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Interference effects in electron-ion recombination. I. Resonance channels only
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The Feshbach formalism is employed in investigations of the effects of interacting and/or over-

lapping resonances on dielectronic recombination. Model systems are considered, and the prob-
lem of singly charged target ions is discussed. Small reductions in dielectronic recombination
cross sections are found to occur for these systems. Comparison is made with the results of mul-

tichannel quantum-defect theory calculations.

INTRODUCTION

Although the effect of overlapping resonances on the
cross section for dielectronic recombination (DR) has at-
tracted some attention' in the past, it has been
thought that overlaps occurred but rarely and that a de-
tailed treatment was not generally needed. It is only re-
cently that this subject has begun to seem of a more
practical significance.

Of course, it is almost always true that overlapping
resonances will intrude into DR calculations if very high
Rydberg states (HRS) are included for the captured elec-
tron, i.e., in those doubly excited states for which the ra-
diative rate is much larger than the Auger rate I „~~I,.
But these cases are usually of only small importance in
the calculation of a total DR cross section (a ), for
singly or few-times charged ions. For large target
charge (Z~) one may find cases for which I „&&I„even
in doubly excited states which do not include a very
HRS electron, e.g. , for intershell transitions, where

I, ~Zz while I, ~Z~. However, at large Zz, captures
to very-low-lying states usually dominate the total 0.

so that the effects of overlapping resonances involving
even moderately HRS's can often be neglected. Reso-
nances involving captures to low-lying states are usually,
although now always, well separated.

Lately, the importance of the enhancing effects of ex-
trinsic electric fields (F) on cr for low to moderate Z~
ions has been discovered. ' These effects, the ex-
istence of which had been suggested earlier, ' ' arise
mainly from an electric-field-induced mixing of HRS s of
fixed principal quantum number n, but different orbital
angular-momentum quantum number l. The mixing is
such that states evolved from large l, which play essen-
tially no role in DR at F =0 (since for these, I, =0), can
make contributions to cr comparable to those of states
evolved from small l. The overall effect of the mixing is
that the number of states "accessible" to DR is in-
creased. However, as a consequence of this increase in
the number of participating resonances, the probability
of encountering an overlap, at any electron beam energy
(e, ), also increases. Even though it remains doubtful
that, for F & 0, overlaps will be extensive and come to
dominate o (except just below the threshold for field

ionization), it seems worthwhile to recast the DR theory
into a form in which the effects of overlaps can be readi-
ly determined.

The theory now in wide use for calculations of o.

was introduced originally by Feshbach for nuclear-
physics applications, and then later adapted for atomic
scattering problems by Hahn. ' In the following, we

briefly review the Feshbach theory in its usual form, and
then introduce a modification of the notation which al-
lows one to access directly the effect of overlapping reso-
nances in DR. We emphasize that the Feshbach theory,
as originally formulated, already fully encompasses the
possibility of resonance overlaps. ' Our aim here is to
clarify this point, and in so doing, to make the theory
more useful for DR calculations.

An alternate approach to the calculation of o. in-
volves the use of multichannel quantum-defect theory'
(MQDT). The predictions of MQDT have already been
compared with those of the standard DR theory. For
further remarks, see the Discussion section. We note
that interfering resonances have been studied only just
recently for bound states in the continuum, ' and for the
autoionizing states of molecules. The effects of over-
lapping resonances on atomic photoabsorption spectra '

have been considered, using the theory of configuration
interaction with continua.

FORMALISM

We write the Hamiltonian for N+1 electrons and an
ionic core as

H =Ho+D,

where Ho is the Hamiltonian for N+1 electrons in-
teracting with each other via V=+, 1 ( 1 jr,j ), and with

(& &J)
a nucleus of charge Z, via g, (Z, /r, ), and D

ccrc,

. (r, e;) is the electron-photon interaction. Follow-

ing Feshbach and Hahn' we define the idempotent pro-
jection operators P, Q, and R such that 1, =P +Q+R,
where 1, is the unit operator, and PQ = QP = QR
=RQ =RP =PR =0. P projects onto states of N elec-
trons bound, with one electron in a continuum state of
the N electron ion of charge Z~=Z, —N, and no pho-
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tons; Q projects onto doubly excited states of X + 1 elec-
trons "bound, " and no photons; and R projects onto the
ground and singly excited states of X + 1 electrons
bound, plus one photon. The wave function 0 satisfies
the equation

(2)Hq/=H(P+. Q +R )O'=E% =E(P+Q +R )'P

for the total energy E. This may be written instead as
three equations, viz. ,

PHOP+p+ PVQ%'g E+p——,
QHOQ+g+QVP%'p+QDR 4~ =E+g,
RHDR 4~ +RDQ +g E%'~——

(3)

where Vp =P+, 4'g =QV, and Vz —=R 4, and we ignore
here the coupling between the R and P states, mediated
by D. This coupling is not expected to be important for
those HRS's which can most readily give rise to overlap-
ping resonances. The last line in Eq. (3) may be rewrit-
ten in terms of 4& as

%~ ——(E RHDR ) —'RDQ+g =—g~RDQ%'g . (4)

Similarly, the first line in Eq. (3) may be written as

%p ——C&p+(E PHOP) —'PVQ+g =@p+gppvQ'Ilg (5)

upon inclusion of the homogeneous solution +~, i.e.,
(PHQP E)4p=0—. If Eqs. (4) and (5) are substituted
back into the second line in Eq. (3), one obtains an equa-
tion for +g which is

=g i (WARD
i
a)(E —e —(a

i
DRg&RD

i
a)

—(ai Vpg, PV ia))-'(a) Vpe, ) i'

=y i &C,RD ia&Gg. &ai VPep& i', (12)

which is the usual form of the DR probability in the iso-
lated resonance approximation (IRA).

If resonances are overlapping, then we have recourse
to the following procedure. We rewrite Eq. (6) as an ex-
plicit q-component equation, where q is the dimension of
the full Q space, as

(E E)—+g g——( aiDRg„RD
i
P)%'g&+ (a

i
VPC p &

+g(a
i

VPgpPV i P)PgP

and where p (and a) range from 1 to q. Then Eq. (7) be-
comes

g (E—E —(a
i

——DRg~RD
i
a )

up to a statistical factor, where integration over incom-
ing electron and outgoing photon momenta is under-
stood. In a region of energies where resonances are
nonoverlapping, Eq. (11) may be written as

PD.=y i
&I HARD ia)&ai Gg ia&&ai VP~p& )'

(E —QHOQ )4'g QDRg~ RD—Q%'g

+QVP(ep+gppVQq g )

with solution

%g ——(E —QHOQ —QDRg~ RDQ

QVPgpPVQ )
'—QVP&bp

(6)

—(a
i

VPg PV
i
a))

X (a
i

VP4 )+ g ((a
i VPg PV iP&

(P~a)

+ (a
i DRg„RD

i
P) )+gP

GgQVP@p . — (7)

Since 4'g ——Q%' is the projection onto doubly excited
states of the exact system wave function 4, then the ma-
trix element of the DR probability amplitude is'

—=Gg ((a
i

VPC&p)+ g A p+g~)

(P~a)

with solution

(14)

M = ( 4~ RDQ qlg ) = ( &~ RDQGg QVP4&p )

with (RHOR E)4z ——0. Ex—panding Q in eigenstates of
QHOQ as

——g( 0 '
) pGg p(P i

VP@p ),
P

(15)

where 0 ' is the inverse of a matrix 0 with elements

Q=yi II p 5p (1—5 p)G——g A p
—. (16)

where

QHOQ i
a&—=E.

I
a&

the DR probability, becomes

PDa

g(&P~RD
t a)+g~

@~RDx a (G. Ggx a')(a'
i vp@p)

a a'

(10)

The DR probability is then

PDa= yy(C „RD
i
a &(n-').,Gg, (P i

Vp~p ) ',
(17)

where, again, integration over incoming electron and
outgoing photon momenta is understood. We refer to
this formula, which describes Q-space mixing, but with
no explicit continuum-continuum coupling, ' as the
"multiple interacting resonance approximation"
(MIRA). The effects of interacting continua, in the con-
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text of both IRA and MIRA calculations, will be con-
sidered in a future publication.

DISCUSSION

PD"(MIRA) =N'A, A„/
~

(E —e)+iN( A, + A„)/2
~

—2mNA, A„5(E —e)/( A, + A, ), (23)

P =A, A„/ Gg / f gg(Q
a P

(18)

having assumed a complete degeneracy in energy, where

A, =——2(a
~

VP Img PV
~

a ),
A„—:—2(a

~

DR Img~RD
~

a ),
and

Gg
—=Gg

One has that

fl p 5p+a(1 ———5 p),
(Q ')

p ——I[1+(N —2)a]5 p

—a(1 —5 p)I /[1 (+N 2)a —(N —1)a ],

a =[i ( A, + A„)/2]Gg

=[i(A, + A„)/2]/[E —a+i(A, + A„)/2], (21)

where, for simplicity, we have ignored the real part of
A p. The double sum in Eq. (18) becomes

gg(Q ')
p

= IN[1+(N —2)a ]

N(N —1)a ( /[1+ (N —2)—a —(N —1)a ~]

=N/[1+(N —1)a]

and the total DR probability for these % states is

(22)

According to Eq. (16), the A p act to couple the Q-
space states to each other through common P-space
and/or A-space states, whenever such common states ex-
ist. Hence, this result describes a kind of configuration
interaction among the Q-space states. In this context,
we note that the Q-space states are eigenstates of QHQ
((a

~

H
~
P) o: 5 p), so that each is, generally, already a

multiconfiguration state. Presumably, the total P
(MIRA) for N states in the Q-space [Eq. (17)] may be ei-
ther greater than or less than P (IRA) for these same
X states, depending on the detailed values of the A &.
The following special cases are of interest.

(i) We suppose that there is no coupling whatsoever
between the Q-space states, i.e., A p

——0, for a&P. This
condition implies, from Eq. (16), that
0 p

——5 p ——(II ') p. Consequently, the DR probability,
from Eq. (17), reduces immediately to Eq. (11). Then, if
the condition A p

——0 (a&P) is again applied, Eq. (12) is
obtained. This is the IRA result, independent of wheth-
er or not the X resonances overlap.

(ii) We next suppose that the A p are identical and
nonzero, for all a and P. This is a particularly simple
case, for which the DR probability is given by

which is the same as the IRA prediction. A similar re-
sult was obtained by Feshbach [Eq. 34 of Ref. 17].

(iii) We suppose again that N states in the Q space are
completely degenerate in energy, the (a

~
VPg~ P V

~
P )

are identical for all a and P, the (a
~
DSgsSD

~

a) are
identical for all a, but now (a

~
DSgsSD

~
P) =0, if

a&P. These conditions model the important case of DR
for low Zl target ions, where the interacting Q-space
states are enumerated by n, the principal quantum num-
ber of the captured HRS electron (a=n &100). Since
radiative stabilization involves essentially the inner-shell
excited electron only, then A„~6„„. Also,
(n

~

VP Img&PV
~

n') ~ 1 l(nn') = 1 ln =1/n', if
1«N «n Re. duction of Eq. (17) follows along the
lines of the preceding example. The total DR probabili-
ty for 1V states is found to be

P (MIRA)=NA, A„/~ (E E)+i(—NA, + A„)/2
~

2

-2~NA, A„5(E —E) l(NA, + A, ) . (24)

Comparison of Eq. {24) with the IRA result of Eq. (23)
shows the following.

(a) If A „«NA, (n ), then P (MIRA)/P (IRA)
—1/N.

(b) If A„=NA, (n), then P (MIRA)/P (IRA)
—1/2.

(c) If A„»NA, (n), then P (MIRA)/P {IRA)—1.
The significance of example (iii) may be understood in

the light of IRA calculations of o. performed for the
Mg'+ target ion, which have shown that, for this ion,
Q-space states are nonoverlapping until values of n —100
are reached. For larger n, one has that A„~ A„states
become completely overlapped, and recourse should be
had to a theory of interacting resonances. Based on the
results of such a theory, and on example (iii), we predict
a reduction of P (MIRA), relative to the P {IRA),
for large n. However, the contribution of the large-n
domain to the total P is small, so that the overall
reduction should be very small. Similar remarks should
apply to the DR probability integrated over energy,
denoted P . Our preliminary calculations of P "
(MIRA) for Mg'+, in I.SJ coupling, have shown this
reduction to be approximately 10%, when n is summed
from 10 to 500, if one assumes complete degeneracy in
energy of a11 interacting states within a subset of states
3pnl of fixed n, and only states of the same n are in-
teracted. This should be close to the maximum possible
reduction in P due to interference. More realistically,
if one allows the nl states to have energies split by the
appropriate quantum defect, then the calculated reduc-
tion is only —1%. We point out that the only restric-
tion on those Q-space states which interact through the
P space is that they be of the same parity and J value.
For example, among the doubly excited states of 12 elec-
tron systems, 3p10d('F3) and 3p10g( F3) may interact,
or 3p 10d ( Pz ) and 3p 10d ( Fz ) may interact.

The question then arises as to whether or not this
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rtant when a static electricreduction becomes more importa
re ion. ' Infield (F ~0) is applied in the interaction reg

t is case, eh e the Auger probability falls off at large n as
A, —1/n, i.e., faster than when F=0. Moreover,
number o s a esf t tes making significant contributions to
is increased re ative o1 t' t the F =0 case, so that the num-
b f overlaps may be greater. That ',T at is the value o n

beyond which A„exceeds A, is smaller when F & 0 than
h F =0 and the number of interacting states is po-

f P (MIRA)tentially larger. Hence, the reduction of
relative to P (IRA) is likely also to be larger. The
overall reduction in the total P is however, still ex-

ected to be small since the n value at which interaction
becomes appreciable is still quite large. More precise
tatements must await the outco pme of ex licit calcula-s a em

remark thattions, w ic weh' h are now performing. We rema
th roblem just discussed has nothing to o wit e
mixin of the eigenstates of QHOQ tnduced by, .g. ,mixing o e

nt l valuesthe mixing oh
' ' of levels corresponding to differen v

fi d n or the mixing of levels belonging to di eren
arate.n values above the Inglis-Teller limit. This is a separa e

issue which still deserves separate consideration.
In order to illustrate the differences and similarities

h MIRA IRA, and MQDT theories, we per-
formed model calculations of P (MIRA) [Eq. ( ],17)
P (IRA) [Eq. (12)], and P (MQDT) (Eq. 6.76 of
Ref. 18). The model was basically an extension of exam-
ple (iii). It involved a single Rydberg series of reso-
nances, and used the parameter values quoted in Fig. a
of Ref. 18, i.e.,
in a.u. ). The principal quantum number was restricte
to the range n10&n & 65, in order to limit computer time

n was notfor the MIRA calculation. Such a restriction was no
necessary wit h M~~DT since this approach "automati-
cally inc u es e1

"
1 d ffects of the entire Rydberg series. is

M DT. Plotsseems to be the primary advantage of the MQ . o s
of P MIRA), P (IRA), and P (MQDT) versus

1 2 and 3, respectively.energy appear m Figs. 1, 2, an

1.2

0.8—

0.4—

—5.0 —40
T

—3.0
I

—2.0
I

—1.0 0.0
x1()

FIG. 2. Same as Fig. 1, but for P (IRA).

From Fig. 2, it is clear that P (IRA) does not, m
eneral, conserve probability.enera,

' ' . In fact, one can show'

a, , (IRA)~2vrn A which can havethat, as E~O, P a
h 1 Hence, the IRA can be a badvalues greater t an . en

m when resonances overlap. On the
DRth hand the curves described by Pot er an,

able exce t inP (MQDT) are essentially mdtstinguis ab, p
the neighbor oo o eh d f th largest n values. This is simply

ofa consequence o t e acf h f ct that we chose to omit values o
workn ~65 from t eh MIRA calculation. Further wor

P (MIRA) and P (MQDT) to be essent&a y11showed P M an
sen for Aindistinguis a e rh ble regardless of the values c osen

an A, . But this is hardly surprising since o e
d M~DT should contain all of the essential

physics needed to correctly formulate this DR mo e
problem.
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dFICx 1 P (MIRA) vs energy, for 9„=2 &( 10 and
=0.2/, all in a.u. , and with 10 & n & 65.a

FIG. 3 P (MQDT) vs energy, for A, = X=2& 10 ' and
A, =0.2/n', all in a.u.
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Whether the MIRA or MQDT will ultimately prove
to be more amenable to actual calculations involving in-
teracting DR resonances still remains to be seen.
Presumably, in the near term, the MIRA will be the pre-
ferred approach when the effects of a limited number of
resonances are dominant, while the MQDT will be more
successful at describing situations in which it is really
essential to consider one or more entire Rydberg series.
Taking a longer view, it seems likely that the MIRA and
MQDT theories will be shown, in detail, to be exactly
equivalent. In this case, there may be little to choose be-
tween them.

Finally, as an example of a case in which Q-space
states interact through both the P and R spaces, we con-
sider the processes

ls+ k, (1, =0)~2s "( 'So )~ ls 2p ( 'P ) + y,
(25)

ls+k, (l, =0)~2p *('So)~ls2p('P)+y,

where 2s *('So) and 2p '('So) are eigenstates of QH&Q
obtained as multiconfiguration states from the single
configurations 2s and 2p ('So). Application of Eq. (17)
to the calculation of P (MIRA) for these processes, in
I.SJ coupling, shows a reduction of —5% for 0 + tar-
gets relative to P (IRA), having taken realistic
multiconfiguration Hartree-Fock values for the energies
of the doubly excited states. If, artificially, one assumes
a degeneracy of these two states, then the A~ values are
such as to lead to a large increase of P (MIRA).
Hence, it is not correct to assume that interactions be-
tween DR resonances lead inevitably to decreases in
pDR

Note a'dded in proof. In the preceding examples, the
approximation ReA &

——0 was applied.
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