
PHYSICAL REVIEW A VOLUME 36, NUMBER 10 NOVEMBER 15, 1987

Adiabatic representation for the three-body problem in the limit
of separated atoms in appropriate coordinates

M. B. Kadomtsev
I V. K.urchatov Institute of Atomic Energy, 123182 Moscow, US.S.R.

S. I. Vinitsky
Laboratory of Theoretical Physics, Joint Institute for Nuclear Research, Dubna, Head Post 0+ce,

Post 0+ce Box 79, 101000Moscow, U.S.S.R.

F. R. Vukajlovic
Laboratory for Theoretical Physics (020), The Boris Kidric Institute for Nuclear Sciences, Vinca,

Post 0+ce Box 522, YU-11001 Belgrade, Yugoslavia
(Received 16 December 1986)

An equivalent operator A removing the Coulomb degeneracy in the second order of perturba-
tion theory for the two-center problem in the limit of separated atoms is found. Eigenvalues and

eigenfunctions of the operator A allow us to construct a complete classification of states of the
two-center problem in appropriate coordinates, a compatible adiabatic basis (CAB). Averaging of
the total Hamiltonian of a three-body problem over CAB results in a system of adiabatic equations
in slow variable A, the hyperradius of the three-body problem. It is shown that asymptotics of
that system of equations is compatible with physical boundary conditions of the scattering prob-
lem.

I. INTRODUCTION

The adiabatic representation of the three-body prob-
lem is widely used in the physics of atomic collisions and
it is well known in literature as a method of the per-
turbed stationary state (PSS).' Recently this method has
been further developed in connection with problems of
mesoatomic physics related to the muon catalysis of nu-
clear fusion. Let us note that a total set of solutions of
the two-center problem of quantum mechanics has been
mostly used as an adiabatic basis. This is due to the
fact that the variables of the two-center problem could
be separated and effective numerical algorithms were
developed for its solution. Replacement of an electron
with a more massive muon, in problems of mesoatomic
physics, increased the role of the nonadiabatic connec-
tion between channels. This resulted in the necessity to
take into account about 1000 basis functions for the pre-
cise calculations of weakly bound ddp and dt's meso-
molecular states. The existence of a great number of
basis functions made possible the correct formulation of
boundary conditions in the adiabatic representation,
which were in agreement with physical boundary condi-
tions of the scattering problem. The calculated cross
sections for low-energy scattering of muonic atoms in
the mixture of hydrogen isotopes showed the reliability
and accuracy of this approach.

Regardless of the definite successes of the standard
adiabatic method, the discussions about the weakening
of the nonadiabatic connection between channels have
been going on for a long period of time. The main goal
of all attempts has been the formation of more economi-
cal adiabatic basis, asymptotically compatible with phys-
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FICx. 1. Jacobi coordinate systems for three particles (abc).

ical boundary conditions of the scattering problem. For
atomic systems of the H, He, etc. , type, the hyper-
spherical adiabatic basis was suggested. The develop-
ment of a molecular hyperspherical approach for meso-
molecular systems was given in Refs. 9 and 10. As was
shown in those papers, the main problem, which had to
be solved in order to get a compatible adiabatic basis
(CAB), was to find suitable coordinates A, r'. These
coordinates, in each of reaction channels, asymptotically
transform into appropriate pairs of Jacobi coordinates
(Fig. l). Then, in the case of slow collisions, the relative
motion of the mesoatom and nucleus in a [(ac)+b] and
b [a +(bc)] channels is described by the exact reduced
mass. In that case the CAB transforms into wave func-
tions of separated atoms. However, in such an ap-
proach, one must solve numerically the two-center prob-
lem with unseparated variables. In recent papers, "' a
hyperspherical adiabatic basis was already used for the
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calculation of energy levels of Ps:—e +e e and HD+.
Standard methods have been used, which do not allow
the calculation of highly excited states of the two-center
problem.

Our starting point in this work is that effective numer-
ical algorithms for the solution of many-dimensional
problems are known. ' Then, it is necessary to find the
classifications of CAB states and the asymptotics of the
solutions of adiabatic equations in the limit of separated
atoms. In our earlier paper, ' this problem was solved
for the case of zero total angular momentum of the
three-body system. Here we are looking for the
classification of CAB in the case of nonzero total angu-
lar momentum. It is shown that in the limit of separat-
ed atoms, states of CAB can be classified by the eigen-
values of operator A. If we take into account adiabatic
corrections, this operator turns into the well-known di-
pole constant of motion A for the scattering of an atom
on a charged particle. ' The muonic angular momentum
in the limit of separated atoms (ac),a=a, b is quantized
on the Z axis, which is directed along the Jacobi vector
R . This vector connects a distant charged particle with
the atomic center of mass (Figs. 1 and 2). Let us note
that in the standard adiabatic basis such a "requantiza-
tion" of muonic angular momentum from molecular axis
Z to Z can be done only after the nonadiabatic connec-
tion is taken into account (cf. Fig. 2).

In the adiabatic system of equations depending on the
slow variable W, which was obtained by means of
averaging the total Hamiltonian over CAB, strong non-
adiabatic coupling in channels e does not exist.
Such strong coupling is the characteristic feature of the
standard adiabatic approach. '

Some residual nonadiabatic weak coupling is propor-
tional to R t)/BA and its origin is in the difference be-
tween the magnitudes of hyperradius % and Jacobi vec-

tor R . This difference is of order O(A '). It has been
shown that the inclusion of this weak coupling, for large
finite %, establishes the magnitude of the Jacobi vector
R in the asymptotics of the component

hatt
of the total

wave function l(t=g, +pb, so that l( is in agreement
with physical boundary conditions of the scattering
problem.

The connection between adiabatic asymptotic expres-
sions and the well-known expression for the scattering
amplitude of charged-particle scattering on atoms in di-
pole approximation' was also established. In that case
the phase shift from the dipole potential is separated ex-
plicitly in accordance with quantum-defect theory. ' '

II. STATEMENT OF THE PROBLEM

A. Hamiltonian

Let us examine the system of three Coulomb particles
a, b, and c with charges Z, , Zb, and Z, = —1 and
masses M„M„, and M, (e =A'= I). Further, we shall
suggest that particles a and b are nuclei while particle c
is a muon and that M, )Mb &M, . In accordance with
the Ref. 9, suitable variables %,r' can be introduced,
which are connected with the standard Jacobi coordi-
nates r„R (Fig. 1) by the following relations:

r'=D( B@)r,/R, A=Re~,
A = [R + (m /M)r, ]'/ =&pR,

where

m -'=(M. +M, )-'+M, M-'=M.-'+M

The components of r' and A are determined in the ro-
tating coordinate system with Z axis directed along
R =R ez. Axes x and y are directed along spherical unit
vectors ee and e~ (Fig. 2). Rotation matrix D(B,N)
performs the transition from fixed XYZ into the rotating
coordinate system xyz and differs from the standard one
only by cyclic permutation of rows. ' The Schrodinger
equation in suitable variables (1) has the forma, a

2M 5 t)A t)JV

X

X

FICx. 2. Rotating coordinate systems xyz and x y z are
defined on spherical unit vectors of Jacobi vectors R= IR B+J
and R = IR B 4& ). The following relations between
angles 0 N y and e+y are valid (Ref. 18j: cosO
=cose cosco+ sine since cos(m —y); cot(N —N) = cose coty
+cote@( sinB/sing); cot/ = coscocotP+cotB(sinB/sing),
where y and g are rotation angles about the z and
z axes.

2m ~' ' M~'
Here h is the Hamiltonian of the two-center problem in
the total angular momentum J=X+L representation;
X= —i[r'V, ] is muon angular momentum with respect
to the center of mass of the nuclei;

I. =e,[(t /sinB)a/ae —r„+cotBZ, ]

+e (it)/aB —Z, )

is angular momentum of relative motion of nuclei;

2J J=X+J +X J++2J,
is the operator of Coriolis interaction; J,=X„
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X+:=e+X=X +i/, e+ =e~+i eq, +.(n, A)= g p,.(n;w)% —'x,.(w) .

J~:=e~.J=J +iJ

Z. Zb+, —ZZb
I
r +r.eR

I I

r rbe~ —
I

r, +rb=l, r, =Mb/(M, +M„), r =M, /(M, +Mb),

dr=A dA p dr'sinBdBd@, p= l+(m/M)(r')

B. Compatible adiabatic basis

Let us take as the adiabatic basis a complete set of the
solutions of the two-center problem (CAB)

h p;(n;A ) =E; (A )p;(n;% )

defined in the region n= [r'6@I with the volume ele-
ment

d n =%'p d r' sinB d 6 d 4
and the normalization condition

=+8/BB + ( i / sinB )8/8@+ cotBX,

are spherical components of X and J. Operators X and
J are expressed through these components with the rela-
tions

,'(J +X +—J X+)+X,',
J = —,'(J+J +J J+ )+ —,'cotB(J —J+ )+J, .

[Here operators J~ differ from standard raising J and
lowering J+ ones: J+ ——e '~J+. The latter are defined
on the unit vectors e+ ——e ' e+.J+ ——e+ J in the coordi-
nate system xyz, which is obtained from xyz by a rota-
tion of angle g about the z axis (Fig. 2). Then the opera-
tor J is given by the well-known formula J
= —,'(J+J +J J+ )+J, .] Coulomb potential energy V

and the volume element d~ are given by

Index a=a, b is explicitly extracted from the set [i ) so
that the orthogonality condition (4) now has the form

~ (t;. I 0,p) =&„&.p=».p= ~ 4. I 4p & (4')

For identical nuclei, additional degeneracy appears as
a result of symmetry of the Hamiltonian h under the
permutation of nuclei P„. In that case, solutions

] are connected with g (even) and u (odd) solu-
tions of Eq. (3) by following standard relations:

P;b = ( l /&2)(P;~ +P;„) .

C. Radial equations

I 8 3 9 3
2M g+2+ + QQ

+ +h,

2
3/2h —3/2 P g +

Q
(P)

2m +2

J —2XJ 3

2M+ ~

Q
' ' = —( 3/2+ r'. Vr') .

Eigenfunctions p; (n;A) of the Hamiltonian h are nor-
malized by the condition (4') with simpler volume ele-
ment

In order to get an adiabatic system of equations over
the slow variable A it is necessary to average Eq. (2)
over the two-center functions p, (n;A). This procedure
can be simplified if we transform wave function 4 to
'0=p R%'. Then total Hamiltonian takes the form

II =Xp'/2IIp —'/2X —'

Here the terms E;(% ) are eigenvalues of the two-center
problem depending parametrically on the collective vari-
able A; [i I is the set of quantum numbers. Due to the
small parameter m/M & I in the Hamiltonian (2), the
motion in the region 0 can be regarded as fast when
compared with the motion over A. This parameter for
the mesomolecular systems is -0.1. Therefore, terms
E; (R) can be treated as effective potentials in which a
slow collective motion of the three-body system occurs.
The existence of two attractive potentials in h leads to
the solutions of Eq. (3), which turn into wave functions
of separated atoms localized near charges Z, and Zb in
the hmit of %~ oo. In that way, asymptotic
classification of these solutions can be given and the to-
tal wave function expressed as a sum

4(n, A) ='p, (n, A)+4b(n, w),
where

dn=A dr'sinBdBd@,

while the total volume element is equal to d~=d J7 dQ.
The adiabatic system of equations for the vector of solu-
tions X = [X, I becomes

d2I ~2ME —V X = g Vpgp,dA P(@a)

where

V p
——2Q p +K p+2M E (R)+, 5 pI,4

2M%'
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D. Asymptotic form of radial equations

h as
2g P (0) V

2m ' M &2

J 2E J-
+p

2M%
3

2M%
(9)

with an accuracy of O(% '), transforms to the Hamil-
tonian of separated atoms (ac) and (bc). ' After the
same transformation, matrix elements in the adiabatic
system of equations become

a2

a%2

K' I= —1 —[(r V' ) +2(r V' )] .

If we pass from r' to r=r' % in the asymptotic region
%~ ao, then the asymptotic two-center Hamiltonian

mb Tb
r~ QP—brb = 1+ COS6 b I'b

Mb R
(10)

for r„R »1 goes into Jacobi vector rb of atom (bc)
(Fig. 1), with the accuracy of O((mb /m )(rb / R)). Slow
variable (Fig. 1), with the accuracy of
O((mb /m )(r„ /R ) ). Slow variable R~ for rb 'R„&&1,

2
1

Rb 'b/pbR =——Rb+ rb — 1+—
2 Rb,

I b 2 Pb Rb

m =M, Mb/(M, +Mb ) is reduced mass of muon in the
(bc) atom, while p& M——, (Mb+M, )/(M, +Mb+M, )

=(M ' —mbMb )
' is the reduced mass of nucleus a

and atom (bc). We further transform variables r and %
to new variables

r~ = /mb Im r, %b, =~mb /m A—:/M /pbbs,

which have a simple physical meaning for J7 »1. Real-
ly, vector r~,

Here scalar product (4') is defined with volume element
dQ„=drsineded@. In the limit of %~ao localiza-
tion of P near its charge Z leads to an exponential de-
crease of matrix elements that connect states of different
separated atoms (ac) and (bc). This means that V &(%)
in Eq. (8) are exponentially small for large % so that the
equations for 7 and 7& are asymptotically split

d2
2

+2ME
d 2

(8')

Therefore, transformation r' ~r =r'A explicitly sin-
gled out the operators Q' 'A '3/BA and J7 E' ',
which are responsible for weak kinematical connection
in channels a and b in the limit of separated atoms. This
connection is infiuenced by the difference between A and
Jacobi vectors R, and Rb (cf. Fig. 1).

=0, (12)

where Hamiltonian (9) takes the form

2 1 0 2 1
2Pb r Pb M ~ gz M ~z Q

becomes equal to the magnitude of the Jacobi vector
R„=R+M, (M, +Mb ) 'rb ——R+(m„/Mb )rb with an
accuracy O((mb /pb )rb /Rb ). After these substitutions,
the following equation for +b in the units e =6=mb ——1

obtained (index N in A~ and r~ and index b in pb is
omitted, in addition):

a' 1 „, 1 a
2p Q+ /l R BA 2@+

III. ASYMPTOTIC OF WAVE FUNCTION
IN THE LIMIT OF SEPARATED ATOMS

3+V+VJ-
2pW

A. Asymptotic form of two-center Hamiltonian

In this work we are interested in the behavior of wave
function %=%, ++b for W~ oo in the channels a and
b. Since the connection between these channels is ex-
ponentially small, it is sufficient to examine asymptotics
of one of the components, +b, for instance. In that case,
it is suitable to state that vector r connects the light par-
ticle with nucleus b:

r=rb% =(r' —ybeR )JY,

p p+ —+p( J J )
2 b

2 z 1 p2

M A M A

Zb Z.V= +Pb I + eg

Zr Zb

R
m PbP= + (rb+YbeR) Pb= PbM mb mb

Here

mb mb
pb = 1+2 rb cosOb+ rb

b

Here l+ ——l +il and p+ ——+ip —p are spherical com-
ponents of mesonic momentum and orbital angular
momentum with respect to the nucleus b. A similar
analysis was made previously in connection with an adi-
abatic study of the negative positronium ion' and
electron-hydrogen and proton hydrogen scattering.
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B. Operator form of perturbation theory
for the two-center problem

Let us now investigate the asymptotics of solutions
P;b(A;A) of the Hamiltonian

The relations (16) permit removal of operator terms of
order A ' in the Hamiltonian (15) by means of isometri-
cal transformation S:

hb hb ——e' hbe ' =h' '+Z, (Z„—1)& '+i[S,h'0']

hbp;b(Q;A) =Eb(A)p;b(Q;A) (13) +( V"'+ V'"W-)+ A.~-2
near nucleus b. We look for the solutions of (13) in the
form

E,b(g) =E( '+ Jy

—(J 2lJ)/(2M/ 2)+( V( )+ V(2) )~

+i[S ( V(1)+ V(1))]~—1+ 1 [S [S h (0))) (17)

y,„(n;X)=q,'"(n)+X-)11")+ (14)

where E,' '= Zb—/Zn and 1ij( ' are the energy and the
correct zeroth-order wave function of atom (bc) with
principal quantum number n, respectively. The expan-
sion of hb for r 'A &~1, with the terms of order A
included, is

h, =h' '+Z, (Zb —1)& '+V"'& '+V' '&

p;b ——e' 4'a, =[1+iS+—,'(iS) )p;b,

if the following condition is valid:

i[S h(0)]+( V(1)+ V()))~ —1 P

i.e., iS = —(u"'+v,'")X-).
As a result, the explicit expression for the equivalent

operator A is obtained:

+(J'—2l J)/(2M%')+ V'"R '+ V"'%
where

2 a Zb
+z b, +

W=W'+W', W")= V'"—V"'U'",

A =(J —2J, )(2M) ' —VJ"'vJ"

—(l+ J + I J+ )(2M) —'+ V,'"
(18)

V =gz—(2) 1 2

M
Zb

2z'
Mb

2
'

a
Mb

—V Ug —VJ U
(1) (1) (1) (1)

1 2 2

2 M
2

Mb
2 g + g(0)2

M
3

2p

V 1(1)

2(2) =
b

1
z(p+J +p J+) .

Mb

V(1) [h (0)
u (1)]

where
(16)

The first term in V' ' corresponds to the linear Stark
eff'ect; g=Z, (Mb —l)M„'+Z, ZbMb

' and g =Z, for
Zb —1

In nth shell (i
~

V'"~ j)=(i
~

VJ"
~

j)=p, so that
operators V'" and V&" can be represented in the form

C. Dipole operator for the two-center problem

Eigenvalues and eigenfunctions of the equivalent
operator A describe the true corrections E' ' in expan-
sion (14) and true zero-order wave functions g( ' of
Hamiltonian hb. The operator A was calculated earlier
in our work

A = —— gA, + —1 — (-,'n +4),0 3 n 1 3 2 1, 2

2Zb ' 2P 2 2P,

where 2, and I are the z projection of the Runge-Lenz
vector and the squared value of the (bc)-atom orbital an-
gular momentum, respectively. The calculation of the
equivalent operator A is simplified because in the nth
shell the relations of the type

V "u=[h' ', u]=h' 'u —uh' ' — h

(1)
U

UJ
(1)

r 2 +2zg(0)
b Z

1 i—(r+J +r J+),
b

r+ =+ix —y .

= —U V'", ya/az = —zayay,

etc. , are valid. With these relations in mind, it is easy to
obtain that

VJ "u ' "—V' "v~"———[ V" ', u
' "]= z (J —J )+iz (J +J )

ax ay

= —2VJ"' —— (l+J +l J+ ),
M

V(1)u(1) ) [ V(1)u(l)] (J2 2J2)
b
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By means of the relation mb/pb ——mb/M —m&/Mz, we
finally find ~mmJ

1/2

16m.(1+5 0)
[( —1)-D.'. (e,e, q1)

A =(2p) '(J —I+J —1 J+ —2J, ), (20)

i.e., in the second order of perturbation theory the true
p reduced mass is established near the centrifugal term.

Let us note that eigenfunctions of the Hamiltonian h

P, (A;A)=(1 —iS)g', '(.Q)=g'; '0, coincide with eigen-
functions of separated atoms (ac ) in the rotating coordi-
nate system x y z with the z axis along the Jacobi
vector R, i.e., 0 =[r,e,$ J. Really, operator

'uJ"= —icoJ = —(co/2)(J+ —J ) corresponds to a
rotation of angle cu =R~R:

since=M, /(M, +M )+x +y =co«1
about the y axis, which is perpendicular to the plane
defined by three particles abc (cf. Fig. 2) (in the standard
approach, such rotation can be performed only after the
nonadiabatic connection is taken into account [formula
(182) in the review article ]) and A 'u'" transforms r1v
into the Jacobi vector r according to (11).

+aD (@,e,qr)]

of Coulomb parabolic functions ' q1'„'„(p,v), p=r+z,
1 2

v=r —z in the rotating coordinate system xyz (Fig. 2) in
the representation of total momentum J. Here, m J is
the projection of momentum Jz on the Z axis of fixed
coordinate system XYZ, A, =o( —1) is an eigenvalue of
the inversion operator P„,:(R~—R, r~ —r), cr =+1
are eigenvalues of the reflection in the yz plane operator
P, : (y-m. —y). It is easy to prove that the operator A
commutes with time constants of motion J, Jz, and
P„,. Then, eigenvalues A; and coefficients a„' can ben2

found from the secular equation
min (J n —1) n —m —1

[ ( n, n 2 m Jm JAlA
l

n , ', n '2m 'Jm JA).
m'=(1 —a)/2 '

pn2—

—A,5,5 ]a', , =0,
D. Eigensolutions of the dipole operator in parabolic

coordinates

y(01(~ )

min( J,n —1) n —m —1 Jm
a„' g„„' (0),

m =(1—o )/2 n2
——0

(n) =q2'„,'„, (1M, vm (e,e, q ), (21)

We shall look for the actual zeroth-order functions
of the operator A in the form of the linear combina-(0)

tion

where i = [JmJonq~, . values q number in increasing or-
der the solutions A; of the secular equation for fixed
Jm Jk,n. In the case of J)n —1, the number of roots of
Eq. (22) is equal to n . Part of them, n (n +1)/2 have
parity A, =+(—1), while for the rest of them parity is
A, = —( —1) . The latter are degenerate with states of op-
posite parity in the limit of separated atoms. So we get
that there exist n (n + 1)/2 nondegenerate roots of (22)
for fixed JmJn [standard (2J+1)-fold degeneracy mJ
remains]. The relations, which are necessary for the
solution of the secular equation (22), can be easily com-
posed from the known matrix elements

(nln2m
l
a, I

nln2m ) (n2 nl)
n2n 2

(n1n2m
l

1
l
nIn'2m') =5 ~ [ —,'[n —1+m —(n1 —n2) ]5,—[(n2+1)n1(n1+m)(n2+m +1)]' 5,

[ 2n(1n+1)( 1+m+1)(n2+m)]
2' 2

(n, n2mJmJA.
l 1+/

l n, n2+. 1 m —1 Jm~l, ) =[(n2+1)(n, +m)]' y

(nn 2mJmXJI I+J—
l
n1+ 2m J~) [( 1+ )( 2+ )] y,

(n1n2mJmJA.
l

1 J+ l
n1n2 —1 m +1 JmJA ) =[n2(n1+m +1)]' y +1,

(n1n2mJmJA,
l

I J+ l
n1 —1 n2 rn +1 JmJA) = —[n, (n2+m+1)]' y +1,

( n, n 2 m Jm JA.
l
J —2J,

l

n ', n zm
'Jm & k. ) = [J(J + 1 ) —2m ]5,5

y 1
——[1+(&2—1)5 1][(J—m+1)(J+m)]'~2,

+1=[1+(&2—1)5 0][(J+m +1)(J—m)]'~2,
JA, JA. Jg

Ppp =Pp] =&10=0 for o. = —1 .
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so that the respective equivalent operator A=2pA+E'' '

has the form
A= —3 @gal, +L (23)

Zb
where

L =(J—I) =J —1+J —I J+ —2J, +l
is the squared value of the total orbital angular mornen-
tum of nucleus a relative to the atom (bc). Eigenfunc-
tions )((( ' of the operator A can be obtained from the
secular equation (22) with the substitution of A with A.
Averaging (12) over these functions leads to an asymp-
totic system of equations, which allows us to find X,b(%)
with the accuracy of O(% '):

2+2pE —V;;(W) X;(,(W)= g Q
'

XJI,(%),

where
a',"=-,'&O,'"

~

~b"', "ii ~,'"&

) (E(0) E(0) )( q(0)
~

r 2
~

q(0) )

V;;(A)=2p[E„( '+Z, (Z& —1)% ']+A;%

(24)

The system of equations (24) can also be obtained
from the Schrodinger equation for three particles in the
Jacobi variables R(„r(, (cf. Fig. 1)

1 9 (o) Z.
~
Rb+(M), —1)M(, 'r(,

~

Zg Zb L2+, + 2
E%'(, ——0 . —(25)

Rb Mb 'rb
I

2v—Rb

The vector rb is given in the coordinate system
with the z& axis along the vector R(, (Fig. 2),
hb

' ————,'5, —Zb/rb, and volume element d~b

=dr&dR& sine&dB&d@(, . The asymptotic form (25) in
I

The solution of the analogous secular equation in the
channel a can be used to complete the entire classifi-
cation of CAB in the limit of separated atoms.

K. Radial equations with weak kinematical coupling
in the dipole approximation

In order to find asymptotics of wave function (12), it is
better to use eigenfunctions of the operator hb

+(2(M& ) 'K( ' which is an explicit part of the Hamil-
tonian in Eq. (12). The equivalent operator K( ' in nth
shell is equal to'

hD h(', ——'+Zg(Z(, —1)R(, +AD/(2pR(, ),
AD ——3(n/Z&)@gal, +L

(26)

The transformation in this equation from Rb to
% =(R(, +)M 'r(, )' with an accuracy of O(R ) and
averaging over exact zeroth-order functions of hD give
the system of equations which coincides with (24).

It may seem, at first sight, that using the natural vari-
ables (1) only complicates the asympototic form (26) in
the channel b, because the weak kinematical connection

()/BW appears. But, this minimal complication is
the consequence of unified description of channels a and
b by means of the total orthogonal set CAB. This means
that the suggested approach is without the characteristic
strong channel coupling difficulty, and that the problem
of the introduction of curvilinear coordinates in the adi-
abatic basis is solved. (The history of this problem can
be found in the review article of Delos. )

Physical boundary conditions
in the adiabatic representation

Let us show now how the physical boundary condi-
tions for the scattering problem in the suitable coordi-
nates can be created. To do that we examine the asymp-
totics of solutions of the system of equations (24) in the
channel i =

~
Jmjanq ). Further, we shall restrict our-

selves to the case Z, =Zb ——1, which is the most impor-
tant in mesoatomic physics. Leaving the main terms in
(24), it is easy to obtaind', 2(i ~r'~i &

2pQ

A;
X;(,(A ) =0,

(27)
r

X,(, (A)= X,(, (%) .
2)L(,

The values i and j correspond to different n; k,
=2p(E —E,' '), E, ,

( '= —1/2n . The following sum rule
has been used:

(0) (0)

J l J

The solution of Eq. (27) can be represented in the form
(k;(I it i j) ((2p&)

the channel b agreed with an accuracy of O(R(, ) with
the equation for the scattering problem of charged parti-
cle a on the atom (bc) in the dipole approximation'

1
, +hD E—% b(Rb, rb ) =0,

2P BRb

g,& =8, sin k;A 1—(i
((
r )i )

2)u%

A;=8; sin kA — + 6;
I

A,
+5,

2k %

2pJY
cos k J7 — +5;A

2k;A
(28)

k, (i (r2( j)X.b = —B, 2'
A,

cos k J7 — +5, , j~i .
2k;%
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Here in the phase 5, the phase shift 5, , which appears because of the long-range dipole potential A,A, can be
separated explicitly: 5,. =5, +5, , in accordance with quantum defect theory. ' The explicit expression for 5, is given
in the Appendix. The scattering phase shift 5; and amplitude B; are obtained by means of a numerical solution of the
adiabatic system of equations (8) with asymptotic conditions (28). Numerical algorithms were developed in the pa-
per. Using the completeness of the CAB, the following asymptotics of total wave function P in channel b is valid
[with the accuracy of O(A ')]:

q, (n,x)= qI"(n„)x„(w)+ g p,'"(&,A', ,(&) & '

j (&i)

If k, rb (&2@A,

4 (A,R)=A 'g'
, '(II ) sin k,

2/l
+5; B; =A 'fI '(Qb)sin k;Rb — +5, B,

Therefore, we have shown, that the weak kinematical
connection in Eqs. (24) leads to the establishment of the
magnitude of the Jacobi vector Rb=A rbl(2pJP) [cf.—
Eq. (11)] in the asymptotics of the total wave function (5)
for large, but finite values of %. This means that the
asymptotics of the solutions of the adiabatic system of
equations in suitable coordinates are in accordance with
physical boundary conditions (29) of the scattering prob-
lem in channel b. It is evident that in channel a the
physical boundary conditions are also satisfied because
natural variables (1), in that case, transform into the
respective Jacobi pair R„r, (cf. Fig. 1).

IV. SCATTERING AMPLITUDE
IN THE DIPOLE APPROXIMATION

The possibility of a suEciently simple establishing of
physical boundary conditions with CAB is connected
with the fact that the finiteness of the mass of particles a
and b is taken into account from the beginning, contrary

to the standard approach. ' As a consequence of this,
for the concrete scattering problem, it is necessary, to
calculate the terms and wave functions of the two-center
problem in suitable coordinates for every set of masses
M, and Mb. From this point of view, our approach is
an apparent development of the hyperspherical adiabatic
method, suggested in papers for the description of
helium-type systems with an infinite mass of nucleus.
Phases 6; and amplitudes B;, obtained on the basis of a
numerical solution of the adiabatic system of equations
(8) with asymptotic condition (28), can be used for the
calculation of low-energy cross sections for scattering
processes in three-particle systems.

For inelastic atom ion scattering with changes of
atomic orbital angular momentum,

~
nlmi)~

~

nlm&),
phases and amplitudes are known, 6, =6, , B, =1, if we
are restricted to the dipole approximation. ' This simple
example permits us to demonstrate the connection be-
tween adiabatic asymptotics and the scattering ampli-
tude for these transitions:

+bk„& (R&,rb)= g .g'„' (rb)[51&5 . e '+Rb 'e f„& „I. (N, N)] as r& 'Rb 00.
l, mi

Here unit vectors N=k/k and N=Rb /Rb characterize directions of incoming and scattered waves, respectively. The
quantization axis for orbital angular momenta is directed along vector N. Then, the scattering amplitude for the tran-
sition of atom bc from the state

~ nlmi ) to the state
~

nlm&) can be represented in the form'

J,mj, q

Values 5~(J,k)=5; +(m/2)J are eigenphases in the A
Jmjk, qrepresentation, i =

I Jm Jcr nq ); P„& (N) is the complete
I

set of functions on unit sphere

(N)= g UJQ(q
~

lL)&L 'I &L (N)
L, mL

which defines the eigenfunctions of the operator A in the
fixed coordinate system:

q';"(rb, N)= y q'. /', (rb)y. i ', (N) .
I, mi

The coefficients UJ~(q
~

1L) are connected with the solu-

tions a„' of the secular equation for A (22), by means

of the orthogonal transformation
min(I, J) n —m —1 Jm n

UJg(q
~

lL) =
m =(1—a )/'2 n2 ——0
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where

J —l —I
Gu ( 1)i+ I+o ( —1) Ci.o

[2( 1 +5 0)]'~

is the Chang-Fano matrix. This matrix connects the
angular wave function in the fixed XYZ and rotating
xbybz~ coordinate systems (Fig. 2), while Tarter's matrix

3„&' ' connects Coulomb spherical and parabolical func-
tions. ' This transformation is characterized by total

Jmjonq
parity A, =( —1)'+ so that the necessary a„are
selected according to the condition o. =( —1) ' . The
scattering amplitude for inelastic transitions with
changes of principal quantum number n and for charge
exchange processes can be created without difhculty on
the basis of Refs. 24, 26, and 27.

V. CONCLUSIONS

In this paper we have developed the molecular adia-
batic hyperspherical approach aimed at computing rota-
tional states of three-particle mesic molecular systems
with nonzero J, necessary for the description of process-
es involving muon catalysis of nuclear fusion, which has
been investigated intensively in recent years. The
asymptotics of such states for large A were thoroughly
investigated for the first time. In that way, we extended
the approach of Ref. 12.

For muonic molecular systems it is necessary to per-
form calculations in a molecular frame, and the asymp-
totics of solutions have to be much more accurately
studied. In order to get the asymptotics in this case, we
had to develop an original operator perturbation theory
which is interesting in itself. The result of such a pertur-
bation theory within the O(4, 2) group ' is a simple form
of the secular equation for the dipole constant of motion
in parabolic coordinates.

A substantially new result is the requantization of the
orbital momentum of light particle to the true Jacobi
vectors in each asymptotic channel. In that way we are
able to formulate the correct scattering theory in the
molecular frame.

Therefore we made use here of the molecular variant
of hyperspherical coordinates, which is different from
the variant suggested by Macek and Fano. In our ap-
proach the molecular rotation is separated by means of
simple symmetrized Wigner D functions. As a result,

APPENDIX

The asymptotics of solutions of the Schrodinger equa-
tion with arbitrary dipole potential

, +k,' X, (W)=O

have the form'

X;(A)~ sin(k, %+6 ) as A~ ~ .

For

In the case
= ——,'+iv' ——.'+

I A;
I

of k=kg +l ki

the determination of a hyperspherical adiabatic basis
reduces to the solution of the system of (1+1) two-
dimensional equations. The suggested approach makes
it possible to apply a highly effective finite element
method for the calculation of the molecular hyperspheri-
cal bases. In this way highly excited eigenstates of the
three-body problem could be successfully calculated.

Recently, at the Joint Institute for Nuclear Research
(JINR), Dubna, a new numerical method of alternating
subspaces has been developed. ' Solutions of the two-
center problem on a plane with this method are in pro-
gress and will be published elsewhere.

The compatible adiabatic basis was introduced in Ref.
9. This basis represents some generalization of hyper-
spherical adiabatic bases. CAB can be constructed in
different coordinate systems: spherical, thoroidal, and
elliptic-cylindrical; generalized eliptic coordinates which
were determined in Ref. 28. For example, toroidal coor-
dinates for the three-body problem were introduced in a
recent paper.
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5 = ——+p(k, , kl ),

~~I
P(k, , A, , ) =arctan tanh

2
tan A,iln +argl ( I+i Xl )

(See Table I.)
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TABLE I. Eigenvalues A; of the operator A for the mesomolecule dt„(l =6=m& ——1) in the chan-
nel b: @=11.615 17, g =1, n =4 (calculations were performed by a program written by Abrashevich).

q/J

1

2
3
4
5

6
7
8
9
10

—415.18
—132.41

146.41
421 ~ 13

—413.26
—272.81
—130.44

8.00
148.43
284.81
423.27

—409.43
—268.92
—132.38
—126.50

12.00
146.39
152.49
288.92
427.44

—403.68
—263.09
—126.47
—120.59

6.01
17.99

152.48
158.56
295.09
433.71

—396.01
—255.32
—118.58
—112.72

14.02
25.98

160.59
166.67
303.32
442.06

—386.43
—245.61
—108.78
—102.87

24.03
35.96

170.73
176.80
313.61
452.51

—374.93
—233.95
—96.90
—91.06

36.04
47.95

182.90
188.95
325.95
465.04
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