
PHYSICAL REVIEW A VOLUME 36, NUMBER 10 NOVEMBER 15, 1987

Linear and nonlinear screening effects in two-photon ionization of xenon
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We apply the random-phase approximation to two-photon ionization. We develop a formalism
which, by means of screened electron-photon interactions, includes the nonlinear response and, in

particular, double-excitation processes. The theory is illustrated by numerical calculations of the
two-photon ionization cross section of the external (5p and Ss) shell of xenon, over a large energy
range: from the two-photon ionization threshold, in the discrete resonance region, and above the
one-photon ionization threshold. We show the influence of different many-electron effects, for ex-
ample, ground-state and final-state correlation, and linear and nonlinear screening. Compared
with an independent-electron picture, screening effects lead to a large reduction of the ionization
cross section at low photon energy and in contrast, to an important enhancement at higher photon
energy, due to the influence of double-excitation and -ionization processes.

I. INTRODUCTION

The interaction of complex atoms with strong fields
gives rise to interesting new phenomena which have re-
ceived considerable attention these last few years. These
phenomena are the multiple ionization of rare gases'
and alkaline earths, the anomalous behavior of pho-
toelectron spectra in above-threshold-ionization (ATI)
experiments, ' and, as has been recently observed in xe-
non, the production of high-energy photoemission
lines. " A rare-gas atom exposed to an intense laser field
can absorb an important energy (several hundreds of
electron volts) through extremely high-order nonlinear
processes.

Several interpretations of multiple multiphoton ioniza-
tion have been proposed. Some are based upon statisti-
cal considerations. ' ' Others point out the possible
role of collective effects at very high laser intensities. ' ''
A major issue is whether the electrons are removed to-
gether in a direct processes or one at a time in a sequen-
tial process. The present understanding, recently backed
up by some photoelectron spectroscopy measure-
ments, ' ' is that, in most cases, due to the finite rising
time of the laser pulse, multiple ionization occurs
sequentially, i.e., is actually a succession of one-electron
ionization processes. The first ionizations take place and
saturate at the beginning of the laser pulse, long before
the maximum intensity is reached. As a consequence,
the problem comes down to the calculation, or rather es-
timation of single-ionization probabilities of the different
ionic species involved in the transition. Moreover, the
experimental data obtained in ion detection' seem to be
consistent, at least for the first ionization steps, with a
perturbative picture for the interaction with the radia-
tion field.

The ionization of heavy atoms through the absorption
of only one photon is now fairly well described by
theories going beyond one-electron approximations, in-
cluding many-electron effects. ' Unfortunately, the
understanding is much more limited for multiphoton
ionization processes. Some work has been done on two-
electron systems: mostly helium, also strontium
and recently carbon. ' The relevant calculations for
two- or three-photon ionization of rare gases that we are
aware of are those of Pindzola and Kelly in argon, us-
ing many-body perturbation theory; Moccia et al. in
Ar and Ne, using the random-phase approximation
(RPA); and McGuire, within a independent-electron
approximation. Gangopadhyay et al. have applied the
multichannel-quantum-defect theory to a calculation of
two- and three-photon ionization and autoionization in
xenon. Recently, Starace and Jiang have calculated
the two-photon ionization cross section of Ar, using a
transition-matrix theory. Finally, let us mention some
related calculations of the third-order susceptibility of
rare gases using the time-dependent local-density approx-
imation.

In previous work ' we have presented a theoreti-
cal description of the interaction of a many-electron
atom with an intense laser field, within the framework of
diagrammatic many-body perturbation theory. We in-
troduce a screened electron-photon interaction, involv-
ing the atomic response and which is described within
the random-phase approximation. The theory has been
applied to calculations of two-photon ionization of heli-
um and xenon in the zero intensity limit.

In the present paper, we give a full account of the re-
cent work on two-photon one-electron ionization of xe-
non, and we investigate in greater detail the role of elec-
tron screening effects. We go beyond the linear response
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of the atom to the external field (screening at frequency
co of the first electron-photon interaction) and we investi-
gate the nonlinear response: screening of higher harmon-
ics of the field (2') and what we call nonlinear screen-
ing, screening of all the electron-photon interactions in-
volved in the multiphoton process. This nonlinear
screening means the inclusion of double excitation pro-
cesses, which are found to be very important. We
present numerical calculations of two-photon ionization
of the 5p and 5s shell of xenon and we indicate the tech-
niques used for the calculation in the different regions of
the spectrum. Let us emphasize that we are interested
in the general behavior of two-photon ionization over a
broad spectrum, from the threshold ( —6 eV) up to much
above the ionization limit (19 eV).

In Sec. II, we outline the theoretical formalism for
describing two-photon one-electron ionization including
screening effects. Section III presents the methods used
for calculating the two-photon ionization cross section of
the external shell of xenon. The numerical results are
presented and discussed in Sec. IV.

(a)

(c)

(b)

II. TWO-PHOTON IONIZATION INCLUDING
SCREENING EFFECTS

A theoretical description of multiphoton single ioniza-
tion including both many-electron and intensity effects
has been presented previously. In the present work,
we limit ourselves to the lowest order for the radiation
field and the two-photon ionization problem, in order to
introduce the numerical calculations presented in Sec.
IV.

A. Independent-electron approximation

The two-photon one-electron ionization amplitude, di-
agrammatically represented in Fig. 1(a), is given by the
expression

t,'; (to) = &eIErIn&&n IErIi&
CO~, —CO

We are using a one-electron basis set. Ii &,
I

n &, I
E&

are, respectively, initial-, intermediate-, and final-state
orbitals. —E.r denotes the electron-photon dipole in-
teraction. co is the photon energy. co„;= c,„—E,
represent one-electron excitation energies.

This independent-electron approximation cannot give
a correct description of the two-photon ionization cross
section. Many-electron polarization effects can be in-
cluded in a simple way by introducing a screened
electron-photon interaction, within the framework of the
random-phase approximation. After a brief review of
this theoretical method, we discuss the different ways of
applying it to nonlinear processes.

FIG. 1. Diagrammatic representation of the two-photon
ionization amplitude: (a) independent-electron approximation;
(b) linear response; (c) and (d) nonlinear response (see text).

corresponds to the Tamm-Dancoff approximation
(TDA). The RPA also includes ground-state correlation
effects, some of which are represented in the second line
in Fig. 2(a). We assume, for simplicity, that exchange
effects are included in the zeroth-order approximation.
The screened electron-photon interaction is the solution
of the RPA integral equation [represented in Fig. 2(b)],

&j I
l~ri2 In &&n IE «a~) Ij &E.r(co) =E.r —$ (2)

(co~~ —co ) /2'~~

1/r12 denotes the Coulomb interaction. The expression
& j I

1/ri2 I
n & means that an r integration between the

I j & and
I

n & orbitals has been performed.
The RPA represents the linear response of the atom.

It is equivalent to the linearized time-dependent Hartree
theory (the RPAE, random-phase approximation with
exchange, being equivalent to the linearized time-
dependent Hartree-Fock theory) The e.Fective interac-
tion —E.r(co) is the sum of the external field —E.r and
the field induced by the perturbation of the charge densi-
ty [second term in the left side of Eq. (2)]. The RPA
only takes into account the induced field oscillating at
the same frequency co as the external driving field, and
not higher harmonics of the field. The question is how
this approximation can be extended to multiphoton ion-
ization.

B. Random-phase approximation

The RPA can be formulated in terms of an effective
(screened) electron-photon interaction —E.r(co ).21,28, 42

The diagrammatic perturbation expansion of —E.r(co) is

presented in Fig. 2(a). The first line, which contains the
infinite series of forward-propagating bubble diagrams,

C. Linear response

We shall first describe what we think is the linear
response of the atomic system to the external field. We
take into account the induced dipole polarization (in-
duced dipole field oscillating at the same frequency as
the driving field). Moreover, apart from virtual double-
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FIG. 2. Random-phase approximation: (a) perturbative expansion, (b) integral equation.

(3)

pair excitations in ground and excited states (Fermi sea
correlation), we only allow energy-conserving single pair-
excitations (only one electron can be excited). Figures
3(a)—3(c) show the first-order diagrams (first order in the
Coulomb interaction) included within the linear
response. The two-photon ionization amplitude, calcu-
lated in this approximation can be expressed as
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i )
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—CO

two-photon ionization amplitude, represented in Fig.
1(c), is given by

( e
[
E.r(co ) (

n ) ( n
(
E r(to )

(
i )

El
~ni

(4)

This approximation overestimates somewhat the screen-

Compared to Eq. (1), we have simply replaced the first
electron-photon interaction by the effective electron-
photon interaction defined in Eq. (2). A diagrammatic
representation of the two-photon amplitude is shown in
Fig. 1(b). (b) (c)

ln

D. Nonlinear response (I): Nonlinear screening

So far, the absorption of a second photon does not
yield any additional may-electron effects. Going beyond
the linear response, we want to describe polarization
effects due to the absorption of tico photons Afirst ex-.
tension of the RPA consists of including multiple
electron-hole pair excitations, representing nonlinear
screening. Two electrons can be simultaneously excited,
each absorbing one photon. This double excitation may
eventually be energy conserving. The first-order dia-
grams corresponding to this nonlinear screening in two-
photon ionization are drawn in Figs. 3(d) —3(f).

If we neglect the higher-order Coulomb interaction
between the electron-hole pair excitations (which then
become independent of the state of the system), these
processes can be included exactly simply by replacing in
Eq. (1) both electron-photon interactions by screened
electron-photon interactions [defined in Eq. (2)]. The

(e)

(g)

FIG. 3. First-order correlation effects in two-photon ioniza-
tion (see text).
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ing, since it includes exclusion-principle-violating contri-
butions due to neglect of exchange; the second electron-
photon absorption is screened in the same away as the
first one, although one 5p electron has already been ex-
cited and does not participate any more to the dynami-
cal screening (more exactly, it participates in a different
way). Moreover, this approximation assumes that
double-excitation energies are equal to the sum of two
one-electron excitation energies (co„, +co

&
); we do not

take into account the higher-order Coulomb interactions
between the electron-hole pair excitations. However,
these (electron-hole and hole-hole) monopole interactions
should largely cancel each other and the approximation
expressed by Eq. (4) should represent a fundamental
starting point for describing the average features of two-
photon ionization of Xe, in particular below and well
above the resonance region.

E. Nonlinear response (II):
Screening at higher harmonics

(sj
~ 1 Iris' ~

in )t„(oi)
&„(~)= &,';(~)—g

[co„,—(2o~) ]/2'„
(6b)

III. NUMERICAL METHODS

These effects represent a contribution much weaker than
dipole-polarization effects. As will be explained in Sec.
IV, they can be estimated in a simple way by replacing
in Eq. (4) the final-state wave function

~

E ) by an
effective final-state wave function

~

E ) according to [Fig.
l(d)]

(&
~

E r(co)
~

n ) (n
~

E r(co)
~
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This effective wave function is calculated in a different
potential (LS-dependent Hartree-Fock) than the initial-
state and intermediate-state wave functions (average
Hartree-Fock). In this way, screening effects at 2' are
approximately included in the two-photon ionization
amplitude.

—g (sj
~

1lr, 2 ~in )
n,j

t„(cu ) t„(cu)
—2' COn +2'

(Sa)

t„(co)= t,'; (co)

—g (sj
~
llr, 2 ~

in )
n,j

t„(co) t„(co)
cOnj + 2Ct7 COnj —26)

(5b)

where t„(co), t'„(cu) ar. e obtained from t,", (co), t'„(co) by
changing co in —a in the energy denominators. This
coupled system may be simplified if we assume that
ground-state correlation effects [Fig. 3(h)] can be neglect-
ed. The two-photon ionization amplitude is then the
solution of the integral equation,

( Ej
~

I lr, 2 ~

in ) t„,(co)
t„(cu)=t'„(co)

n,j co —2'nj

(6a)

A further extension of the RPA to two-photon ioniza-
tion consists in describing the induced monopole and
quadt'upole polarization. We add single-pair excitations
involving the absorption of two photons (e.g. , in Xe,
Sp~np, nf 'S or 'D). The corresponding first-order dia-
grams are indicated in Figs. 3(g) and 3(f). This is a
linear-screening effect, since only energy-conserving
single-pair excitations are taken into account. It de-
scribes the atomic response at the second harmonic (2')
of the laser fundamental frequency. The two-photon
ionization amplitude t„(co), including screening at co

(linear and nonlinear) and screening at 2', can be de-
duced from the system of coupled equations,

t„(oi)= r'„(co)

In this section, we describe the methods used for the
calculation of the two-photon ionization cross section of
the external shell of xenon.

A. One-electron basis set

Most of the calculations presented in this manuscript
are performed with a Hartree-Fock (HF) one-electron
basis set. The ground-state orbitals are calculated by
solving self-consistently the Hartree-Fock equations for
the initial state (Sp 'So). The excited orbitals are calcu-
lated from a frozen HF potential which can be built in
many ways, as discussed in detail in the Appendix.
The potential that we use for the calculation of the two-
photon ionization cross section of xenon has the follow-
ing properties: the self-interaction is removed from the
Coulomb part of the potential, but not from the ex-
change (see Appendix for more detail). In the case of in-
termediate excited states (Sp 'ns, Sp 'nd, and Ss 'np),
we also include the complete ladder (intrachannel) in-
teraction in the potential. As a consequence, an RPA
calculation (i.e., only bubble diagrams and no ladders)
based upon this potential is nearly equivalent to the
more common RPAE (RPA with exchange) treatment,
based upon a V ' type of potential. In this way, ex-
change effects are included in the zeroth-order approxi-
mation.

For comparison, we shall also present some results ob-
tained with a local-density approximation (LDA) basis
set. ' Except in the region of resonances of excited
states, described in average in the local-density approxi-
mation, an RPA calculation for the two-photon ioniza-
tion cross section, based upon our HF basis set (RPAE)
or based upon a LD basis (LDRPA) should yield similar
results and it appeared to us worth comparing both ap-
proaches.

Another possible approximation, which in contrast
overestimates ground-state correlation effects, consists in

replacing, in the last term in Eq. (Sa), t„j(co) by t„~(co).
System (5) then reduces to

B. Two-photon ionization cross section

The two-photon 5p-shell ionization generalized cross
section o.

2 expressed in cm s can be written as
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o, =2'(ac/cto)(1/FFO) g ~

t„(co)
~

where u is the fine-structure constant, c the speed of
light, and ao the Bohr radius. F is the laser flux in
photonsjcm s. Fo ——3.22&10 photons/cm s. i =5p is
the initial state (a summation over the number of elec-
trons of the 5p shell is understood). c, =ep or ef is the
final state (I, is its orbital quantum number). After sep-
aration of angular and radial variables, the partial ampli-
tudes t„(co) are given by

& E/R, /n&& n/R, /i&
t„(co}=Fcog C( e, n, i) (9)

CO . —COni

C (E,n, i) are coefficients accounting for the spin summa-
tion and the angular integration. Depending on the ap-
proximation chosen for including screening eff'ects,
R),Rz r, r(——co). For Sp~cf transitions, there is only
one channel Sp~d~f.

~

n &=
~

nd & in Eq. (9) and the
summation is performed over the discrete (Sd,6d, . . . )
and continuum spectrum. In the case of 5p~cp transi-
tions, two channels 5p~d~p and Sp~s~p interfere
and the corresponding amplitudes must be added. The
summation over n in Eq. (9) is a double summation over

~

ns & and
~

nd & intermediate states.
The two-photon ionization amplitude [Eq. (9)] is cal-

culated by applying the perturbed-orbital method. We
build the perturbed orbital,

/n&&n /R) /i&
f

co & = g C( ,eni) (10)

by explicitly summing over intermediate states.
Implicit-summation techniques are usually preferred in
similar calculations. However, the explicit summation
presents the advantage of being much more flexible for
the description of screening effects [R, =r(co)]. For ex-
ample, a resonant state requiring a "special" treatment
(see Sec. III C) can be easily isolated from Eq. (10). In
the HF approximation, we sum over ten discrete states
(up to 14d or 15s}, we integrate in the continuum from
0.002 to 20 Ry (90 energy points), and we approximate
the remaining summation over Rydberg states and the
integration from 0 to 0.002 Ry using an interpolation
method. In the local-density approximation, the summa-
tion is reduced to continuum states (about 70), since
there are no excited bound states.

The two-photon ionization amplitude is then equal to

t„(co)=&8
i
R~

i
co& .

The calculation of this matrix elements does not present
any difficulty, except for above-threshold ionization pro-
cesses. When the photon energy is higher than the ion-
ization energy, the perturbed orbital [Eq. (10)] exhibits
the behavior of a continuum wave function and (11) is a
free-free matrix element. The technique for calculating
these matrix elements has been described in detail else-
where. ' It consists in first integrating numerically
from zero to a cuto6' point r, and then estimating the
remaining integration from ~, to infinity using the
analytical asymptotic form of the continuum wave func-

tions. Let us point out that the best accuracy is reached
when r, is as near as possible from the core region (typi-
cally 30 a.u. in Xe). It is then essential to get very good
asymptotic developments, valid at small distances.

C. Effective electron-photon interaction

The effective field r(co) satisfies the integral equation
[Eq. (2)]

C„,. YJ'„(r)&n
~

r(co)
~ j &

r(co) =r —g
n j (conj co )/2conj

with, in both RPAE and LDRPA calculations,
2

2(21, +1)(2l„+1) ij
0 0 0

(12)

(13)

The matrix elements in Eq. (12) are radial matrix ele-
ments. In particular, YJ'„(r) represents the radial part of
&j

~
1/r, 2 ~

n &. Equation (12) is solved by means of a
Fredholm approximation,

with

(co„& —co ) /2co„j.
(14)

e(co)=1+ g (15)

V„j„j=&n
~

Y~'„~ j & is the radial part of the Coulomb
matrix element &nj

~

1/r, 2 ~
jn &. Although this approx-

imation is good enough in the case of one channel, it
must be carefully applied when several channels are
mixed. Let us call F., (co) the solution of Eq. (15) for a
channel (c). The effective field is approximated by

C„Y'„(r)&n
~

r
~ j &

r(co) =r —Q
(c) (n, j)E(c) (~nj ~ )/ ~nj

1

e, (co)

(16)
It means that each infinite series of bubbles (e.g. , in Fig.
2) contains one type of interaction. Interchannel cou-
pling is realized only to first order. In the neighborhood
of a resonance, however, interchannel mixing becomes
important and requires a better treatment, going beyond
the first order. ' Denoting i ~d the resonant transition
(e.g. , in Xe 5p~6s), we define r(co), Y,'d(r, co), respec-
tively represented in Figs. 4(a) and 4(b) by

C„jYj'„(r)& n
~

r(co)
~ J &

(co2j —co ) /2ch)„j

C„, Y'j(r) n&~ Y 'd(r, co)
~ j &

(conj —co )/2co„J

r(co) =r—
(n, j) [&(d, i)]

Y,d(r, co) = Yd(r)—
(n,j ) [&(d, i)]

(18)
The effective field r(co), represented in Fig. 4(c), is given
by

Cd; Y,'d(r, co)&d
~

r(co) ~i &

r (co)= r(co) (19)
(~dh' ~ }/2~di + Cdi Vdd(~

with Vdd(co)=&d
~
Y,'d(r, co) ~i &. In the same way, the

two-photon ionization amplitude [Fig. 4(d), with R2 r]——
is given by
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(nj*di)

(a)

(nj*di)
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(d)

FIG. 4. Resonant two-photon ionization: (a) r(co), (b) Y t'd(r, cu), (c) r(~), (d) renorrnalization of the two-photon ionization am-
plitude.

t„(co)= g C(E,n, i)
n (&d)

(E~R2 ~n)(n ~r(co) ~l')
+C(E,d, i)

CO —COni

(s~R2 ~d)(d ~r(a)) ~i )

~di ~+Cdi ~dd(~) ~di ~di +~)
(20)

It is divided in two parts: off resonant [first term on the
right side of Eq. (20); first diagram in Fig. 4(d)) and reso-
nant [second term on the right side of Eq. (20); the sum
of the last four diagrams in Fig. 4(d)]. This renormaliza-
tion is quite similar to the treatment of resonant two-
photon ionization including strong-field effects (absorp-
tion and reemission of photons). However, the correc-
tion term in the denominator in Eq. (20) does not depend
on the laser intensity. Moreover, it is real. The
Coulomb interaction induces a shift of the resonance
but, as long as cod, is lower than the binding energy of
electron i, does not broaden it. (The two-photon ioniza-
tion amplitude still becomes infinite at some energy
value. )

In Fig. 5 we have plotted the variation of the effective
field r(co) as a function of r for different (off-resonant)
photon energies from 0.3 up to 1.5 Ry (see Ref. 26). The
effective field is calculated with local-density wave func-
tions by including the interaction with most of the exter-
nal subshells (3d,4s,4p, 4d, 5s,5p), the dominant one being,
of course, the Sp subshell. Above the LD-ionization
threshold (0.62 Ry), r (co) becomes complex and the
effective field plotted in Fig. 5 is the real part of r(co).
The effective field is generally lower than the external

10—
9

8—
LLI

Lll 4
I

2
W

u. Q

0
r (a. u. )

FIG. 5. E6'ective field r(co) as a function of r (in a.u.).(- — ), 0.31 Ry; ( —"-~ ~ —"—), 0.6 Ry; ( ———), 0.7 Ry;
( —.——), 1 Ry; (——-), 1.5 Ry. Above 0.62 Ry, the real part
of r(cg) is plotted.

field (r, materialized by the straight line with slope 1),
except at high photon energy. The external field is
screened out of the outermost shell and this screening
will induce a reduction of the cross section compared to
an independent-electron picture.
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IV. NUMERICAL RESULTS 102

A. Two-photon ionization of the Sp subshell

104

102

100

Pl
' 7s

6d
I

I

(I
[l
1&-8S

J I
j

( I]j

Igg

l

10-2
0.5 0.6 0.7 0.8

PHOTON ENERGY (Ry)

FIG. 6. Two-photon ionization cross section of the 5p shell
of Xe. ( ), Hartree-Fock independent-electron approxima-
tion; ( ———), RPAE nonlinear screening; (. - ~ .), LDRPA
nonlinear screening; (0), independent-electron result obtained
by Mcguire (Ref. 34); (~), MQDT result obtained by Gango-
padhyay et al. (Ref. 35); ()&), experimental point at 193 nm by
McCown et al. (Ref. 45).

Figures 6 and 7 show the two-photon Sp-shell ioniza-
tion spectrum of Xe, for linearly polarized light, calcu-
lated with different approximations. The solid line is the
independent-electron (HF) approximation. The dashed
line is the result of an RPAE calculation including non-
linear screening [Eq. (4), Fig. 1(c)]. The dotted line is
the result of a similar calculation performed with a
local-density basis set (LDRPA). The cross in Fig. 6 is
an experimental result obtained by McCown et al. at
193 nm (0.47 Ry). Finally, the squares plotted in Fig. 6
refer to a calculation of McGuire, using a Hartree-
Fock-Slater type of basis and Green's-function tech-
niques and the solid circles to a calculation of Gango-
padhyay et al. , using multichannel quantum-defect
theory. For this latter calculation, we have represented
the results above the second ionization limit and added
the contributions of the final ionic cores P, /2 P3/p The
ordinates scale in Figs. 6 and 7 is logarithmic and covers
several orders of magnitude; differences between the
cross sections are therefore very significant. The photon
energy is varied from the two-photon HF ionization
threshold (0.46 Ry) up to 0.86 Ry in Fig. 6, scanning the
first excited levels Sp 6s, Sd, 7s, 6d, ss and then in Fig. 7
from 0.98 Ry to 1.40 Ry, describing an ATI (above-
threshold-ionization) process.

In the threshold region, screening effects lead to a
large reduction of the two-photon ionization cross sec-
tion compared to the independent-electron approxima-
tion. The (ab initio) results obtained within the RPAE
(or LDRPA) are in good agreement with the results of
Gangopadhyay et al. , using multichannel-quantum-
defect theory. In this latter calculation, energy levels
and oscillator strengths are taken to be experimental;

E

1n0--

Xe ATI

10 2
1.0 1.2 1.3 1.4

screening effects should be implicitly included in this ap-
proach. In contrast, the calculation performed by
McGuire yields a two-photon ionization cross section,
which, in the threshold region, is higher than the RPAE
result by more than a factor of two. Our HF basis set is
rather technical and chosen so that the RPA treatment
based upon it (bubble diagrams only) is as accurate as
possible. We have performed a similar independent-
electron calculation using a more physical one-electron
basis set (based upon a self-interaction free V ' HF
potential). We then obtained good agreement with
McGuire's results.

The RPAE screening leads to an important shift of
the Sp 'nd resonances towards higher energies (Fig. 6)
and to a redistribution of the strength of the Sp 'ns and
Sp 'nd resonances. Moreover, the resonances show up
in the partial cross sections. This is due to channel mix-
ing introduced by the screening (see Sec. III C). In this
energy region, the LDRPA calculation (dotted line) gives
an average description of the real two-photon ionization
spectrum. (The LD 5p-ionization energy is equal to 0.62
Ry and there are no bound excited states. )

Finally, above the ionization threshold (Fig. 7), the
two-photon ionization cross section is considerably
enhanced compared to the independent-electron result,
by more than one order of magnitude. This is due to an-
tiscreening effects (enhancement of the efFective field, as
shown in Fig. 5 for co & 1 Ry) and double ionization pro-
cesses. The main contribution to the two-photon ioniza-
tion amplitude comes from the imaginary part of r(co) in
both electron-photon interactions [Eq. (4)]. This means
that two photons are separately absorbed (energy conser-
vation) by two different electrons. This double ioniza-
tion is followed by autoionization [see Figs. 3(d) and
3(e)].

In this calculation, we neglect the spin-orbit interac-
tion of the Sp core. In reality, Xe has two ionization
limits P3/2 Pi/p separated by about 0.1 Ry (0.89, 0.99
Ry). This approximation has two consequences. First,
we cannot describe two-photon autoionization processes
[represented in Fig. 8(a)] taking place between the ion-
ization thresholds (i.e, below 0.5 Ry in Fig. 6). Second,
the energies of the excited states calculated by means of
the RPAE and indicated in Fig. 6 by the positions of the
resonances must be considered as an average over the
different configurations of the core. The disagreement

PHOTON ENERGY (Ry)

FIG. 7. Above-threshold ionization (same notations as in

Fig. 6).
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inhuence of correlation effects in two-photon ionization
of argon. In both calculations in Ar and Xe, the correc-
tion induced by ground-state correlation effects in the
discrete spectrum amounts to about 20—30%. This can
barely be seen in Fig. 10, due to the logarithmic scale;
we are interested in much more important effects such as
double-excitation processes which may enhance (or
reduce) the cross section by more than one order of mag-
nitude.

3. Final state -correlation sects (screening at 2to)

10-2
0.5 0.6 0.7

I y
tl

0.8

PHOTON ENERGY {Ry)
FIG. 10. ( ), RPAE nonlinear screening; ( —.—~ —.),

RPAE linear screening; ( . -), TDAE nonlinear screening
(no ground-state correlation effects); ( ———), RPAE screen-
ing at co and 2'.

to the approximation made in Eq. (4) (independence of
electron-hole pair excitations), the contribution of these
double-excitation processes may be somewhat overes-
timated. In particular, in this approximation, double-
excitation resonances coincide with single-excitation res-
onances. If the Coulomb shift were included, the
double-excitation resonances would be displaced to more
realistic double-excitation energies.

2. Ground state correlat-ion sects

The dotted line in Figs. 10 and 11 is obtained by
neglecting dipole ground-state correlation effects [Figs.
3(b) and 3(c)]. The two-photon ionization amplitude is
evaluated according to Eq. (4), with an effective
electron-photon interaction r(co) calculated within the
Tamm-Dancoff approximation (we keep only forward-
propagating bubbles in Fig. 2),

C„,&,'„(r)(n!«(~)!j)
r(to) =r —g

COJ.~
—CO

(22)

Apart from a slight shift of the resonances, ground-
state correlation effects seem to affect mainly the high-
energy region (Fig. 11); the cross section is lowered by a
factor of about 3 at 1.4 Ry when these effects are includ-
ed. Note that we agree quite well with the conclusion of
Pindzola and Kelly and Starace and Jiang about the

Finally, the dashed line in Figs. 10 and 11 is an ap-
proximate calculation including nonlinear screening and
screening at 2'. The two-photon ionization amplitude is
calculated as in Eq. (7); the wave function

! Ef ) is re-
placed by an effective wave function

! Ef 'D ) calculated
from a HF LS-dependent potential (see Appendix). We
have not done the same approximation for final

! Ep )
states, since we would have had to select either the !

'S )
or !

'D) component (no mixing is possible). However,
the dominant ionization channel is Sp~d ~f, and the
most important effects should be included. The result
obtained, shown by the dashed line in Figs. 10 and 11
shows that these final-state correlation effects are indeed
not very important; the dashed and solid lines are nearly
on top of each other except in the critical antiresonance
regions and in the low-energy part in Fig. 11.

D. Influence of screening
in above-threshold ionization

As we have calculated the two-photon ionization cross
section when the photon energy is greater than the ion-
ization energy, it is of interest to compare the probabili-
ties between one-photon ionization and two-photon ion-
ization. We have then calculated the one-photon ioniza-
tion cross section cr

&
(Mb),

(23)

We use the same notations as before. R& ——r within the
independent-electron approximation; R

~
——r(co), given by

Eq. (12), within the random-phase approximation. In
Fig. 12, the ratio o 2F /o

&
(F= 10 photonslcm s) is

1.5

102

Xe ATI 0.5—

0.0
1.0 1.2 1.3 1.4 1.5

10 2

1.0 1.2
PHOTON ENERG Y {Ry)

FIG. 11. ATI (same notations as in Fig. 10).

1.4

PHOTON ENERGY tRy)

FIG. 12. Plot of the ratio cr2F/o.
&

as a function of the pho-
ton energy. F=10 ' photons/cm s. ( ), RPAE nonlinear
screening result; ( ———), independent-electron approxima-
tion.
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plotted as a function of the photon energy co from
0.98—1.50 Ry. The solid line is the RPAE result [o2 is
calculated by including nonlinear screening, as in Eq. (4),
Fig. 1(c)]. The dashed line is the independent-electron
result. Physically, o-2F/o-, represents the ratio between
the intensities of the second and first photoelectron
peaks, if we assume that the laser pulse is square both in
time and space. This result illustrates again the impor-
tance of nonlinear screening effects in two-photon
above-threshold ionization of Xe. Ionization occurs
essentially via a doubly excited intermediate state, which
recombines.

V. CONCLUSION

We demonstrate that the linear response is not ap-
propriate for describing the dynamics of a two-photon
ionization process. One needs to go beyond it and to in-
corporate the nonlinear response: screening at higher
harmonics of the laser field and especially nonlinear
screening, i.e., screening of all the electron-photon in-
teractions involved in the multiphoton process. These
ideas are supported by a number of numerical calcula-
tions performed in xenon, over an extended spectrum;
from the two-photon ionization threshold (0.46 Ry) up
to 1.4 Ry, above the one-photon ionization threshold.

We compare different basis sets, local-density approxi-
mation and Hartree-Fock, and we obtain a good agree-
ment between the LD-based and HF-based spectra over
a large energy range, except in the discrete resonance re-
gion, where the LDA (or LDRPA) gives an average
cross section. We calculate the 5s-ionization cross sec-
tion and we show that the influence of the 5s subshell on
the total ionization cross section is very weak; this is
mainly due to screening by the other external electrons.
Finally, we discuss in great detail the influence of
different many-electron effects, such as ground- and
final-state correlation, linear and nonlinear screening.

Linear and nonlinear dipole polarization effects [Figs.
3(a), 3(d) and 3(e)] are absolutely essential for describing
properly the dynamics of a two-photon ionization pro-
cess. Although linear-screening effects have been con-
sidered before ' (by using a HF LS-dependent basis
set), as far as we can find, this is one of the first calcula-
tions ' going beyond the linear response and including
in an approximate way double-excitation processes [Figs.
3(d) and 3(e)]. This is done by means of an effective
electron-photon interaction, which must replace every-
where the dipole operator in the usual independent-
particle treatment of multiphoton ionization. At low
photon energy, both linear and nonlinear screening
effects lead to a considerable reduction of the two-
photon ionization cross section compared to an
independent-particle approximation. In contrast, the
cross section is enhanced at higher photon energy, due
to double-excitation processes. The photons are initially
absorbed by two diferent electrons. The importance of
these nonlinear screening effects shows that it would be
of the greatest interest to refine the present calculations
by including the higher-order Coulomb interaction be-
tween the double electron-hole pair excitations and by
taking care of the exchange effects. This would allow us

to get a more realistic spectrum in the high-energy re-
gion.
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APPENDIX

In this appendix, we present different frozen Hartree-
Fock potentials which can be chosen for calculating the
excited orbitals (from the 5p shell). In Figs. 13(a)—13(d),
we have represented all the diagrams involving the
Sp ~n l I intrachannel interaction. The contributions
of these diagrams for the different channels involved (in-
cluding also the 5s-nl 'L channels) are indicated in
Table I. Columns (a) and (b) are direct interaction
terms; R" denotes the Slater integral R "(5pnl, 5pn'1) or
R "(5snl, 5sn'I). Columns (c) and (d) represent exchange
terms; R"=R (5pnl, n'15p) or R "(5snl, n'l5s). We dis-
tinguish the monopole (bo) and quadrupole (b2) parts of
the ladder interaction, represented by Fig. 13(b). In the
following, we shall denote by (a) —(d) the contributions of
the diagrams represented in Figs. 13(a)—13(d), or,
equivalently, the terms reported in columns (a) —(d) in
Table I for each transition. Different choices for the po-
tential can be contemplated, depending how much of the
intrachannel interaction we want to include in the
zeroth-order approximation (in the single-particle basis
set). The usual Hartree-Fock (V ) approximation is
such that

lm

5p

5Pm

5Pm

n'lm'

nlm

(a) (b)

'p, I

Pm'

5Pm

5Pm

nlm

n'lm'

(4)

5Pm lm

sp I5pm

5p n'lm

(e)

FICx. 13. (a) —(d) diagrammatic representation of 5p~nl'L
intrachannel interactions; (e),(f) ground-state correlation effects.
The dot denotes the interaction with the radiation field (ab-
sorption of one photon for Sp 'nl 'P states, two photons for
Sp 'nl 'D or 'S states).
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TABLE I. Contributions of 5p 'nl 'L and 5s 'nl 'L intra-

channel interactions. {a), (b), (c), (d) refer to diagrams (a), (b),

(c), (d), in Fig. 13. R (k =0—4) is the Slater integral

R (Spnl, 5pn'1) or R "{5snl,5sn'1) in columns (a) and (b);
R"=R "(5pnl, n'15p) or R "(5snl, n'15s) in columns (d) and (c).

5p ~ns 'P

5p nd 'P

5p~np 'S

5p ~np 'D

5p~nf 'D

(a)

6R
6R
6R
6R
6R

(b)

—R

(c)

—R'
(d)

—,
R'

—R'
6R
—'R
—'"R

5s ~np 'P
5s ~ns 'S
5s nd 'D

2R'
2R'
2R'

—R
—R
—R

——'R'
—R
——,

'R'

—R'
2R'
—R
5

(nl
~

V
~

n'l ) =(a)+(c) . (A 1)

(a) and (c) can be read in Table I for the different chan-
nels involved. In contrast with the ground state, the
self-interaction terms in Figs. 13(a) and 13(c) do not can-
cel so that an excited electron interacts with N other
electrons (in the case presented in Fig. 13, N =6 is the
number of outer p electrons). A more "physical" single-
particle potential for the excited state can be built by el-
iminating these self-interaction terms. This potential
( V ') is defined

(ns, nd) is defined as follows:

(nl
~

V
~

n'l ) =(a)+(b)+(c) . (A3)

The complete direct intrachannel interaction (ladder
diagrams) is included in the zeroth-order approximation.
On the other hand, the self-interaction term in Fig. 13(c)
is not canceled and the remaining intrachannel interac-
tion is (d). The reason for which the exchange self-
interaction is not removed is due to a bad numerical
cancellation of the self-interaction in ground-state corre-
lation diagrams represented in Figs. 13(e) and 13(f). The
sum of the contribution of these diagrams [(e)+(f)] is
closer to (f) than to (N —1)/N(f). Treating the forward-
and backward-propagating bubbles on the same footing,
it is then a better approximation to keep the full interac-
tion (d) and (f) in the RPA expansion [neglecting (e)] and
therefore not remove the exchange self-interaction in the
potential.

The main difference between an RPAE calculation
based upon a V ' potential defined in Eq. (A2) and an
RPA calculation based upon this potential V [Eq. (A3)]
is that in the latter case, interchannel ladder diagrams
are not included. However, we have evaluated these dia-
grams and found that their contribution is negligible
compared to interchannel bubble diagrams.

Finally, we may choose to include completely the in-
trachannel interaction in the zeroth-order approxima-
tion. The V ' HF-I.S potential defined by

(nl
~

V '
~

n'I ) =(a)+(bo)
(nl

~

V 'LS
~

n'l ) =(a)+(b)+(c)+(d) (A4)

+(c)+1/N (d) . (A2)

Again, (a), (bo) [monopole part of (b)], (c) and (d) are
indicated in Table I for the intermediate and final excit-
ed states of the two-photon transition. In this way, the
self-interaction parts of Figs. 13(a) and 13(c) are approxi-
mately canceled (in average), respectively, by (bo) and
1/N [(d)]. The remaining intrachannel interaction is
then equal to (b2)+(N —1)/N [(d)], and it can be treat-
ed, for example, by the RPAE. The approximation that
we have used in the calculation of the two-photon ion-
ization cross section of xenon for the intermediate states

accounts for the polarization of the shell in which an
electron-hole pair has been created. The infinite sum of
forward-propagating bubble and ladder diagrams [called
Tamm-Dancoff approximation with exchange (TDAE)]
is included in the zeroth-order approximation and most
of the dynamics of the excited system is then "hidden"
in the basis set. Note, however, that, compared to an
RPAE calculation, neither the interchannel interaction,
describing, for example, the mixing of the 5p~np and
Spans channels, nor the ground-state correlation dia-
grams or more generally any diagram involving a double
excitation are included in the V ' HF-LS potential.
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