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Analytical Dirac-Hartree-Fock-Slater screening function for atoms (Z = 1 —92)
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An analytical approximation, depending on five parameters, for the atomic screening function is
proposed. The corresponding electrostatic potential takes a simple analytical form (superposition of
three Yukawa potentials) well suited to most practical applications. Parameters in the screening
function, determined by an analytical fitting procedure to Dirac-Hartree-Fock-Slater (DHFS) self-
consistent data, are given for Z =1—92. The reliability of this analytical approach is demonstrated
by showing that (a) Born cross sections for elastic scattering of fast charged particles by the present
analytical field and by the DHFS field practica11y coincide and (b) one-electron binding energies com-
puted from the independent-particle model with our analytical field (corrected for exchange and elec-
trostatic self-interaction) agree closely with the DHFS energy eigenvalues.

I. INTRODUCTION

Quite a number of problems related to atomic structure
and radiation transport can be quantitatively solved in
terms of the atomic screening function P(r). This func-
tion is defined as the ratio between the electrostatic poten-
tial U(r), experienced by an infinitesimal point charge at a
distance r from the nucleus (spherical symmetry is as-
sumed), and the electrostatic potential of the bare nucleus.
Considering the nucleus as a point charge, U(r) can be
calculated in terms of the atomic electron density p(r) as

U(r)= ——+j d r': ——P(r), —Z p(r') 3, Z
r r) r

where Z is the nuclear charge and r & is the greater of r
and r' (the atomic unit system, 6=m =e =1, is used
throughout this paper). Poisson's equation links p(r) and
P(r) through

p(r) = (b"(r) .
4mr

Different approximate analytical screening functions for
neutral atoms have been proposed in the literature. '

Almost all of these proposals rely on the Thomas-Fermi
(TF) statistical model of the atom; only a few exceptions
are based on self-consistent Hartree-Fock (HF) or
Hartree-Fock-Slater (HFS) calculations.

An important application of these screening functions is
in independent-particle model (IPM) calculations of atom-
ic structure. The IPM one-electron orbitals and binding
energies are obtained by solving the Schrodinger equation
for a central potential V(r), giving the average interaction
energy of an atomic electron at a distance r from the nu-
cleus with the nuclear charge and with the other Z —1

electrons. The potential

V(r) = U(r) V,„(r)—
differs from (1) in the term V,„(r), usually referred to as
the exchange potential, which accounts for exchange

V,„(r)= —,'a~ —p(r) (4)

The value of the parameter a~ depends on the procedure
used to derive V,„(r) from the HF theory. If the free-
electron approximation is introduced in the expression of
the exchange energy before variation, one finds a~ ——1

which also coincides with the value obtained in the
derivation of the Thomas-Fermi-Dirac equation (see, e.g. ,
Ref. g). Slater introduced the free-electron approximation
in the HF exchange potential (i.e., after variation) and
found u~ ———,'. As a consequence, with a~ ———,', the eigen-
values of the radial equation have the significance of one-
electron binding energies as in the HF theory (Koopmans'
theorem). We shall adopt Slater's procedure which is
usually satisfactory for ground configurations. It should
be pointed out that Slater's potential (4) is not adequate at
large distances from the nucleus; in that region, the elec-
tron density is very small, and (4) cannot compensate for
the electrostatic self-interaction included in the electrostat-
ic potential U(r). In order to ensure the correct asymp-
totic behavior of V(r),

Latter adopted the following ad hoc prescription:

1
otherwise,

r

effects and removes from U(r) the electrostatic self-
interaction of each electron. The exchange correction is
usually introduced by using Slater's approximation, i.e.,
from the free-electron-gas theory, which affords a local ex-
pression for it in terms of the electron density p(r):

' 1/3
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to compute IPM one-electron binding energies for neutral
atoms from the TF screening function. Latter's prescrip-
tion (6) is usually adopted in HFS self-consistent calcula-
tions.

The HFS approximation, in which exchange effects are
also introduced following Slater's approximation, plays a
role midway between HF and TF models. HFS one-
electron orbitals and binding energies are obtained by
solving the Schrodinger equation for the self-consistent
HFS potential, defined as in (6) with P(r) computed ac-
cording to (1) from the HFS electron density. The HFS
potential is common to all the electrons. This is not so
for the HF approximation where the one-electron orbitals
are obtained (for closed-shell atoms) as solutions of
Schrodinger equations with diferent effective potentials.
Numerical HFS calculations have been carried out by
Herman and Skillman for neutral atoms with Z =1—103.
Their results have been adopted to determine the parame-
ters of an analytical IPM potential by Green, Sellin, and
Zachor. '

Dirac-Hartree-Fock-Slater (DHFS) calculations, '" in
which the one-electron orbitals are solutions of the Dirac
equation instead of the Schrodinger equation, incorporate
the main relativistic efFects on the one-electron orbitals
and binding energies in a natural way. To the best of our
knowledge, no analytical screening functions incorporat-
ing relativistic effects have been proposed up to date, al-

though distortions in the electron charge density and in
the self-consistent potential due to these effects are notice-
able even for intermediate atomic numbers.

In this work we propose a simple analytical approxima-
tion, P, (r) for the atomic screening function depending on
five parameters which are determined analytically from
the results of DHFS calculations. These screening func-
tions, when used with the Slater exchange potential and
Latter's correction (6), provide a simple and rather accu-
rate analytical potential for IPM calculations on atomic
structure. The universal TF screening function, mainly in
the approximate analytical form suggested by Moliere'
which allows us to perform most calculations analytically,
has been extensively used to treat a number of problems
related with interactions of charged particles with atoms,
including multiple scattering" ' and bremsstrahlung
emission. ' Our screening functions, having the same
functional form as Moliere's, are particularly suitable for
treating these problems by improving the Moliere-TF ap-
proach without any additional complexity of the calcula-
tions. The present analytical approximation can be of
great value to improve the description of elastic scattering
events in Monte Carlo simulation of electron transport. '

The analytical screening function P, (r) is described in
Sec. II. Parameters for Z = 1 —92 obtained from the
DHFS self-consistent results following an analytical pro-
cedure described in the Appendix are given. Atomic form
factors and Born scattering amplitudes for structureless
charged particles derived from P, (r) are compared with
numerical results from the DHFS density and from the
other analytical approximations in Sec. III. Finally, Sec.
IV is dedicated to the analysis of the reliability of IPM re-
sults based on these screening functions, including com-
parisons with other analytical IPM potentials.

II. ANALYTICAL SCREENING FUNCTIONS

Screening functions adopted in the literature are usually
based on the TF model and its refinements. The most
elemental TF model provides a universal screening func-
tion satisfying the following differentia equation (see, e.g.,
Ref. 16):

[0ii:(»)'"
PyF(x) = (7)

where

8) ——0.1, B2 ——0.55, 83 ——0.35,
p)=6.0, p2=1.2, p3=0. 3 .

Function (8) differs from the exact solution of (7) by less
than 0.002 in the range 0 &x & 6. A similar analytical ap-
proximation has been proposed by Csavinszki on the
basis of a variational solution of Eq. (7). The approxima-
tion (8) forces the exponential decrease of P(r) for large r
values which results from quantum treatments. This
feature makes expression (8) more reliable for practical
calculations than the exact TF screening function.

The analytical form (8) has also been adopted by Bon-
ham and Strand to approximate the screening function
for Thomas-Fermi-Dirac atoms; in this case the parame-
ters B; and P; are continuous functions of Z which have
been approximated by polynomials in lnZ by those au-
thors. Simple analytical screening functions have also
been given by Gross and Dreizler on the basis of the
variational formulation of the Thomas-Fermi-Dirac-
%'eizsacker theory. Although the screening functions of
Bonham and Strand and of Gross and Dreizler are un-
doubtedly more reliable than the TF one, the scaling
properties of the simple TF theory are lost when exchange
and gradient corrections are introduced. Once we re-
nounce to these scaling properties, self-consistent methods
that are more accurate than the statistical ones can be
adopted to derive analytical screening functions.

Green, Sellin, and Zachor have introduced an IPM po-
tential with the following analytical form:

V (r) = ——[(Z —1)Q(r)+ 1j,r

where Q(r) is a two-parameter screening function

Q(r) = [A'(e "~ —1)+1] (10)

The parameters H and d have been obtained by Careen,
Sellin, and Zachor from a least-squares fitting of the po-

where x =r/b with b =0.885 34Z ' . Accurate fits to
using polynomials in x'~ have been proposed by

Latter and by Gross and Dreizler. Due to the failures
of the statistical model in the regions of large potential
gradients and of small electron densities, the TF screening
function becomes unreliable at small and large distances
from the nucleus.

Moliere' used the following analytical approximation:
3

P~p(r)= g B;exp( P;rib), —
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tential (9} to the HFS potential of Herman and Skillman. "
Alternative sets of parameters, determined by fitting the
IPM eigenvalues obtained with the potential (9) to the HF
eigenvalues and to experimental ionization energies, are
also given in Ref. 6 for Z =1—103. More recently, the
parameters of (9) have also been determined from a varia-
tional procedure in which the total binding energy of the
atom, computed from a Slater determinant composed of
one-electron orbitals, is minimized. It should be noted
that A(r) in (9) stands for the electrostatic screening func-
tion, the diff'erences between (9) and our potential (6) aris-
ing from the different approaches used to introduce the
self-energy (and exchange) corrections.

The DHFS self-consistent calculations provide us with
reliable screening functions accounting for relativistic
effects which are difFicult to be included in statistical or
nonrelativistic self-consistent models. DHFS densities for
neutral atoms, up to Z =92, have been computed using
our own computer code. ' Spherical symmetry is as-
sumed, so an average over open-shell orbitals is performed
to obtain the electron density p(r). Central field orbitals
are obtained by solving the Dirac radial equations for the
HFS potential with Latter's correction [Eqs. (3)—(6) with
&x =—].2

Representation of the DHFS screening functions in a
semilogarithmic plot (Fig. 1) reveals a nearly linear behav-
ior for large radial distances which suggests that they can
be adequately fitted with the analytical form adopted by

Moliere for P~@(r), namely,

3

P, (r)= g A;exp( —a;r) .

The corresponding electrostatic potential (1) is given as
the superposition of three Yukawa potentials and the
atomic density takes the expression

=Z '
p(r)= g A;a;exp( —a;r) .

4mr, .
(12)

In principle, the parameters in (11) could be obtained
by numerical fitting to the numerical DHFS screening
function. To do this, a conventional least-squares-fitting
procedure can be used to select the optimum parameters.
However, proceeding in this way and using a standard
minimization method, different sets of parameters were
obtained from different initial estimates reAecting the ex-
istence of local minima in the function being minimized.
To avoid these uncertainties in the determination of the
parameters, we have adopted the procedure described
below which generalizes a more crude approach previous-
ly proposed to obtain analytical Born cross sections for
elastic scattering of electrons by atoms. '

The quantities

E.„:— r"p r d r= r" +' " r dr
1 „3 I

(n +1)!Z (n +1)! 0

(13)

have been computed from the DHFS density for
—1(n (6. Except for the factor (n + I)!,which is intro-
duced for posterior purposes, R„coincides with the radial
expected values (r"). It can be easily seen that

R ) =P'(0),

Rp=g(0),

R„= f r" 'P(r)dr (n ) 1) .
1

n —1! 0

(14)

Ql
O

To determine the parameters in the screening function
(11), we require the R„values derived from it to coincide
with those computed from the DHFS results for n = —1,
0, 1, 2, 3, and 4. This leads to the following relations:

i4 f(x/+ i4QAQ+ 33(x3—R

AI+ Ay+ 33 ——1, (15)

=R„(n =1,2, 3,4) .

-4
0 3

r (a.u. )

FIG. 1. Screening functions for Ne, Zn, and Th (Z =10, 50,
and 90). The solid curves are the DHFS results. The dashed
dotted, dotted, and dashed curves correspond to the analytical
screening functions (8), (10), and (11), respectively.

Under these conditions it is guaranteed that (i) P,'(0) has
the correct (DHFS} value, (ii) P, (0)= 1 (only two of the
three parameters A; need to be given), and (iii) consider-
ing screening functions as distributions, the four first mo-
menta of P, (r) coincide with those of the DHFS screening
function. This last feature makes Born cross sections de-
rived from (11) to practically coincide with those comput-
ed from the DHFS screening function (see Sec. III).

For neutral atoms, Eqs. (15) can be solved analytically
as shown in the Appendix. However, it should be noticed
that, as the a; values have to be positive, DHFS radial ex-
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TABLE I. Parameters of the analytical screening function P, (r). Elements indicated with an asterisk
have DHFS radial expected values inconsistent with conditions (15).

Element

He 2
Li 3*
Be 4*
B 5'
C 6*
N 7*
0 8*
F 9
Ne 10*
Na 11*
Mg 12
Al 13*
Si 14
P 15*
S 16
Cl 17
Ar 18
K 19
Ca 20*
Sc 21
T1 22
V 23
Cr 24
Mn 25
Fe 26
Co 27
Ni 28
CU 29
Zn 30
Ga 31
Cse 32
As 33
Se 34*
Br 35
Kr 36*
Rb 37
Sr 38
Y 39
Zr 40
Nb 41
Mo 42
Tc 43
Ru 44
Rh 45
Pd 46
Ag 47
Cd 48
In 49
Sn 50
Sb 51
Te 52
I 53
Xe 54
Cs 55
Ba 56
La 57
Ce 58
Pr 59

184.39
—0.2259

0.6045
0.3278
0.2327
0.1537
0.0996
0.0625
0.0368
0.0188
0.7444
0.6423
0.6002
0.5160
0.4387
0.5459
0.7249
2.1912
0.0486
0.5800
0.5543
0.0112
0.0318
0.1075
0.0498
0.0512
0.0500
0.0474
0.0771
0.0400
0.1083
0.0610
0.0212
0.4836
0.4504
0.4190
0.1734
0.0336
0.0689
0.1176
0.2257
0.2693
0.2201
0.2751
0.2711
0.2784
0.2562
0.2271
0.2492
0.2153
0.1806
0.1308
0.0588
0.4451
0.2708
0.1728
0.1947
0.1913
0.1868

185.39
1.2259
0.3955
0.6722
0.7673
0.8463
0.9004
0.9375
0.9632
0.9812
0.2556
0.3577
0.3998
0.4840
0.5613

—0.5333
—0.7548
—2.2852

0.7759
0.4200
0.4457
0.6832
0.6753
0.7162
0.6866
0.6995
0.7142
0.7294
0.7951
0.7590
0.7489
0.7157
0.6709
0.5164
0.5496
0.5810
0.7253
0.7816
0.7202
0.6581
0.5821
0.5763
0.5618
0.5943
0.6119
0.6067
0.6505
0.6155
0.6440
0.6115
0.5767
0.5504
0.5482
0.5549
0.6524
0.6845
0.6384
0.6467
0.6558

2.0027
5.5272
2.8174
4.5430
5.9900
8.0404

10.812
14.823
21.400
34.999
4.1205
4.7266
5.1405
5.8492
6.6707
6.3703
6.2118
5.5470

30.260
6.3218
6.6328

99.757
42.533
18.959
31.864
31.825
32.915
34.758
25.326
40.343
20.192
29.200
62.487

8.7824
9.3348
9.9142

17.166
55.208
31.366
22.054
14.240
14.044
15.918
14.314
14.654
14.645
15.588
16.914
16.155
17.793
19.875
24. 154
39.996
11.805
16.591
22.397
20.764
21.235
21.803

1.9973
2.3992
0.6625
0.9852
1.2135
1.4913
1.7687
2.0403
2.3060
2.5662
0.8718
1.0025
1.0153
1.1732
1.3410
2.5517
3.3883
4.5687
3.1243
1.0094
1.1023
4.1286
3.9404
3.0638
3.7811
3.7716
3.7908
3.8299
3.3928
3.9465
3.4733
4.1252
4.9502
1.6967
1.7900
1.8835
3.1103
4.2842
4.2412
4.0325
2.9702
2.8611
3.3672
2.7370
2.7183
2.6155
2.7412
3.0841
2.8819
3.2937
3.8092
4.6119
5.9132
1.7967
2.6964
3.4595
3.4657
3.4819
3.5098

1.6753
1.8596
2.0446
0.7326

1.0090
1.0533
1.0014
1.1279
1.1606
1.1915
1.2209
1 ~ 1426
1.2759
1.0064
1.1845
1.3582

0.7177
0.8578
0.9472
1.0181
1.0170
1.0591
1.1548
1.1092
1.1234
1.4318
1.1408
1.2619
0.9942
1.1478
1.2829
1.4195
1.5471

0.6814
0.8073
0.8911
0.9011
0.9106
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Element

Table I. (Continued).

Nd 60
Pm 61
Sm 62
Eu 63
Gd 64
Tb 65
Dy 66
Ho 67
Er 68
Tm 69
Yb 70
LU 71
Hf 72
Ta 73
%' 74
Re 75
05 76
Ir 77
Pt 78
Au 79
Hg 80
Tl 81
Pb 82
Bi 83
Po 84
At 85
Rn 86
Fr 87
Ra 88
Ac 89
Th 90
Pa 91
U 92

0.1665
0.1624
0.1580
0.1538
0.1587
0.1453
0.1413
0.1374
0.1336
0.1299
0.1267
0.1288
0.1303
0.1384
0.1500
0.1608
0.1722
0.1834
0.2230
0.2289
0.2098
0.2708
0.2380
0.2288
0.1941
0.1500
0.0955
0.3192
0.2404
0.2266
0.2176
0.2413
0.2448

0.7057
0.7133
0.7210
0.7284
0.7024
0.7426
0.7494
0.7558
0.7619
0.7680
0.7734
0.7528
0.7324
0.7096
0.6871
0.6659
0.6468
0.6306
0.6176
0.6114
0.6004
0.6428
0.6308
0.6220
0.6105
0.6031
0.6060
0.6233
0.6567
0.6422
0.6240
0.6304
0.6298

23.949
24.598
25.297
26.017
25.497
27.547
28.346
29.160
29.990
30.835
31.681
31.353
31.217
30.077
28.630
27.568
26.586
25.734
22.994
22.864
24.408
20.941
22.987
23.792
26.695
31.840
43.489
20.015
24.501
25.684
26.554
25.193
25.252

3.5199
3.5560
3.5963
3.6383
3.7364
3.7288
3.7763
3 ~ 8244
3.8734
3.9233
3.9727
4.0904
4.2049
4.2492
4.2426
4.2341
4.1999
4.1462
3.7346
3.6914
3.9643
3.2456
3.6217
3.7796
4.2582
4.9285
5 ~ 8520
2.9091
3.5524
3.7922
4.0044
3.6780
3.6397

0.8486
0.8569
0.8650
0.8731
0.9550
0.8890
0.8969
0.9048
0.9128
0.9203
0.9288
1.0072
1.0946
1.1697
1.2340
1.2970
1.3535
1.4037
1.4428
1.4886
1.5343
1.1121
1.2373
1.2534
1.3577
1.4683
1.5736
0.7207
0.8376
0.9335
1.0238
0.9699
0.9825

pected values can be inconsistent with conditions (15)
which, in such a case, must be relaxed. The parameters
determined following this procedure for Z =1—92 are
given in Table I. Elements indicated with an asterisk are
those giving DHFS radial expected values inconsistent
with the conditions (15); parameters for those elements
have been determined by setting A3 ——0 and imposing the
four first conditions (15) (see Appendix).

Analytical screening functions determined in this way
agree well with the DHFS results (Fig. 1). Naturally, the
analytical density (12) can only partially reproduce the os-
cillations of the DHFS density associated with difterent
shell contributions (Fig. 2). One may expect that an even
better approximation to the DHFS screening function
could be obtained from a numerical least-squares fitting
using a standard minimization procedure with the param-
eters in Table I as initial estimates. Such a procedure has
not been pursued here because the resu1ting parameters do
not appreciably improve the quality of the fit, i.e., our pa-
rameters lie very near the least-squares minimum. More-
over, as mentioned above, conditions (15), even in the

20 -I Argon ( Z =18)

L
I

LO

r (a. u. )

~ ~seegl
E

FIG. 2. Radial density for Ar (Z =18). The solid curve is
the DHFS density. The dash-dotted curve is the TF density de-
rived from Moliere's screening function (8). The dotted curve
corresponds to the density obtained from the analytical screening
function (10). The dashed curve is the analytical density (12}.
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noncompatible cases, ensure that the elastic Born cross
sections computed from P, (r) practically coincide with
that derived from the DHFS screening function.

500

400-
Tin ( Z = 50)

III. ELASTIC BORN CROSS SECTIONS

The Born cross section for scattering of a fast particle
(which, for the sake of simplification, is assumed to have
unit charge and unit mass) in the atomic field (1) can be
written as (see, e.g. , Mott and Massey" ):

der 4Z F(q)
dn q4 Z

300

2OO

100

I

2

q (a.u. }

where q is the momentum transfer in the collision and

F(q) = j" p(r)4mr dr
o qr

(17)

is the atomic form factor. For the density associated with
our (and Moliere's) analytical screening functions, the
form factor takes the simple expression

FIG. 4. Differential Born cross section for Sn (Z =50). The
dash-dotted and dashed curves have been obtained from the
analytical screening functions (8) and {10), respectively. The
solid curve is the DHFS cross section. The cross section derived
from the analytical density (12) coincides with the DHFS one at
the drawing level.

F(q) 3;a;/(o, ;+q ) .
Z

(18)
120

30)

Expanding the right-hand side of Eq. (17) as a power
series in q, we found

= g( —1)"R q"
n=0

(19)

with the coefficients R„given by (13). Obviously, with
the parameters of our analytical screening function satis-
fying (15), we guarantee that the atomic form factor (18)
and its first derivatives coincide at q =0 with those com-
puted from the DHFS density.

The form factors (18) are compared with the ones de-
rived from the DHFS density and from other analytical
screening functions in Fig. 3 for Z =50. Our analytical
results differ from the DHFS numerical calculations only
for relatively large momentum transfers. Although these
differences might seem important, they do not appreciably

80
a

O

~0

0
0 2

q (a. u. )

FIG. 5. Born differential cross sections for Zn (Z =30). The
solid curve is the DHFS cross section. The correspondence be-
tween the curves and the theoretical mode1s from which they
have been obtained is the same as in Fig. 4; here the cross section
derived from the analytical density (10) is shown as the short-
dashed curve.

1.0, 800

Tin (Z=50)

tV

~ 0.5—
LL

0 400-

LLJ

200-

q (a.u. )

10
k (a.u. }

12 20

FIG. 3. Atomic form factors for Sn (Z = 50). The solid
curve is the DHFS form factor. The dash-dotted, long-dashed,
and short-dashed curves correspond to form factors derived from
the analytical screening functions (8), (10), and (11), respectively.

FIG. 6. Born total cross sections as functions of the momen-
tum k of the incident particle (multiplied by E =k /2) for Sn
(Z = 50). The correspondence between the curves and the
different screening functions from which they have been derived
is the same as in Fig. 4.
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TABLE II. Energy eigenvalues and radial expected values for tin {Z=50) (atomic units). Expt. : ex-

perimental data {Ref. 19). DHFS: Relativistic self-consistent results. IPM: Relativistic eigenvalues

from the analytical screening function. HFS: nonrelativistic HFS calculation. GSZ: derived from the

ana1ytica1 potentia1 {9). Comparison of radia1 expected values from DHFS and HFS densities clearly

show that relativistic effects tend to concentrate the electronic cloud near the nucleus.

1$1/2

2$1/2

2p I /2

2p3/z
3$&/2

3p I!z
3p3/z
3d3/z
3d 5/2

4$1/2

4P I /2

4P3/2
4d 3!2
4ds/2
5$1/2

5P I /2

Expt.

1073.08
164.07
152.73
144.38
34.68
29.84
26.25
18.13
17.82
5.02

3.26

0.88

DHFS

1072.51
163.18
152.91
144.29
31.93
27.68
26.09
18.49
18.16
5.24
3.80
3.51
1.22
1.17
0.48
0.23

1067.64
161.27
149.97
141.57
32.25
27.95
26.34
18.95
17.24
5.16
3.71
3.43
1.18
1.14
0.49
0.22

HFS

1034.54
153.92

144.42

30.04

26.05

18.58

3.53

1.26

0.46
0.22

CrSZ

1042.54
156.44

147.70

30.74

19.36

5.16

3.82

1.51

0.53
0.57

302.20
56.55

629.87

288.59
58.87

701.33

affect the resulting Born differential cross section (see
Figs. 4 and 5) in which only the squared difference

[ I E(q)/Z j weig—hted with q is refiected
The total Born cross section for an energy E of the in-

cident particle, which can be calculated as
T 2

4~ Z2 (sE)'" I
I

+(q)o = ZE 0 q3 z
becomes proportional to 1/E in the 1imit of large energies.
Differences between the total cross sections derived from
different screening functions are evidenced in Fig. 6 where
crE is plotted as a function of the particle momentum
k =(2E)'r . It is apparent that form factors whose
derivatives at q =0 differ slightly, but are otherwise rather
similar, can give quite different cross sections. In particu-
lar, the TF screening function is very unsatisfactory to de-
scribe elastic collisions; this is a consequence of the un-
realistically large tail of the TF electron density.

IV. IPM CALCULATIONS

In the context of the nonrelativistic IPM, atomic prop-
erties are obtained by solving the Schrodinger equation for
the occupied one-electron orbitals. The relativistic IPM
builds on the same grounds except for the fact that the
one-electron orbitals and binding energies are found from
the solution of the Dirac equation. Owing to the spherical
symmetry of the potential, central field orbitals can be
adopted and their radial parts obtained as the solution of
the corresponding radial equations. These can be numeri-
cally solved by using standard numerical methods.

The reliability of our analytical screening functions,
when adopted as the basis for IPM calculations, is

demonstrated in Table II where experimental' and
DHFS binding energies are compared with those provided

by the relativistic IPM with our screening functions [using
(6) as the IPM potential]. Similar agreement is found be-
tween IPM and DHFS orbitals. Nonrelativistic binding
energies obtained from HFS calculations and from the
IPM using the potential (9), with parameters derived by
fitting the experimental ionization energies (corrected for
relativistic effects ), are also shown in that Table.

Table II includes radial expected values (r '), (r ),
and (r ), computed from the DHFS and HFS self-

consistent densities. There are clear differences between
the DHFS and HFS expected values arising from relativis-
tic corrections which tend to concentrate the electronic
charge near the nucleus. As a consequence, the DHFS
screening function decreases faster than the HFS one with

increasing radial distances. These relativistic effects on
the screening functions cannot be accounted for if relativ-

istic corrections are introduced perturbatively from nonre-
lativistic one-electron orbitals.

V. SUMMARY

Analytical screening functions presented here improve
other alternatives previously proposed in three aspects
which can be important in usual applications. Firstly, rel-
ativistic effects distorting the atomic electron cloud, and
also the nuclear screened potential, are directly introduced
through the DHFS model. This fact ensures reliability
for large atomic numbers. Secondly, these screening func-
tions provide cross sections for elastic scattering of
charged particles in close agreement with those computed
from the DHFS numerical density. In fact, the atomic
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form factor derived from P, (r) coincides with the DHFS
form factor for small momentum transfers. Lastly, the
relativistic IPM with the potential (6) derived from P, (r)
yields ionization energies and one-electron orbitals which
practically coincide with the DHFS ones. This IPM po-
tential can be useful in perturbative calculations of atomic
structure and as starting potential in self-consistent calcu-
lations.
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APPENDIX

Equations (15) can be analytically solved in terms of the
screening function parameters. After rather tedious alge-
braic manipulations, the constants A; can be eliminated;
the resulting equations for o.; can be written in the form

R i
—(ai+a2+cr3)+R i(aia2+aia3+(X2Q3)

—R20.'&Q2Q3 =0,
1 —R i(ai+aq+a3)+Rq(aict2+nict3+uqa3)

—R3ctia2a3=0, (Al)

R i —R2(Q1+Q2+as)+Rs(aictz+aia3+aqa3)
—R 4Q &cxpcx3 =0

Thus, the screening function parameters ct; (i =1,2, 3) are
the three solutions of the cubic equation

a +a2a +a~+jap=0 . (A3)

(Rq —Ri)a +(Ri —R iR2)a+(R iRq —1)=0 (A4)

R )
—a2

A) ——
0!)

—0.'2
A2 ——I —A) . (A5)

If the three roots of (A3) are real and positive, the A; pa-
rameters can then be computed from the first three equa-
tions of (15).

In certain cases, mainly for low atomic numbers, condi-
tions (15) are incompatible with the DHFS radial expected
values R„, i.e., either the determinant of the coeScient
matrix of (A 1) is zero or some of the roots of (A3) are
complex. In these cases we proceed as indicated in Sec.
II, i.e., we set A3 ——0 and impose only the first four condi-
tions (15)—the screening function so obtained coincides
with the one proposed in Ref. 18 to describe elastic
scattering of electrons by atoms. Proceeding by the same
steps as in the above calculation, it is easy to show that n ~

and a2 can be obtained as the solutions of the quadratic
equation

These equations can now be solved for the quantities

a~ ——cx ~+a2+a3
a ~

——a ~aq+ o, ~+3+(xp(x3

ap =D]lxpo!3

(A2)

It should be noticed that, even when Eqs. (15) are in-
compatible, the form factor (18) and at least its three first
derivatives coincide at q =0 with those computed from
the DHFS self-consistent density.
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