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We present a derivation of closed-form algebraic expressions for two-body operators in the con-
text of the special-unitary-group approach to complex spectroscopy. The method involves the use

of a graphical representation of the permutational symmetry-adapted irreducible-representation
basis which facilitates the decomposition of the matrix elements into simple factors. The results
aff'ord significant reductions of computational complexity in cases pertaining to higher-than-spin- —'

N-particle systems.

I. INTRODUCTION

The purpose of this paper is to present closed-form ex-
pressions for the matrix elements of two-body operators
in permutation symmetry (S~ )-adapted unitary bases
[bases of SU(n ) 1S~]. The derivation of the matrix-
element formulas is demonstrated with use of properties
of a recently developed' graphical realization of the ir-
reducible representations (irreps). We originally present-
ed this method, a generalization of an SU(2)-based
method of Shavitt, as an alternative to approaches using
either Cxel-fand arrays or Weyl-Young tableaux and ap-
plied it to the evaluation of one-body operator matrix
elements. In this latter regard the present paper can be
viewed as a sequel to Ref. 1.

The domain of application of this theory is in the
study of systems of N particles exhibiting unitary sym-
metry, either U(n) or SU(n) (there is no essential
difference). Fundamental to such studies are the con-
struction of the irrep bases and their tensor operators.
Our approach is a variant of the unitary-group approach

(UGA) and for the purposes of this work we assume that
the reader is familiar with Refs. 1 —3. Nevertheless, we
have attempted to incorporate an outline of the theory
in the paper.

In Sec. II we present a review of the basic aspects of
the irrep construction, graphical representation, and
one-body-operator matrix element factorization tech-
nique. We also describe the two-body-operator problem.
In Secs. III and IV we focus on the cases of so-called
raising-raising and raising-lowering two-body operators.
In Sec. V we illustrate the use of the general expressions
by treating actual cases.

II. BACKGROUND THEORY

In Refs. 1 —3 we presented a method for describing the
irrep bases of N particle systems with unitary symmetry
SU(n) [or U(n)]. In our approach to the unitary-group
decomposition we incorporate explicitly the symmetry
group labels, [p },applied at each SU(m) subgroup lev-
el, hence,

SU(z) (n) &SU(~),(n —1)D &SU~~) (m) D &SU(~),(1) . (2.1)

The N+1 labels [p}:—[p t, l =0, 1, . . . , N; p t &0}
are the integer partitions of N and m simultaneously,
satisfying the relations

N

pip t N, N„=N-—
1=0

(2.2)

and
N

g p, =m, 0&m &n
1=0

(2.3)

where N is the number of particles in the SU(m) sub-
group (with index m & n).

A complete description of an irrep [p }„ofSU(n)tS&
requires a listing of all irreps [p } of SU(m)tS& con-

tained in the decomposition (2.1) organized according to
a lexical ordering which is defined by

N

P (p t, p tt )&0, j—&k, q=01, . . . , N .
I =q

(2.4)

The k —
J, are linkage indices. The step operators S,—are

defined in terms of difference labels [d —}, which, in

Here we have introduced an additional label (j,k) in or-
der to distinguish the various irreps at level m. Further,
the irrep [p } +, k is contained in irrep [p } ~

(expressi-
ble using Clebsch-Gordan decomposition) if and only if
the two [p }'s satisfy

(2.5)
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turn, satisfy

,„*„=[s'}-,, + [~-},,

~
d, ~ ~

& 1, l =0, 1, . . . , N (2.6a)

q q
0& g da &1, —1& g d+, &0, q=0, 1, . . . , N

I =0 I =0

(2.6b)

[5(d,l, 1)—5(d,(, —1))2~—1 .
I=O

(2.7)

v —1

T, B, ,
7=@+1

where the A~, 2„, B and T, factors were defined in
Ref. 1. The graphical representations of these are shown
in Figs. 1 and 2. The definition of each of these factors
can be derived in an algebraic manner, as shown origi-
nally by Beidenharn et al. The use of a graph for
deriving the expression (2.8) and its constituent factors

(2.8)

In other words, in order that [p } &
be contained

within [p } the sets of labels must be related by some
[1}, satisfying (2.6) and (2.7).

A single basis function (basis tensor) is represented, al-
ternatively, by a set of a set of labels, [ [p }}, or, more
compactly, by the set of linkage types, [Tj, defined in
terms of a specific product sequence of step operators
applied to the SU(n) irrep labels, ( II" ~S, )[p }„Iwith

t in [Tj.
The collection of all labels [p} ~ (m =0, 1, . . . , n,

j = 1,2, . . . ,J, the number of irreps at level m), are or-
dered within each subgroup level m according to (2.4), as
well as the accompanying set of linkage indices (k) and
weights for each [p},. This constitutes the distinct
row table (DRT). This idea was presented originally by
Shavitt for SU(2). The same set of labels and linkages
can be represented graphically as nodes and links in an
hierarchical, two-rooted, multiply linked digraph (see,
for instance, Fig. 2 of Ref. 1).

Each node in the graph represents one set of labels

[p } ~. while lines joining nodes represent linkages
[d —},. Thus the graph and the DRT are isomorphic
constructions. In particular, a single basis function is
represented by a traversal from the node labeled [p }„
(head node) to the node labeled [0} (tail node) along the
existing links, proceeding directly from level I to m —1

in each case. Furthermore, the graph topology can be
manipulated so that it conveniently conveys the same or-
dering principle established for the DRT with respect to
(2.4), namely the node for [p } ~

is to the left of the node

[p} k for j &k in a two-dimensional planar projection.
It is also possible to construct the graph in such a way
that the linkages between nodes at successive levels have
definite and unique geometric properties, thereby making
them immediately useful as identifiers of specific linkage
types.

In Ref. 1 we deduced factorized expressions for the
matrix elements of the elementary SU( n ) generators,
E„For the case .p & v (raising operator),

1, A

FIG. 1. Graphical representation of an SU(n) generator ma-
trix element. For p & v all nodes in [T') are identical or to the
left of those in [TJ Subgra. ph factors arising in the decomposi-
tion of Eq. (2.8) are indicated.

simplifies the process, however.
It will prove useful to describe the properties of the

fundamental subgraphs A„and B, in some detail. The
subgraphs B„and A„[see Figs. 2(a) and 2(b)] are
represented by three nodes and the lines joining them.
As the subgraphs are essentially inverses of each other
we shall deal specifically only with B„. Considering
states labeled [T] and [T'], in order that B„be a
nonzero matrix element subgraph the nodes [p } and

[p}& &
and [p}& and [p'}„&must be linked by valid

step operations according to (2.5). Further, the nodes

[p }„,and [p'}„,must satisfy the following condi-
tions, namely, for a unique A,„&, referred to as pivot in-

dex,

FIG. 2. Subgraph representation of nonzero factors (a)
B„(~„ I ), (b) 3„(k„), and (c) T„(A,„,A.„,) showing their
graphical decompositions. Nodes and links are labeled indicat-
ing that for solid lines it is necessary that [p }„~——[p }„+ [d }„[p'}„=[p }„—b,„,and so on.
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(2.9a)

I =0, 1, , N (2 9b)

Ip'jm
m I=432 I 0

(p)m43210 "m

The verification of (2.9) is achieved referring to Weyl-
Young tableaux (see Fig. 5 in Ref. 1). A subgraph which
satisfies these nodal relationships, and hence is nonzero,
has all links drawn as solid lines, otherwise no connect-
ing line is drawn. The subgraph B„will also be written
in the form B&(A.& ~) by which we indicate that the la-
bels required to evaluate the subgraph are {pj„, {p j„
and {p'jz &

——{pj„~—b, ~ . Similarly, for A„(A,„) we

use labels {pj„, {p'j„=[pj„—bq and {pj„
The subgraph T is comprised of both A, and B sub-

graphs. This is shown in Fig. 2(c). For the T„sub-
graphs valid links must exist between nodes [p j, and

[p j, , and their primed counterparts. Relations (2.9)
and (2.10) must apply for both p=w and ~—1. These
subgraphs can be written in expanded form

T,(A.„A., i)=B,(A., i)A,'(k, ) —A, (A.,)B,'(A, , t) .

(2.10)

9
8
7
6
5

3
2
1

0

I 21 3212122
1 2022
I I 1I211

I I I1 1I
II IIO I I
OI2 OI0
0 I OII OI0001 000000

I=O I 234
1 1 22@4
2SOS3457
O8
s Qe

6 8
7 9
8
9

21 32
2 I 222022

I I 1 l1 21
1 I 1 IO 2I

I0210 1 1

OII IIO I

01 OIO II0001 000000
((3)

01 2341122(I
2&OO
34 57
~ @68s
6 8
7 9
8

(b)

I
I
4
3
I

P = g g P(p, a; v, t3)E„E
p, v a,P

The generators satisfy the Lie bracket relations

(2. 1 1)

E„„E~p E~ pE„~ =5~ Q—„p 5„pE~~—
so (2.11) reduces to the form

(2.12)

The superscript notation in (2.10) refers to the order of
evaluation of the subgraphs and implies an accumulative
effect on the [p j labels. In the first term in (2.10)
A,'(A, , ) is evaluated (first) using labels {p j„
{p'j,= [p j,—bq and {pj, „. B,(A, , ) is then evalu-

ated (second) using labels [p' j „[pj, , and
{p'j,

&

——[p j, &

—b.q . For the second term in (2.10)
the label sets are {pj„[p'j, ~

and [p'j, ~
for B,'(A, , ~)

and [p j„[p'j,and {p'j, , for A, (A,,).
Relations (2.9) serve as zero or non-zero selection

rules in the evaluation of matrix elements (2.8). Ex-
pressed in terms of the DRT each basis function is a list
of {p j labels, from m =n down to 0. A matrix ele-
ment is nonzero if and only if all labels at all m levels in
both basis functions are identical except for adjacent la-
bels p~ and p&, p(m (v —1, which are related

through (2.9).
An example involving the matrix element of the gen-

erator E2 7 between two such related basis functions of
the irrep [ 1 2 1 3 2 j of SU(9) for a system of 15 particles
is shown in Fig. 3. At each affected level the adjacent
pairs of p labels satisfying (2.10) has been surrounded by
a box. For additional clarification the corresponding
Weyl-Young tableaux have been included.

A two-body operator p in SU(n) can be expressed in
terms of one-body operators (group generators) as a sum
of products, hence

FIG. 3. Distinct-row-table (DRT) and Weyl- Young tableau
(WYT) representations of basis states of the [1 2 1 3 2] irrep of
SU(9), N =15. The states shown produce nonzero matrix ele-
rnents of E27. In (a) the DRT labels which undergo change
are contained in boxes with the A, index given. In (b) the cor-
responding WYT labels are contained in circles.

P= g g P+(p, a;v, P){E„,E
p, v a,P

+ g g [P (p, a;a, v) —P (a,p;v, a)jE„, , (2.13)
p, v a

where [ U, V j = UV+ VU is the (symmetric) anticommu-
tator and the superscripts denote the symmetric (+ ) and
antisymmetric ( —) parts of P. It is seen that P decom-
poses into terms proportional to a generator product and
a single generator. The latter can be evaluated using
(2.8).

For the two-body operator (group-generator product)
matrix elements there will be terms, in general, involving
the change of labels around two pivot points, A,

' and
Choose A, m ( A,~. It follows that

As in Refs. 6 and 7 it is possible to consider a number
of subcases. We consider two general cases, (a) raising-
raising (RR), p &v and a & f3 and (b) raising-lowering
(RL), p & v and a & 13. A reversal of relations
(LLand LR) is obtained by applying Hermitian conjuga-
tion to (2.13). We shall not treat cases such as p, =v and

p =a as these can be easily formulated in terms of num-
ber operators which count the number of particles in
each SU(m) subgroup. As will be shown below each of
these cases can be further broken down into subcases.

The matrix element of a symmetric commutator can
be written as
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&[T'] I(Ep E p) I [T]&

= 2 & [T']
I E,, - I

[T"] & & [T"] I E., I [T]&

[T"l

+ g &[T']
I E~,p I

[T"]&&[T"] I E„ I
[T]& .

I: T")
(2.14)

T2

B'

B2

Each matrix element on the right side is evaluated with
use of (2.8). The problem with this approach is the pos-
sibly large number of intermediate states in the summa-
tion. What we show below is that the matrix element
expressions for two-body operators decompose into mul-
tiplicative factors, each dependent only on nodes ( Ip I
labels) at adjacent subgroup levels.

Finally, concerning phase convention, we assume that
the matrix elements of E„1„arepositive. All phases
are derived from this basic assumption and the Lie
bracket relations (2.12).

III. RAISING-RAISING OPERATORS

The matrix elements of the symmetric commutator
I E&,E p'1 for the cases p & v and a &P can be treated
in three subcases: (i) the disjoint case, v & a; (ii) the par-
tial overlap case, p &a & v&P; and (iii) the completely
overlapping case, p & a &P & v. Subcases can be derived
from these either by changing labels or by using the her-
miticity property of the generators.

The simplest case is (i). Due to the fact that the E„
and E & operate on distinct parts of the basis function
the operators commute. Thus the matrix element can be
written as

E-,p)
I
[T]&

=2&[T')
I Ep I

[T]& I Q &[T']
I
E p I

[T) &
I

", ,

(3.1)

where the ranges 0 to v and v to n indicate that only
those parts of [T] and [T'] within those ranges contrib-

ute to the evaluation of each product term in (3.1), the
remaining parts are ignored. Such cases are graphically
represented in Fig. 4(a).

As we shall show below case (ii) [Fig. 4(b)] is ex-
pressed in the form

& [T']
I [E, E.,pj I [T]&

a —1

=b,g 'b,pA„+ T,
v=@+1

v —1 P—1

+T, B„+ T, B
7 =CX v=v+1

where the subgraphs 3, B, and T, are matrices con-
sisting of graphical elements (Figs. 5 and 6). Note that
in the case of SU(2) expression (3.2) reduces to a form
analogous to one described by Drake and Schlesinger
[expression (31) of Ref. 6].

The matrix subgraphs can be expressed in terms of
, B, and T as

(3.2)

A

(b)
FIG. 5. Graphical representation of B„and A„subgraphs

showing node and linkage labels and sub graphs used in
matrix-element decompositions. Intermediate nodes at level
p=1 in (a) which are not linked to a node at level p do not
participate in the subgraph evaluation; similarly for level p in
(b).

a-1
II T~
T =+, +1

l, w„

~p.-1

FIG. 4. Representation of (a) disjoint and (b) partial overlap
RR-type matrix element graphs for p&v, a&P cases. Sub-

graph terms appearing in the decomposition of (3.2) are
identified.

Tz
FIG. 6. Graphical representation of T„subgraph showing

node and linkage labels and subgraphs used in matrix-element
decompositions. Intermediate nodes at levels p and p —1

which are not linked vertically to another node do not partici-
pate in the subgraph evaluation.
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T„(k,i,„ i)B'(A, ' i)+B (A, , )T,'(A, „,A, „' i)

T2(X„,A, ', )B'(A,„,)+B (k', )T„'(l,„,X„ i)
(3.3)

and

A„(A,„)T„'(A,', A, , +T (A, , )i,, i)A,'(A, ')

A „(A,')T'(A. , X, i)+ T„(A,„'A,„,) A „'(A,„)
(3.4)

corresponding to Figs. 5(a) and 5(b), and

T„(i,„,i,„ i)T'(A, ', X' i) T (A,„,A,„',)T'(A, ', A,, i)

T„(A,„',A,„,)T„'(l, , A,,' i) T„(A,,', A.', )T„'(A,„,A, , )

corresponding to Fig. 6. Here, (3.3) is the transpose of B„. We added a superscript (T„ i = 1,2) to indicate the order
of evaluation of the subgraph products, and so the order of the particular Ip I labels considered.

Each matrix element of (3.3) has two terms. The first terms apply to the generator product E &E„ the second to
E„„E f3. The opposite is the case in (3.4), however.

Finally, case (iii) can be derived immediately from (3.2) by interchanging v and P, a point which is verified by refer-
ring to Fig. 4(b).

Proof of (3.2) can be obtained in a number of ways, one of which is a direct substitution of the complete algebraic
expressions. Another method uses proof by induction, based on (2.14), in the graphical decomposition of a matrix-
element expression.

In order to present the essential details of the proof by induction consider the special case of the generator product
E„„E„„.Using as base cases v=id+ 1 (one step) and v=@+2 (two step) we find that

p —i n 2 2 I i 2 1 1 2 P P) P&[T'] lE„,„+iE„,„+i l
[Tl&=~~0 ~„"+i[B„+i(~„»„+i(~„)B„+i(~„»„+i(~„)]A2(Z1)Al(Z2) (3.6)

where attention has been paid to the ordering of the subgraph factors. Referring to the row and column matrices as

B„+, and A„, respectively, we have demonstrated the base assertion as shown in Fig. 7(a). Note that some terms in

(3.6) may be zero if the linkages between nodes are invalid. This case is also included in Fig. 7(a).
Next consider

T„+;(A„+i,i,„)T„',+, (A,„'+i,A,„') T„+,(A,„+„A,„')T„'+i(A,„'+i,k„)
~~+' ~~+' ~

' ' ~+' & ' T' (t' A, ')T' (A,
'

A, ') T' (A,
'

A, ')T' (&' &')
p+& p+&~ p p+] p+» p p+& p+&~ p p+& p+&' p

(3.7)

which we arrive at by inspection of Fig. 7(b) or, alterna-
tively, by algebraic manipulation using the fact that
E»+, E»+,E„+i „——+, E„+»+,E»—+ „by (2.12),
and considering all possible terms (subgraphs) which
arise. Identifying the 2)& 2 matrix as T„+] demonstrates
our second base assertion.

The product of T, subgraphs in (3.2) is valid for
several ~=p+1 to ~=p+2, p+3, and so on; thus we
consider it valid for p+1 &v & v —1, namely,

~ I + I

I

( [T']
i E„„E„„i [T]) =b.„"b,io 'B„

(3.2') LLL

An inductive proof is achieved if this case can be shown
to extend to p and v product ranges. For the latter this
follows directly by using (2.12) to yield

E„+&——E„E +&
—E +]E„. Next apply these to

find the relevant subgraphs [Fig. 8(a)]. These graphs are
then decomposed [Fig. 8(b)] and reassembled into factors
[Figs. 8(c)—8(e)] in the order given for the operators.

The graphs shown pertain to one element only of T
and B +]. The remaining elements are obtained by

(b)

FICx. 7. Proof by induction of (3.2) base cases representing
matrix-element decompositions of (a) E» „E~ l „and (b)
E„ 2„E
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shifting the links between intermediate nodes and apply-
ing the same assembly algorithm as shown in Fig. 8. A
similar process is applied to extending the lower end of
the graph, p to p —1, in order to verify the 2„1factor.

In Ref. 1 we showed that the T, factors can be ex-
pressed in all cases as a product of 3 and B, subgraphs
and a factor which is the square root of a simple rational
number [see Fig. 2(c) and Eqs. (3.18') and (3.19) of Ref.
1]. Due to this fact one need not compute A, and B,
repeatedly.

For the derivation of A&, T, and B Weyl-Young ta-
bleaux prove to be useful. In the case of E„+1E„+1
matrix-element expressions we find

B,+ i
——B,'+, (A, ')B„'+, (A,, )

1/2 „-]/Z
1+

(3.8)

xT TT
1

x T TT
1

and

h 1
—2

A,„—1

h")
X

1/2

~ ~' —1+2

1/2

(3.9)

"XLL 1' ")
(e)

FIG. 8. Steps involved in (a) a single term, (b) a decomposi
tion, and (c)—(e) reassembly in the induction step leading to ex-
pression (3.2).

T,= A,'(A,,') A,'(A, , lB,'(X,' i)B '(&, i)

XM, (k,', X2„k,' i, ~', i), (3.10)

where the hook lengths (h and h) were defined in Ref. 1

[expressions (3.10)—(3.14)]. It is to be understood in (3.8)
and (3.9) that the irrep labels used are the [pj labels (no
prime), or bra-state labels. It is also to be understood
that the hook lengths are evaluated using A, (k') for the
pivot index in the first (second) term of each matrix.

In the case of T, we find

(a)X,'

(c)A,,' i &A,,'&A, , &A.,
( e )A,,' & A,,', & A,, & A,,

(b)A, ,' i &A,,'&X,

(d)X,'&X,', &X2, , &X2, ,

( f)k,' & k', & A,,'
For case (a) above we have included the elements of

M as follows:

where the matrix M, (A.,', l,„l,,' i, A,, i) is comprised of
simple factors analogous to those in (3.8) and (3.9). The
general form of M is cumbersome to express since a
slightly different form is required to meet each of the fol-
lowing subcases, namely,

M:, ii=Qi'(a) (a)
h ' h'' (h" +1)(h '&" +1)

A, —1 A. —1 iE —1

(h r2 1)(hr, l +1)hr2 h r i,i— (3.1 la)

M:,2i=Q2'(a) (a)

(h" —1)(h", +1)h', ' (3.11b)

M;i2 ——Q2
(a) (a)

h ' h' (h'i' +1)(h ' ' +1)
A, —1A, —1A. —1

(h ' —1)(h' +1)h" h ' (3.11c)

M:,22 =Q i'(a) (a)

(h r, l +1)(hr, 2 +1)hT, 1 h T i,2—
—1 —1

(3.11d)
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where we define the factors Q
' as

Q(a) [hr 1 hv2 (h~, & +1)(h7, 2 +1)]—1/2
—1

Q" =[h'2' h' (h'2' + l)(h' +1)] ' (3 12b)
A, —1

Note that an additional superscript has been added to
the hook lengths. h" (i =1,2) indicating the use of A, ',

as pivot index.
What is achieved in using an expression such as (3.10)

is an effective factorization of the fundamental A and B
subgraphs. That is, instead of calculating the A and B
subgraphs repeatedly for each element in the matrix
(3.5), one calculates them only once and multiplies their
product by the M, matrix.

Note that in the case of SU(2) the off-diagonal terms
in these matrices vanish, a fact most easily seen by in-
specting two-column Weyl-Young tableaux. As shown
by Drake and Schlesinger the remaining diagonal terms
can be categorized as arising from singlet and triplet in-
termediate couplings. When such matrices are multi-
plied the couplings do not mix; therefore it becomes pos-
sible to write the matrix-element expressions as the sum
of two terms, each of which is a product of scalar fac-
tors. In the case of SU(n), however, it is no longer pos-
sible to categorize the matrix elements in a similar
fashion. Further, these terms do mix on multiplication
of the matrices. Therefore, the 2 )& 2 matrix-
factorization technique which we have employed is the
simplest form into which these expressions can be cast.

IV. RAISING-LOWERING OPERATORS

The treatment of raising-lowering two-body operators
parallels that of raising-raising products except for one
important difference and that pertains to the diagonal
matrix elements. We shall deal with these issues below.

Considering the commutator [E„„,E &] for p&v
and a &p we have the cases (a) disjoint, v &p; (b) partial
overlap, p&p(v&a; and (c) complete overlap,
p&p&a &v.

The disjoint case is derivable from (3.1) by exchanging
primes between the primed and unprimed labels and sub-
sequently taking the Hermitian conjugate of the matrix
element of E & See Fig. . 4(a) also.

It is worthwhile noting that each application of an ele-
mentary generator E„» on a bra state results in shift-
ing a node (at level @=1 of the graph) to the left
(E&„& shifts a node to the right. ) For any overlapping
region contained in products E„E ~ there must be, in
general, products E, ,+,E,+, , (for r in the overlap re-
gion). Thus, three instances can arise at each level,
namely (i) [p' J & [p J [Fig. 9(a)], (ii) [p'] & [p ) [Fig. 9(a),
with interchange of primes and no primes] and (iii)
[p'] = [p J [Fig. 9(b)]. Whenever (iii) holds in the over-
lap region we refer to it as a diagonal subgraph. Fur-
ther, for each set of nodes in the overlap region there are
two associated pivot indices when [p'[&[p [. We refer
to these as A,

+ (right shifting) and A. (left shifting) and
we find [p j —b,

& & [p J & [p J+b, (similarly for [p'J.)

For the diagonal subgraphs it is also to be noted that the

(b)

(c)

FIG. 9. One-step RL-type matrix-element subgraphs for (a)
[p'J„& & [p J„& and (b) the diagonal case, [p'[„~——[p J„
Cases (c) and (d) represent subgraphs occurring in an overlap
region for two-step matrix elements.

= A~o '5"A„
~=@+1

v —1

xAp +f', B, (4.1)

In this notation the prime on T and 8 factors indicates
interchanging primes and no primes on the [p] labels.
The factors A~, f'„and k are represented in Figs. 9
and 10 for cases (p=p, a=v), and Fig. 11. Note that
the f', matrix has two possible representations
differentiated by the lexical ordering of labels (nodes)
[p'$ and [p J at levels m =p, and p —l.

~ ~
6y+

(a)

Ep} 4p)

FICx. 10. Representation of RL-type matrix-element sub-
graphs. Case (a) is a 8 subgraph. Case (b) is an A subgraph.

number of pivot indices may be greater than two.
For the case p, & p & v & a the matrix element expres-

sion, as in (3.2), is given as

([T']
~ [E„„,E p'[

~
[T])
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( }](I:}

&)+-

(b)
FIG. I I. Representations of f' subgraphs. Case (a)

fp')- & Ip) m =p p »nd —(» Ip'Ip& IpI p

FIG. 13. RL-type matrix-element graph showing partial
decomposition of mixed diagonal and/or nondiagonal case.

Once again, by virtue of there being two pivot indices
(except for diagonal cases) at each level in the overlap
region these coefficients are matrices (at most 2 X 2).
The proof of (4.1) can be obtained using induction in
parallel to the lowering-lowering case. The base cases
for one-step and two-step matrix elements are shown in
Fig. 9. [The SU(2) analogue of (4.1) is expression (26) of
Ref. 6.]

The remaining cases involve diagonal matrix elements
of operators such as tE„,E „I as well as cases where
labels Ip'j = Ip] at one or more levels in the overlap
region. For the former it follows that A. +=A, =k, for
all p, &r &v —1. Further, as seen from Fig. 9(b), 12, and
13, there will be more than two intermediate nodes, in
general, which arise in the matrix-element decomposi-
tion. Thus, in order to deal with these cases, a di6'erent
approach is necessary.

For simple eases involving pure diagonal matrix ele-
ments ([T']=[T])one can adapt (2.14),

(4.2)

Now, using (2.6), (2.7), and (2.9), one checks for all valid
6i links between Ipj and Ip'I labels at each level. Us-
ing (2.8) and the fact that each term in (4.2) is the square
of a rational root it can be quickly computed.

For complicated cases (large N and n) the search for
and verification of all intermediate states using (4.2) is
too time consuming. Using Fig. 12 as a prototype of
such cases, however, it can be noted that if R intermedi-
ate nodes occur at level ~ and C nodes at level ~—1 in
the overlap region then the subgraph factor for that level
can be expressed in the form of an R &C matrix. Addi-
tional simplification of these matrices can be achieved
through factorization of the fundamental A and 8 sub-
graphs so as to achieve increased computational
efficiency. It is to be noted that the 3

& and 8 terms
are no longer two-element matrices. Similar results hold
for cases involving mixed diagonal and/or non-diagonal
matrix elements as shown in Fig. 13 where

m=Vv.
The properties of the diagonal matrix-element factors

deriving from the involvement of many intermediate
nodes were previously noted in SU(2) as well [see exam-
ples (3.5)-(3.7) of Kent and Schlesinger ].

V. SAMPLE CALCULATIONS

~0 ~0
~ ~ ~ ~

FIG. 12. RL-type matrix-element decomposition for pure
diagonal case. Though not shown explicitly, all matrix ele-
ments are understood to be squared.

We shall now demonstrate the use of the decomposi-
tion techniques which we have derived by considering
several cases of generator products for two diferent ir-
reps. Our purpose in examining these cases is solely di-
dactic and intended to focus attention on a variety of
subcases in addition to the use of the formulas.

The first example is shown in Fig. 14. Two states of
the irrep t 3 0 2 2 0 2 3] of SU(12), N =34, are given. Our
objective is to use these to demonstrate the evaluation of
the matrix element of E5»E5 &]. It is noted first that
Ip ] „=Ip' I, for 0 & r (4 and 11 (r & 12. Further, from
Fig. 14(b), it is seen that all labels agree up to changes
around the pivot positions; two boxes, one for each pivot
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FICx. 14. States used to calculate the matrix element of
E, „Ez && in irrep I3022023] of SU(12)(S34 using (a) WYT
and (b) DRT notation with pivot indices included.

FICx. ?5. States used to calculate the matrix element of
IE59E]'[6I in irrep I1 1021223} of SU(12)LS30 using (a)
WYT and (b) DRT notation with pivot indices included.

(5/4)'
5 =(1/5) (3/4)1/3 (5.2)

The remaining matrix-element terms refer to T for
r=6, 7, . . . , 10. These are represented by RR cases (b)
r=6, 7, and 9, (c) r=10, and (e) r=8, as seen by com-
parison of the pivot indices in Fig. 14(b).

For the T matrix terms we find

position, surround the pairs of changing labels at each
level. At level v=6 the boxes overlap (A6 ——A6+1); this
special case is the only case which applies in SU(2) for
RR-type matrix elements.

From (3.8) and (3.9) we calculate the results
1/2

[(5/4)' ' (5/6)' '] (5.1)11 5X5

5 (15)'"
T6 = —(800) 0 0 (5.3e)

A 7
——(4/9 2/15 1/12 1/11) . (5.5)

After multiplying the terms in (5.1)—(5.3) together,
paying particular attention to the ordering of the ma-
trices according to (3.2'), we finally obtain the matrix-
element value (456 296/50 625)(195/2) '/ .

As examples of RL-type matrix elements we consider
two cases involving the states described in Fig. 15. The
first example concerns the diagonal matrix element of
the operator (EH 7, E& H ) using the primed state Ip'I
This case can be calculated either using (4.2) or by
decomposing a graph such as Fig. 9(b). Taking the
latter approach we find

SH ——(35/12 27/4 10/3 704/135 ), (5.4)

5 X49
9X36X40

(7/5)'
0

—(7)' 0
(125/3)' 0

(26 }&/2 ( 16X 88 )'

980 (33)'"

(99 )1/2

?9= —(256X65

(32)1/2

(49X27)~/2

0
(400/3 )

'

8/7

(5.3a)

(5.3b)

(5.3c)

(5.3d)
and

Multiplying the two matrices gives the result (398/135).
Note the property that each of the elements are the
square of fundamental subgraphs.

For the final example we consider the operator
IE&& 6,E5 9 I using the states in Fig. 15 to determine the
matrix element. The matrix-element graph correspond-
ing to this case resembles Fig. 13. Note that the labels
Ip') = Ip I for m =6, 8 in the overlap region, indicat-
ing the occurrence of diagonal subgraphs. Since it is not
our purpose to compute any specific model we shall not
actually calculate the matrix-element value.

We find 8
&&

——(24/7)', TIo ———1,
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35 ——(8/75)' . Remaining terms are expressed as ma-
trices. In the case of 89 one determines a 1 X 5 row ma-
trix while A6 is a 4X I matrix. The remaining f', ma-
trices are all greater than 2&2, each containing zero ele-
ments in some positions.

VI. CONCLUSIONS

We have presented a method for deriving closed-form
expressions for arbitrary two-body operator matrix ele-
ments in SU(n)tS~ irrep bases. The method is expected
to be of use in cases where the number of particles in a
system is very large or when the spin symmetry is large
or both. The resulting formulas are remarkably similar
to those derived in SU(2) using a variety of ap-

proaches. ' The essential features of the method are a
significant saving in computer storage for the irrep rep-
resentation, a means for displaying and manipulating
matrix elements graphically and a significant gain in
computational efficiency for matrix-element calculations
through the use of formulas which are factorized in
terms of fundamental subgraph products and, at most,
matrices comprised of simple elements.
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