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Time dependence of the field energy densities surrounding sources:
Application to scalar mesons near point sources and to electromagnetic fields near molecules
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The time dependence of the dressing-undressing process, i.e., the acquiring or losing by a source of
a boson field intensity and hence of a field energy density in its neighborhood, is considered by exam-
ining some simple soluble models. First, the loss of the virtual field is followed in time when a point
source is suddenly decoupled from a neutral scalar meson field. Second, an initially bare point
source acquires a virtual meson cloud as the coupling is switched on. The third example is that of an
initially bare molecule interacting with the vacuum of the electromagnetic field to acquire a virtual

photon cloud. In all three cases the dressing-undressing is shown to take place within an expanding
sphere of radius r =ct centered at the source. At each point in space the energy density tends, for
large times, to that of the ground state of the total system. Differences in the time dependence of the
dressing between the massive scalar field and the massless electromagnetic field are discussed. The
results are also briefly discussed in the light of Feinberg s ideas on the nature of half-dressed states in
quantum field theory.

I. INTRODUCTION

A scalar boson field surrounding a fixed point source of
coupling strength g has the well-known steady-state value

&~(r)= —,
' I~ (r)+c [VP(r)J +p P (r)I

and is

(1.2)

(0 /&F(r}
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n (r) has zero expectation value in the ground state, so
that the contributions to (1.3) arise only from the second
and third terms in the field energy density (1.2).

In nonrelativistic quantum electrodynamics of the in-
teraction of radiation with neutral atoms or molecules
there is a well-defined energy density of the virtual elec-
tromagnetic fields in the neighborhood of the source.
These fields and their concomitant energy densities have
been considered in a series of recent papers. ' The
analogue to the scalar energy-density equation (1.2) is
the sum of transverse electric and magnetic energy densi-

(0
~
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~
0) =g

4mc r

where the source is assumed fixed at the origin,
~
0) being

the ground state of the complete source-field system, and
where p is the inverse Compton wave length of the scalar
boson p=mc/fs. This implies that in the neighborhood
of the source the boson field contributes to a field energy
density, this can be evaluated from the known expression
for the Hamiltonian density

ties (1.4),

&F(r}=&,~„(r)+gf,s(r)

1 [E '(r}+8 (r)] .
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(1.4)

In particular we have shown' that at large distances from
a molecule with static nonisotropic polarizability a „ the
virtual magnetic energy density is, to order e,
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and that for an isotropic source with polarizability a the
total virtual radiation energy density at large distances is

(0 ~m, (r)
~

0) = (1.6)~r
A natural question arises, which has close connection

with the more general problem of "half-dressed states" in
quantum-field theory, namely, how the virtual energy
density is established in the space surrounding the source
and how it changes when the source itself is subjected to
changes in its dynamical state. Switching off a fixed
source in a Klein-Ciordon field such as (1.2) is known to
lead to the release of real mesons originally belonging to
the virtual cloud, but processes of this sort do not seem to
have been investigated from the point of view of the time
development of the energy density surrounding the
source. Although there have been detailed calculations of
the electromagnetic field surrounding an atom during the
emission of a real photon such as those by Bykov and Za-
dernovski and by Power and Thirunamachandran' it
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would seem to be desirable to investigate also the time-
dependent changes in the virtual radiation clouds due to
sudden dynamical changes experienced by atomic or
molecular sources.

As a preliminary to the electromagnetic field problem
we first calculate, in Secs. II and III, the time develop-
ments of the energy density for a neutral boson field, i.e.,
Eq. (1.2), consequent upon well-defined sudden prescribed
changes in a point source. The two models chosen are
those where, for Sec. II, the source is completely removed
or suddenly decoupled from the field and, for Sec. III, the
building up of the virtual cloud around a meson source
which is initially bare. We show that in the first case the
meson cloud will eventually disappear, but the energy
density at distance r from the source will remain until
time t=r/c has elapsed from the switching off of the
source. In the second case we show that indeed the shape
of the energy density tends to the ground-state shape
given by Eq. (1.3) as t~ oo, but for finite times the virtual
cloud is absent at distances r )ct, in agreement with sim-
ple relativistic requirements. In Sec. IV we turn to the
electromagnetic case and calculate the time-dependent
dressing of a molecule. Both the transverse electric and
the magnetic energy densities are computed for a mole-
cule initially bare. The simplifying assumption that the
coupling of the molecule to the radiation field is through
the static polarizability is made throughout. This restricts
the va1idity of the resulting expressions to large distances
compared to optical wavelengths. There is no difBculty in
principle to determine these energy densities at closer ap-
proach using the multipolar Hamiltonian but this would
not change the basic time developments that occur. The
steady-state energy densities given by Eq. (1.6) are the
values obtained in the time-dependent case after a time
r/c. In Sec. V we compare the electromagnetic case with
the corresponding meson case, indicating the differences
and similarities, and summarize our conclusions.

II. BOSON SOURCE REMOVED AT t =0
In this section we follow the time dependence of the en-

ergy density (1.2) for the scalar meson field after the in-
teraction with a source is suddenly switched off. Of the
three separate terms the canonical momentum term can
be evaluated in terms of Bessel functions. The remaining
terms cannot be found in closed form but in terms of an
integral of the Bessel function of zero order with a square
root as argument.

In terms of the usual creation and annihilation opera-
tors the boson field amplitude is

1/2

where AF is given by Eq. (1.3) and p(r) is the source den-
sity. From (2.1) we obtain

Hp g ~k& k&k+Hzpj
k

H'= —g g
1/2

(Pk ~ik+Pk& k )

(2.3)

The zero-point terms (ZPT) will be ignored in all subse-
quent developments. In (2.3) pk is the spatial Fourier
transform of p(r). As is well known the ground state of
total H (i.e., the physical or dressed ground state) is given
by

lo&=Tlo&, T=e "~'e ""'e
where
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and
l
0& is the ground state of Hp (i.e., the bare ground

state). Dressing the bare operators ak is easily accom-
plished by the unitary operator T through

T 'akT=ak+gk, T 'akT=ak+gk . (2.6)

The conditions proposed within the model considered are
that the initial state, at t=0, is the dressed ground state

l
0& but that for t &0 g vanishes and the field evolves

freely according to

e ' Tlo&. (2.7)

Hence the quantum average of any operator Q at time t
(&0) is

(Q&, =&olT-' '""'Q ' '""Tlo&.
For Q =m. (r) and after some algebra (2.8) leads to
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where V is the quantization volume. The total Hamiltoni-
an, before the source is removed, is

H=Hp+H', Hp= f &z(r)dV, H'= —g fp(r)P(r)dV,

(2.2)
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which becomes in the usual limit of large V that turns the
k sums to integrals,
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Similarly we find
r

&P (r)&, = g Re f pke "d'k
(2 it) COk

(2.11)

and
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r
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2 Pke
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For the case of a point source with p(r)=53(r), so that
pk ——1, the field energy densities can all be expressed in
terms of the two integrals

Because F(t', r) vanishes for t' (r/c the integrals in (2.16)
and (2.17) remain zero at points r as long as r & ct, where
t is the minimum time required for any information to
travel from the origin to r. Until the time, all the F terms
vanish and the total energy density as calculated from the
sum of (2.15), (2.16), and (2.17) coincides with the initial
value given by Eq. (1.3). We see explicitly that the energy
density at a point r remains unchanged even after decou-
pling has occurred between the source and the field until
information of this event can reach point r. On the other
hand, we can evaluate (see, for example, Gradshteyn and
Ryznik' ) the limiting values of the integral over t' for
large t. We have

f"F(t', r)dt'= f" Jo[Sic(t' r /—c )' ]dt'
0 r/c

d k i(k-r —cokt) d k i(k r—cukt)
3 3
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(2.13)
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(2.19)

=0, t (r/c, (2.14)

where J0 is the zeroth-order Bessel function. We have

The angular integration is straightforward and if we
define the function

F(t, r)=JD[Si,c(t r /c )
/—], t&r/c

Thus the &P (r)& and &[VP(r)] & components of the en-
ergy density vanish for all r as trop. Also, from Eq.
(2.18), the momentum term vanishes in the same limit.
We may conclude that, as expected, the energy density
vanishes at any distance r from the origin after su%ciently
long times has elapsed, and that it remains equal to its ini-
tial value as long as t ~r fc. It is to be noted that
"suSciently long time" means, due to the argument of the
Bessel functions, t »(r +A' /m c )' /c.

and

2m a
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—pr
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(2.15)

Then the energy densities (2.10), (2.11), and (2.12) become

III. BOSON SOURCE APPEARING AT t =0

In this section the problem solved in Sec. II is essential-
ly reversed. The source is assumed to be bare at t =0 so
that the initial state is

I
0& but for t &0 this develops in

time according to Schrodinger's equation with total H as
the Hamiltonian. The state at time t is thus

&y'(r) &, = —g'
16m c r

iHt/fi
I

0—& (3.1)
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0
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with H given by Eq. (2.2). Using Eq (2.6), i.t is easy to
show that

and
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H= THpT ' —A,

where A is the c number (3.3),

g
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'
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Hence (3.1) is

(3.2)

(3.3)

The energy density due to the conjugate field m.(r) can be
reduced further,

id'/AT ' 0'/" T —I
I
0 & (3.4)

&H(r) &,=,g'
16 c

Xp r2 r2/c 2

=0, t (r/c .

t) r/c

(2.18)

and the quantum average of any operator Q in this state is

&g&, =&0
I

Te'""'"T 'gTe '"'""T 'Io-& . -(3.5)

In practice it is easiest to evaluate T 'QT first using (2.6)
and proceed in the manner outlined in Sec. II ~ In partic-
ular, the kinetic energy density is
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&+(r))c= y V cpkcok [Skulk(1+e " " —e " —e " )e'"
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We notice that Eqs. (3.7) and (2.10) diff'er only by the sub-

stitution of the time factor (1 —e '
) in place of e

The same is true for the other two terms in the energy
density &P (r)), and &[VP(r)] ), . Consequently,

which, for an infinite quantization volume and a point
source, becomes

—ICOk E

&m (r)&, =— g Re f e'"'d k
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J

The causal behavior of the energy density of the boson
virtual cloud is exactly as expected. Since fpF(t', r)dt'
vanishes for any r & ct, the total energy density &AF(r) ),
is zero at these points, and we have a buildup of field en-
ergy at all points r &ct. On the basis of (2.18) and (2.19)
the energy density tends asymptotically to the ground-
state value equation (1.3). Thus the dressing of the initial-
ly bare source proceeds outwards with the speed of light
but it is complete at any point in space only
asymptotically —in the sense that it is essentially complete
when t »[(r +Pi!m c )]' Ic.

2

&P (r)), =
6

Re f (1—e '""')e'"'d It
(2~) COg

(3.8)
IV. TIME-DEPENDENT DRESSING

OF A MOLECULE

and

&[Vite(r)] ), = ReV f (1 —e
(2m) COg

k )eik rd 31
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In terms of photon annihilation and creation operators,
the amplitudes of the electromagnetic field are

1/2

(3.9)

Integration of the time-independent part of (3.7) yields
2M') pB(r)=i g

1/2

(bk, ak, e'"' bk, a k—,

COj( =Ck
(4. 1)

e'"'
3 4m ~ k sin(kr )dk

cpk rc p (k2+j22)1/2

4~ a
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rc Br
(3.10)

However, the time-independent part of (3.8) is

e 3 4tr f oo k sin(kr) —2H 1) e

rc p k +p rc ~r p

(3.12)

which, being real does not contribute to (3.7). Hence the
conjugate momentum contribution to the energy density
is the same as in Sec. II, i.ecr that given by Eq. (2.15),

2

(3.11)

where V is the quantization volume, ek~ the unit vector
defining the polarization, and bk ~

——k X ek.~. Within the
multipolar-coupling formalism that we adopt here the ma-
trix elements of E (r) correspond to those of the trans-
verse Maxwell displacement field. For the field-molecule
coupling we take the Craig-Power model, " whereby the
molecule is taken as completely passive, and enters the in-
teraction Hamiltonian only via the static polarizability
tensor a „. Strictly speaking, this model can be con-
sidered realistic only to study the field in the radiation
zone. However, we are interested within this paper in the
model as a simplification (where the Maxwell fields can be
easily found) of a more realistic but more complicated sit-
uation with a frequency-dependent polarizability. Thus
we take

H =Hp+H',

whereas the time-dependent part is the negative of (2.16).
Consequently we obtain

Hp — F rdV,1

8m.
(4.2)

2

&P'(r)), = . . . f F(t', r)dt'
1677 c r

Fina11y, proceeding in a similar way, we have

(3.13)

H' = ——,
' a „Z (0)E„(0),

where &F is given by Eq. (1.4) and where the molecule is
taken to be fixed at the origin. In terms of the expressions
(4.1) we have
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HP=g a k Jak JflCOk
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k])J]
(4.3)

and the transverse electric and magnetic densities that we
investigate are (simplifying the notation el =ek, J, ,

e2=ek2j2 al =akl Jl etc. )

ing to

exp( iHt —J'fi)
j 0), (4.6)

~elec = E"(r)
8m.

where H is given by Eq. (4.2). The energy densities
within the photon cloud are given, as functions of time, as

4Vk
i(ki+kp) r

p)k p)k (el'e2& ll22e

(~elec-mag) t = (0
j
e elec-mag(r)e

=(oj&„„.,(r, r) jo) . (4.7)

&,g
—— 8 (r)

8m

+H. c.), (4.4)

i(k& —k&) r—e).e2 a]a 2e

The interaction Hamiltonian (4.2) is more complicated
than its analogue in the meson case and we resort to ap-
proximate methods. We carry out the calculation in the
Heisenberg representation and obtain approximations to
order e, i.e., one power of the polarizability a „, for a (t)
in (4.4) and (4.5) from which we can evaluate (4.7).

The Heisenberg equation for a 1(t) is easily shown to be

i(k(+kg)-rg Qp)klan)k, (bl b2a la2e
k,J,
k2,J2

i(ki —k2) I'—bi b2a ia 2e

27ri6
l Az ] —iL) ]Q ] —(x~n

g +P)1P)2[e2m eln +elm e2n ]122
2

+H. c. ) . (4.5) g V p)1rp2[e2m eln +elm e2n ]a 2
2

(4.8)

For the initial (t =0) state of the system we take the
bare vacuum

j
0). This state develops, for t) 0, accord-

It is sufficient for our purposes to solve Eq. (4.8) to first
order in a „. We find

a 1(t)=a 1(0)e ' + —,'am„g Q pllp)[2(e 2me „1+e 1 e2„)e '
Fk, k, (t)a2(0)

2

—(e2 el„+el e2"„)e '
Gk, k, (t)a 2(0)], (4.9)

where

j ( QJ i
—CO p )t i(col +co~)t—1 +1

Fklk, (t) = Gl, k, (t) =
CO& +Gap

(4.10)

If we use the symmetry relation Fk, k, (t) = Fk* k (t) and neglect t—he zero-point terms and terms O(a „),it is easy to ob-
tain

(0 j
a 1(t)a2(t)

j
0) = (0

j
a 1 (t)a 2(t)

j
0) = —
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(0

j
a 1 (&)a2(&)

j
0) = (0

j
a 1 (&)a 2(t)

j
0) =0 .

The polarization sums in (4.4) and (4.5) can be affected using

g (el e2n +e2meln )elle2l =25 „—201 kl„—2@2 f2„+kl k2(elm f2„+k2 f1„)
j&j2

(4.11)

(4.12)

and
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Aj2
(4.13)
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This leads to

(E (r))t 2 amn g ttllttl2[25 2~1m~1 2~2m~2n +Ill k2(~1m k2m +~2m~in )]
2' fi

p2

—i(co~+co2)t i(k~+k2) r
e +C.C. j (4.14)

and

2' fi —i(cu& + co~)t i(kl +k2)-r(B (r) )t 2 amn g ttilttl2elkmelhn(~1k +2h +it lh tt 2k )[Gktki(t)e +C (4.15)

which can be transformed into the following integrals (4.16) and (4.17):
2

(E (r)), = a „ lim [25 „V' V" —2V' V' V„' —2V' V' V„+(V V')(V V„'+V' V„)]
(2ir) r' r

e'"' "' ';(I+k )«d kd k'
k+k' (4.16)

and

(B'(r) ), =
2 i(k.r+ k' r')

—a „ lim (V V'„+V' V„—25 „V.V') f, (1—e ' +" '")d k d k'+c.c. (4.17)

where V acts on r and V' acts on r'.
If J(r, r', t) is defined by Eq. (4.18),

t(k r+k'. r') —i(k+k')ct d 3k d 3kt
J(r, r', t )=, —,+c.c. ,+

(4.18)

Thus, except at t = r/c and r'/c, BJ/Bt is zero and, since

J(r, r', oo ) =0 and J(r, r', 0)= 16m 1

rr' (r+r')

we have

the term in small parentheses in Eq. (4.16) is

[J(r, r', 0) —J(r, r', t ) ]. Now
16m 1J(r, r', t) =
rr' (r + r')

BJ = —icK(r, t ) K(r', t ) +c.c.. ,
Bt

where

~ . d kK(r t) = f e'"'e
k

(4.19) for t =0 to minimum of r Ic, r'Ic

=0 for t =maximum of r/c, r'/c to ~ .

(4.21)

1 1+r —ct r +ct (4.20) It follows that, except for distribution singularities at
t =e/c,

(E (r)), = a „ lim [25 „V V" —2V' V V'„—2V' V V„+(V.V')(V V„'+V' V„)]2' r ~r

[1—e(r ct)] . —1

rr'(r+r') (4.22)

The fourth-order derivatives, together with the limiting
process, are elementary though tedious and we find, again
for all times distinct from r/c when the fields are highly
singular, that

The analogous equations for (B (r) ) are

(82(r)), = — a „ lim (V V'„+V' V„—5 „V.V')
77 r'~r

(E (r)), = —(135 „+7r r„)[1—e(r ct)] . —
4vrr

(4.23) and

(4.24)X —[1—e(r ct)]—1

rr'(r+r')
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7' &mn(B (r)), = — (5 „r—r„)[1 B—(r c—t)] .
4m y7

(4.25)

The energy density of the radiation field at the point r,
namely, (&F), is easily obtained by dividing the sum of
the transverse electric and magnetic terms (4.23) and
(4.24) by 8',

1' 3~mn +7~m ~n
(&F), = a „[1—e(r ct)] .—(4.26)

16m r"

In the limit as taboo (4.25) yields the static expression
given by Eq. (1.5) and for t =0 it vanishes everywhere as
expected. The energy density (4.26) at a given point r is
zero as long as t (r/c, and after time r/c attains immedi-
ately the ground-state value. For an isotropic polarization
this ground-state expectation value for the energy density
is that given by Eq. (1.6) for the isotropic-source case.

V. SUMMARY AND CONCLUSIONS

We have considered the problem of the time depen-
dence of the cloud of virtual particles surrounding a
source of a field. This time dependence sets in when the
strength of the coupling between the source and the field
changes with time. We have discussed this problem by
studying three simple examples: a "static" point source
whose interaction with a scalar meson-meson field is sud-
denly cut off (source removed at t =0), the same static
source suddenly starting its interaction with the meson
field (source appearing at t =0), and a molecule in its
ground state suddenly starting to interact with the elec-
tromagnetic field. In all three cases the energy density of
the virtual cloud dressing the source (made up of virtual
mesons in the first two cases and of virtual photons in the
third) has a time-dependent shape as a function of the dis-
tance r from the source and tends to the normal ground-

state distribution for the final total Hamiltonian, which in
the first case is the bare vacuum, in the second is the
ground-state Yukawa-like distribution, and in the third is
the ground-state far-field Casimir, van der Waals-like dis-
tribution. The time dependence of the virtual cloud in all
cases is characterized by an expanding sphere of radius
r =ct centered on the position of the source, within which
the cloud is time dependent, and outside which is con-
stant. In the case of the massive scalar field the virtual
distribution of energy density within the sphere readjusts
to its asymptotic value in a time of the order of (filtrtc )

which can be thought of as the maximum lifetime of a vir-
tual meson. The corresponding readjustment of the virtu-
al photon cloud is instantaneous.

The above results seem to confirm in a qualitative way
Feinberg's ideas about the nature of the so-called "half-
dressed states" in quantum-field theory, particularly in
connection with the characteristic times involved in the
establishment of an equilibrium structure in the field sur-
rounding the source, at least in the sense that this regen-
eration time is independent of the source-field coupling
strength in all the cases considered. Moreover, the
present work might provide a quantitative basis for a dis-
cussion of the detection of the virtual field energies during
the regeneration time, thus extending the direct measure-
ments of the asymptotic energies in the electromagnetic
case through the Casimir effect.
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