Molecular functions
2P3/2 % % [Py ] % % 2Hs/z

‘3‘ % ‘&%‘(V—ZIPH“‘![:“ % % %(‘/_2221*/24—2“1/2)
2Pl/2 % % ‘/LS( [Po | -V2 |P7| ) % % %( 22;‘/2—\/§2H1/2)

O+~ E Or+q+
o+t
(28¢)

BA+:BA+Q+=BA*Q++1 .

If now, the electronic energy is small compared to the
spin-orbit energy, the ionic state is better described in
terms of Hund’s coupling case (c). The correlation dia-
gram of Fig. 2 shows, in the case of p ionization, that in
the limit case (c), the good quantum numbers for the ion
states are (J;5,Q%") where J,;f =L " +S* with LT well
approximated by the ! atomic value.? These states
(J;H, Q1) are correlated to the (J,M,) atomic states and
the resulting case (c) ion functions can be expressed as
linear combinaiions of case (a) wave functions, with the
1“+n+. An example is given in Table V for
p ionization. The cross sections calculated for the
Hund’s case (c) are expressed in terms of the cross sec-
tions for the Hund’s case (a) of the ion, namely,

coefficients C

J+
a 2
o,i= > (CA+Q+)0A+Q+,
Qt At

and similarly for the angular distribution asymmetry pa-
rameters

Il
22 I Fre

case (a) intermediate |case (c) atomic
case case

AE>A AE—~0 AEKA

FIG. 2. Correlation diagram between Hund’s case (a) and
case (c) in the case of (wnp)* and onp configurations for the ion
states. In pure case (a), the off-diagonal spin-orbit interaction
between the 2I1,,, and 23{,, ion substates equal to 4/V?2 is
neglected. It is taken into account by second-order perturba-
tion theory for the case intermediate between case (a) and case
(c). Finally, the pure case (c) is obtained by diagonalizing the
2X 2 spin-orbit matrix between the 2H1/2 and 22{‘/2 substates,
electronically degenerate.

Jr 2
2 (C(:+A+ ) BA*Q"UA*'Q*‘
Qt AT
BJ+=
a 20’1+
J+

a

(29a)

We have similar relations for spin-polarization parame-

ters. Thus the relations in the case of ionization of a I"’
shell are
T =T 1
BJ+:BJ++1 ’ (29b)
1" +1
§Ja+=_ Iz g_/a+_+_1 ’

and similar relations for other spin-polarization parame-
ters. They are similar to the relations obtained in the
atomic case.
The total cross section corresponding to a /"’ hole is
given by
o= DO pe=20,+
At Jr

a

and the corresponding averaged B’ is

So,By 20,8
A A + a a
AT "a

Bl = - (30a)
2 O+ 2 g,+
At i
and following (29b)
B"=B, =B, ,, - (300)

The intermediate case between coupling case (a) and (c),
presented in Fig. 2, will be explained in the particular
case of a p ionization in Sec. III B. All these formulas
are valid in the approximation of the nonrelativistic con-
tinuum wave functions used through this paper.

III. RESULTS AND DISCUSSION

We have studied the wnp outer-shell and (n —1)d
inner-shell photoionization of two hydrogen halides,
HBr and HI. Except for the 74p ionization of HBr, the
total cross sections have been published previously®®3!
and we will discuss here mainly the photoelectron spin-
polarization parameters.
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A. Framework of the ab initio calculations

The continuum wave functions have been obtained in
the frozen-core static-exchange approximation, using the
method previously developed®**® for light molecules,
and as already reported® extended to & and ¢ sym-
metries. The transition moments have been calculated in
the dipole length approximation and the molecular orbit-
als of the ground state of the neutral molecule calculated
for the equilibrium internuclear distance have been used
to describe the orbitals of the ion core.

The calculations have been performed at the Centre
Inter Regional de Calcul Electronique (CIRCE) Comput-
er Center of the CNRS.

The configuration of the X !=* ground state of the
two molecules studied is

C(ons)Xonp)Xmnp)*(ond)*(mnd )*(&nd )*

[o(n +1)s][o(n +1)p)*[m(n +1)p]*,

where C designates the KL core shells for HBr and the
KLM core shells for HI. The quantum number »n, which
holds for the main constituent orbital of the halogen
atom of a given molecular orbital, is 3 for HBr and 4 for
HI.

The ionization of the 7(n +1)p orbital gives a result-
ing X 2IT ion which is split by the spin-orbit interaction
into two substates *II, ,, and Il ,,, whereas the ioniza-
tion of an nd orbital gives rise to three possible ion states
(ond)~'?=*, (wnd)~'?M, and (8nd)~'2A. The spin-
orbit contribution for the *Z* state is zero. The 2II
state is split into *II,,, and *II;,, substates and the 2A
into 2A;,, and %As,, substates. The final states which
have a nonzero transition moment from the ground state
have the '2* and 'Il symmetries, namely, for the mp
ionization,

Cll,em)'zt
(*M,ec)'1I ,
(°I1,€8)'11

i.e., three continuum states, and for the d ionization

(?=*,e0)izt CIl,em)!z (2A,€8)I=+
2=t em)'1 (I, e0)'TT (A, em)'I
(*I1,€8)'T1 (2A,e4)'TT

i.e., eight continuum states.

To see whether Hund’s case (a) or case (c) representa-
tion is better adapted to the ion state, it is necessary to
compare the electronic energy difference with the spin-
orbit splitting. For np ionization, two molecular states
are obtained: the X 2II ionic ground state which corre-
sponds to the wnp ionization and the A 23+ excited
state which corresponds to the onp ionization. The en-
ergy difference between the *II, ,, and 23{, states is 3.2
and 2.8 eV for HBr and HI, respectively.>* This is large
compared to the spin-orbit splitting, 4, between the two
sublevels X 2I1;,, and X 21, ,, which is 0.33 and 0.66 eV
for HBr and HI, respectively.’* Consequently, for the
mwnp ionization, the X Il ionic state is well represented

in Hund’s case (a).
in Sec. III B.

In the case of d inner-shell ionizations, the electronic
splitting of the three ionic molecular states 2=+, 2II, and
2A is not known experimentally. By calculation, we
have obtained®' energy intervals of 0.38 and 0.47 eV for
HBr and HI, respectively. This is smaller than the
spin-orbit splittings of the Br atom and the I atom in
their 2D state which are 1.05 (Ref. 35) and 1.9 eV (Ref.
36), respectively. Consequently, the Hund’s case (c) rep-
resentation must be used to describe the d hole. The ex-
pressions of these functions in terms of the Hund’s case
(a) have been given elsewhere.’’ If the electronic split-
ting of the ionic 227, %I, and 2A states is taken equal to
zero, we obtain two states with J;" =3/2 and 5/2 which
are related to the *D,,, and *Ds,, ionic atomic states.
This description is in agreement with the observation of
only two peaks in the photoelectron spectrum with a
splitting of 1.05 eV for HBr (Ref. 38) and 1.76 eV for
HL?¥ in each case very similar to the spin-orbit splitting
of the states of the corresponding atoms.

This point will be discussed further

B. mnp outer-shell ionization in HBr and HI

For mwnp ionization, the experimental cross sections
present a Cooper minimum. The calculated cross sec-
tion for HBr is presented in Fig. 3. At low energies it
compares better with the experimental results of Carlson
et al.** than with those of Brion er al.*! However, in
this static exchange calculation, the Cooper minimum
appears only in the 0% and o contributions, not in the

g(Mb) #
HBr (r4p)~’
50r
a0l
30
o(Mb)
x I00

20
A 0.2- %
n % On
\ oa'
T adil
n O.1+ or
g bl
10 n — o
(0] "1
60 70 80 eV

1 1l
o] 20 40 60 80
PHOTOELECTRON ENERGY (eV)

FIG. 3. Partial photoionization cross section of HBr
(m4p —') showing the contributions of the o, 8, and 7 waves.
The experimental points are taken from Ref. 40.
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total o cross section since the contribution from o is
dominant in this energy region. Figures 4(a) and 4(b)
give the variation with energy of the 3 angular distribu-
tion and P, y, £ spin-polarization parameters for HBr
(w4p)~ ! and HI (75p )~ ! ionizations. The calculation of
the B parameter for HBr compares well with the experi-
mental results of Carlson et al.*° Those for HI have
been previously reported®® but are reproduced in Fig.
4(b) for comparison with HBr. The variation with ener-
gy of the spin-polarization parameters is comparable in
HBr and HI and follows that obtained for the p ioniza-
tion of the isoelectronic atoms, 4p —! in krypton® and
50~ ! in xenon (Fig. 4 of Ref. 10). In particular, the
values at the Cooper minimum are practically the same
in the two molecules.

We start the discussion with the polarization parame-
ter, P, which depends only on the modulus of the transi-
tion moments. The formula (19b) for P in terms of a)l;+

[Eq. 19(a)] applied to a IT core is
5 1| < aflhoo _ ~ ppll5s
P“1/2_7 2 Mnl/2 - 1§2M“1/2

(o —od ). 31

T 20p 12 My

As pointed by Thiel,*? the cross section at the Cooper
minimum is dominated by the so wave and, consequent-
ly, in formula (31) 0%1/2 can be neglected relative to

of; . partial cross section. P reaches its maximum
I]I/Z n1/2

value of 0.5 which is half the maximum value of P, ,, in
the corresponding atom, because here Hund’s case (a) is
used for the molecule.

Partitioning analysis of Sec. II B can be used to single
out the main contributions to £ and y. For §, the dom-
inant term is the atomic term (Eq. 24a), £%, which fol-
lows the energy variation of the cross section. The
molecular contribution, £%, is about ten times smaller
than the atomic one. This term decreases at high energy

20 K 20

HBr(mrdp)”!

26 a0 ) 26 a5 o)
PHOTOELECTRON ENERGY (eV)

FIG. 4. (a) Angular asymmetry parameter 3 and spin polar-
ization parameters P, ¥, and £ as function of energy for
X 41, 5(w4p ~') of HBr. The parameters 3, P, ¥, and £ are di-
mensionless. The experimental points are taken from Ref. 40.
(b) The same for HI (75p ~!).
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since the electron becomes less sensitive to the molecular
field when the energy increases. As said above, the tran-
sition moment due to /540 is negligible at the Cooper
minimum and consequently §—0.

For y, the dominant term is y% [Eq. (25b)]. Conse-
quently, ¥ has no contribution from / =0 at the Cooper
minimum, and is zero.

The maximum in the cross section near the threshold
(see Fig. 3) is dominated by the d continuum wave.
Therefore, we can discuss this energy region in terms of
atomic d contributions. The atomic transition moments
corresponding to the wnp—edo, wnp-—sedmw, and
mnp —edd are in the ratio 1:V'3:V/6, respectively. If we
suppose that these ratios are conserved in the molecule,
and use them in Eq. (31), we have
P"l/2 == —0.25 (32)
for a pure p —d transition. In these molecules, the first
maxima of P"m, corresponding to the maximum in the

total cross section, have exactly this value. This means
that for P, the molecular effects are negligible. The max-
imum values for the other parameters [Figs. 4(a) and
4(b)] are also very similar to P,,, of the corresponding
atoms divided by two, as explained above. The explana-
tion of the atomiclike behavior of these parameters is
that the 7np molecular orbital is a nonbonding orbital.
We have compared the molecular quantities to the
atomic parameters at low energy. At high energy, the
static exchange or monoconfigurational approximation
becomes less valid and it would be necessary to intro-
duce the interchannel couplings due to the opening of
new channels in order to compare with the atomic re-
sults which have been obtained with RPAE calculations.
A more sophisticated calculation described elsewhere*
has introduced the interchannel coupling between the
75p ~' and 74d ~! channels for HI at two values of the
energy. In Table VI, we compare the numerical results
obtained in these two different calculations. The inter-
channel coupling improves the 3 values compared to the
experiment.*> Unfortunately, the ¥ values seem incon-
sistent with the RPAE calculations in atoms. This could
be due to the fact that in our calculation only a restrict-
ed part of the electronic correlation has been introduced.
Now, we must consider here the validity of Hund’s
case (a) for mp ionization. Experimentally, the 4 spin-
orbit splitting of the 2Il state is equal to about Z of the
atomic 2P splitting, that is to say, that which is expected
from a correlation diagram in Hund’s case (a) (see Fig. 2

or, for example, Fig. 4.17, p. 235 of Ref. 29). This
confirms the validity of the relations (28),

5113/22—&1”2 (33)
and

§s+ =0. (34)

172

A departure from formula (33) can be due to the ki-
netic energy effect, that is to say, the relation (33) holds
only for equal kinetic energy of the photoelectrons is-
sued from different thresholds. This is why our values
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TABLE VI. Comparison between values of HI parameters
before and after interchannel coupling (IC) (Ref. 30).

hv (eV) 71 92
Before After Before After
IC IC 1C IC
w5p !
o (Mb) 0.19 0.24 0.16 0.25
(0.92)2 (0.79)
Bn —0.05 0.96 0.24 1.43
(0.90)® (1.60)*
P, 0.42 0.30 0.24 0.11
Y1 —0.07 0.07 —0.17 0.11
Ei 0.14 0.19 0.25 0.18
wad ~!
o (Mb) 9.16 9.08 10.66 10.52
Bu 0.78 0.81 0.75 0.72
Py, , —0.09 —0.09 —0.13 —0.11
n,, —0.23 —023 —0.20 —021
g”l/z 0.04 0.03 0.05 0.04

2Experimental values from Ref. 43.

are reported as function of the photoelectron energy and
not of the photon energy. However, such a kinetic ener-
gy effect cannot be invoked to explain the departure
from Eq. (33) observed for the experimental £ in CH;l
and CH;Br.? This effect will give a modification in the
opposite sense of the observed value. A departure from
the relation (34) could be due to the fact that the actual
representation corresponds to an intermediate case be-
tween the Hund’s case (a) and case (c). More precisely,
there exists a spin-orbit interaction Hgy between the
X %M, ,, and 4 *={, states which, in the pure precession
hypothesis, has the value

(YA 22],) |Hso | WX M, 5))=A4/V2 . (35)

Thus the wave functions intermediate between the
Hund’s case (a) and (c) can be obtained by the first-order
perturbation theory

A
w<2n1/2):¢(2n1/2)—mzﬁ(zz;z) ,

4 (36)
W(ZET/z):WET/zH md/(znl/z) ,

where AE is the energy difference between the *2{, and
1, ,, states (see Fig. 2). This gives, for example, for HI,
corresponding to the ¥ wave function (36),
§'>._l+/220.03§n|/2 for same photoelectron energy if

0s,,=0n, , If the two ’Il, , and °Z, , states are elec-
tronically degenerate, Hund’s case (c) wave functions
must be used for the core. In Table V the transforma-
tion formulas which express the functions of case (c) in
terms of functions of case (a) are given for the p
configuration of the ion (in place of p3). These (J;5,QF)
functions are correlated to the (J,M;) atomic functions
expressed as linear combinations of determinants built
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on p,,; functions. The S spin is designated by a bar upon
the function. Only the functions with positive values of
M, and Q7 are given. In this case, two (J,;5,Q") molec-
ular states, namely, the (3/2, 3/2) and (3/2, 1/2) states,
become degenerate in energy and the splitting with the
(1/2, 1/2) state becomes equal to the 2P;,,, P, ,, atomic
splitting, i.e., 2 4 (see Fig. 2). Also the relations between
the spin-polarization parameters become identical to
that for the *P ionic atoms, namely [cf. Eq. (29b), with
I"=1],

§1/2=—2§3/2 . 37

Such an example could appear in the heterogeneous
rare-gas dimer ions such as the XeAr' molecule or in
other heavy ions such as HgKr™, HgXe™*, TIBr™*, or
InIt.

C. d inner-shell ionization

The total cross sections corresponding to d inner-shell
ionization have been previously reported for 3d ~! of
HBr and 4d ! of HI.3! They are identical in Hund’s
coupling case (a) or case (c) [see Eq. (30)]. The spin-

0 0.5 1.0 1.5 20 a.u.

(a)

T T T T

15| HBr(3d)”’

o — <=

HI (@)~

o] 20 40 60
PHOTOELECTRON ENERGY (eV)

FIG. 5. (a) Same parameters as in Fig. 4 for HBr (3d ~').
(b) The same for HI (4d ~').



4772

TABLE VII. Comparison between atomic estimations and
molecular calculated values of the P spin-polarization parame-
ter for ionization from a d shell.

Threshold energy

Atomic value Molecular value

p wave HBr HI
Py, , 0.25° 0.2 0.2
P b
P;As/z 0.5 0.47 0.4
P;,, 0.3 0.23 0.2

Resonance energy© e,

_ f wave
an —0.17¢ —0.15 —0.19
1:A3/2 —0.33¢ —0.3 —0.3
P, —0.15f —0.15 —0.16

2The po wave only contributes to the value of P and the transi-
tion moments from a pure mnd orbital to pure epo and epm or-
bitals are equal.

®The p7 wave only contributes to the value of P.

‘€, =3 a.u. for HBr and 0.5 a.u. for HI.

9The transition moments from 7nd to €fo, ef 7, and €f8 are
in the ratio V3:2/v2:V10.

°The transition moments from 8nd to €f o, €fm, and €f§ are in
the ratio V6:1:V'15.

fThe cross sections oy, 04, and o5 for a pure p-d transition are
in the ratio +:1:1.

polarization parameters have been calculated using
Hund’s coupling case (c) and their values for J," =3 are
given in Figs. 5(a) and 5(b) for HBr and HI, respectively.
Their variation with energy compares well if one notes
that the maximum in the cross section lies at much
higher energy in HBr than in HI.

A comparison between the calculated values and those
obtained in a pure atomic case is easy for the P parame-
ter and is given in Table VII. In this table P, , is ob-
tained as a mean value of I—’nm and I_’Am [Eq. (29a)

where f3 is replaced by P]. F”m is given by Eq. (31) and
I_’Am is obtained from Eq. (19b) applied to a A core as

_ 1
Po, =t SMET MU =5 —(T-0d) . (9

3/2 3/2 204

The atomiclike values are obtained assuming pure atom-
iclike nd initial and e/ final orbitals for the photoelectron
(ep orbital close to threshold, €f orbital in the region of
the maximum of the cross section). The molecular
values contain the contributions of all the partial waves.
It is clear that in the two regions studied, the / mixing is
weak and the same partial wave (p or f) dominates, in
atom and in molecule.

In Figs. 6(a) and 6(b) the partial contributions to the
parameters ¥ and £ coming from the different II and A
ionic cores have been plotted. The difference between
these contributions can be understood by the inspection
of Tables III and IV. For example, this explains why at
the €, value |1/A3/2| > |‘ynl/2| in HI [see Fig. 6(a)].

Except close to the threshold, the dominant term in ¥ is
always y/7 [Fig. 7(a)]. In the case of a II core, it is the &
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0 0;5 I;O 15 2;0 a.u.
\ HI(4d)™’
o
-0.25
-0.5+
(a)
0.2 T . r-/ — T L
HI(4d)
E133/2
o.l
\ . €32
O\—— - nl/2 E—
b
-0l |{ /

20 40 60
PHOTOELECTRON ENERGY (eV)

FIG. 6. (a) Details of the contributions of Y +q+> namely,

Yn,,and ya,  toy, .=y, for HI (4d ~'). (b) The same for

§3/2~

0.|25’-.r\_

-0.125

0.250

0.125F

PHOTOELECTRON ENERGY (eV)

FIG. 7. (a) The different ¥ contributions for y3,, in HI
(4d~'). (b) The different £ contributions for &;,, in HI
(4d ).
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wave which has the most important contribution at e,
(see&figs. 2 and 3 of Ref. 31). Table III shows that
ylf{’ =0. The calculated value of rn,, is —0.17 due to

the nonzero y{{l’/’f’ term. In the case of a A core, the ¢

wave has the largest contribution. From Table III,
y{fs’/‘;"ﬁ:—o.ﬁ. The calculated value y/;{/z for HI is

—0.49. The deviation from the total value of y e

equal to —0.55, is due to the weak y?” and y*/ contribu-
tions. The molecular-type contribution %, zero for the
atomic case, is small at threshold and becomes negligible
at higher energies. In the case of the { parameter, the
atomiclike term £/ is dominant [see Fig. 7(b)]. At low
energy, there is a small contribution from &/ which is a
purely molecular effect and which vanishes completely at
higher energies.

The energy variation of the spin-polarization parame-
ters is roughly comparable to that of the corresponding
atoms.!! Unfortunately, the quantitative values of the
molecular parameters are difficult to compare to the cor-
responding atomic values because we know?3! that for the
d molecular inner-shell ionization where three ionic
thresholds are degenerate, the static-exchange approxi-
mation does not always reproduce the experiments. We
would like to compare our results with calculations
made at a similar level of approximation for the iodine
atom,* where multiple degenerate thresholds are also
present, but the spin-polarization parameters have not
been calculated in the one configuration approximation
for this atom.

In this section, we have assumed that the ionic states
corresponding to the ionization of the nd shell are in
pure Hund’s coupling case (c). To test this assumption,
it would be interesting to measure the ratio of the two
spin-polarization parameters with J,"=3/2 and 5/2 at
the same photoelectron energy. A ratio slightly less
than — 1.5 [the theoretical value for Hund’s case (c) Eq.
(29b) with /""=2] could indicate a tendency towards the
Hund’s case (a) for which a ratio of —1.0 [Eq. (28b)] is
obtained; however, other explanations are also possible.

IV. CONCLUSION

This work presents ab initio calculated values of the
spin-polarization molecular parameters. The values ob-
tained near the threshold for £ in case of wnp ionization
compare well with the observed values at two energy
points for CH;Br and CH;I (Ref. 45) but a more com-
plete comparison with the experiment would be very use-
ful. Experimental measurements for the 75p ionization
of HI are in progress at low energy,*® where our results
are the most valid. Unfortunately, the region above 40
eV where d ionization occurs is not accessible for the
present experimental setup of the Heinzmann group.*®

The molecular effects on the spin-polarization parame-
ters seem difficult to identify out for the cases studied
here which are atomiclike cases because they correspond
to the ionization of nonbonding molecular orbitals. It
would be interesting to perform experiments on mole-
cules where the photoionization cross sections present a
pronounced molecular character, for example, when
molecular shape resonances appear in the continuum of
an ion molecular state with A*ts£0. Such an example
could be AsO where a shape resonance is expected in the
311 excited state of the ion as in NO.#’

The predictions of £ and P for autoionizing resonances
have been made recently’ for HI and experiments are in
progress.*®

It would be easy to include vibrational motion in the
present model but the vibrational effects would be
difficult to observe in the hydrogen halides for which one
vibrational peak is predominant in the photoelectron
spectrum of the ion ground state. It would be interest-
ing to study other molecules from this point of view.

Finally, an interesting extension would be the study of
diatomic molecules oriented, for example, after dissocia-
tion of polyatomic molecules. The study of free oriented
molecules is just beginning experimentally*® and theoreti-
cally.*-%0
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