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Traversal time in quantum scattering
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The quantum traversal time tz is obtained as a matrix element of the classical functional in

Feynman path-integral technique. The properties of t& and its relation to the observables in

scattering experiments are investigated. The general expression for the tunneling time is found in
the one-dimensional case. Various traversal times of previous works are shown to be simply relat-
ed to tn as Retn, Imtn, or

~

tn
~

. Other possible constructions of time parameters describing the
motion of a quantum particle are discussed.

INTRODUCTION

The question of how much time a quantum particle
with a given energy spends in a given region of space has
often been discussed in literature. ' ' There are a num-
ber of publications on the determination of collision
times and lifetimes of intermediate states in the three-
dimensional scattering problems. ' ' ' Another group of
papers deals with the time spent by a tunneling electron
in the barrier region, so-called tunneling time. ' '

This latter parameter has recently attracted much atten-
tion, since it is expected to define the character of tun-
neling through time-dependent barriers as well as the
form of image forces and the rate of energy losses in
many-particle tunneling.

In Refs. 2, 4, and 5 the incident particle is modeled by
a wave packet and the traversal time is taken to be the
di6'erence between the times when the maximum of the
packet crosses the boundary of the region. The authors
of Refs. 8, 9, and 12 assume a small magnetic field in the
region of interest and estimate the traversal time com-
paring the spin orientation of the incident and scattered
particles, their method is widely known as the Baz'
"clock method. " In Ref. 11 the tunneling time is defined
as the inverse of some characteristic frequency at which
an electron passing through a time-dependent barrier
starts "seeing" a static potential.

The often discussed contradictions arising from the re-
sults of the above-mentioned works lead one to doubt
whether the conception of traversal time makes any
sense beyond the framework of classical mechanics. It is
clear, however, that a reasonable generalization of the
classical traversal time should exist, when not unique, in
quantum mechanics. The purpose of this paper is there-
fore to define such a quantity in the most general way,
analyze its physical significance, and, if possible, clarify
the controversies of previous works.

In Sec. I we define a quantity tz having the meaning of
the mean time spent by a quantum particle in a given re-
gion of space Q as a matrix element of some classical func-
tional in the Feynman path-integral technique.

In the Sec. II we consider a general relation between
tz and the spin orientation of the particle moving in a
small magnetic field localized in Q. We show that the
spin of the particle is not only turned in the plane nor-
mal to the field, but also acquires a nonzero component
in its direction. These two angles of rotation are propor-
tional to the real and imaginary part of complex matrix
element tz, respectively, while the total angle is propor-
tional to its modulus.

In Secs. III and IV we specify our general approach to
central scattering and one-dimensional tunneling. We
generalize Baz's result to the case when the momentum
rather then the angular momentum of the incident parti-
cle is fixed, and for tunneling we define two complex pa-
rameters representing mean times spent in the barrier re-
gion by transmitted and rejected particles, respectively.
We also briefly discuss the semiclassical limit.

In the Conclusion we compare our approach with that
of other authors and show that various time parameters
of Refs. 1 —9 and 12 are simply related to the matrix ele-
ment tn being in most cases ' '' Retn, Imtn, or

~
tn

~

.
Finally we discuss the generality of the method used and
other possible constructions of time parameters describ-
ing the motion of a quantum particle.

I. A GENERAL EXPRESSION
FOR QUANTUM TRAVERSAL TIME

We start the construction of quantum traversal time
from the generalization of a well-known classical expres-
sion. Consider a particle moving along a classical path
r(t ) connecting the points r&, t, , and r2, t2 in some poten-
tial V(r, t) (Fig. 1). The time the particle spends in an
arbitrary region A is given by the integral

tz —— ,'e& r t dt,
where en(r) equals 1 if Q&r and 0 otherwise. The ex-
pression (1.1) is a functional on the path of the particle.

Then let a quantum particle emitted from r& at t& be
observed again in r2 at the time t2. Now a11 the paths
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connecting r, and r2 contribute to the transition ampli-
tude g(r2, r1, t2, t1) and the mean value &F & of some
functional F[r( )] is given by a path integral, '

&F(r2 rl t2 tl ) & g (r2 rl t2 1)

Dr F r.
1

Xexp —S[r( )]

(1.2)

E

g(r2, r„t2, t, )= f Dr( )exp —S[r( )] FIG. 1. Calculation of the matrix element t~.

where S[r(.)] is the action,

S[r( )]= f [mr( ) l2 —V(r( ), t)]dt,
1

and we have denoted an arbitrary path as r( ~ ) to avoid
confusion with the classical path r(t) in (1.1).

The normalization in (1.2) is such that

lf a Hermitian operator corresponds to quantity F, (1.2)
includes standard quantum-mechanical averaging pro-
cedure. ' However, (1.2) holds for a more general case
and we will use it to obtain the mean value of (1.1).

After rewriting (1.1) in a more suitable form,
E2

tn[r( ))= f dt f d r5(r —r( }), (1.4)
Il

&F= 1&=1 .— (1.3) we find with the help of (1.2) that

tn(r2 rl t2 t1)= & tn(r2 rl t2 tl ) &

=g '(r2, r„t2, t1) dt d rg(r2, r, t2, t)g(r, r„t, t, ),
tl El

(1.5)

or, equivalently,

'2 51ng (r2, r1, t2, t1 )

tti(r2, r1, t2, t1)=i% dt d r
n 5V r, t

(1.6)

It is assumed in (1.2) that the initial and the final
states of the particle are 5(r —r, ) and 5(r —r2), respec-
tively. To find the mean value of F for the transition be-
tween arbitrary initial and final states +; and %'f one has
to integrate over initial and final coordinates thus replac-
ing the second right-hand term in (1.2) by

&~f ~F ~~, &

—:f d't2 f d' 141(fr )2

Dr. F r.

X exp —S[r( )] 4', (r, ),

and, to keep the normalization (1.3), g ' by
pf

~

1
~

p; &
' (Ref. 13),

&%f ~1~%, &

= f d r2d r +f*(1r )2
X f Dr( ~ )exp —S[r(.)] 4, (r, ) .

Now it is straightforward to generalize (1.5) for the case
when arbitrary 4; and %'f are given,

tn(+f +; t2 t)=1&+f
I

I
I
+;& '&+f ltn I+;& (1.7)

where tn is defined in (1.4). In the particular case when
the final state +f is obtained from 4; by evolution,

+f =+;(t)
I i =i,

—= f d 1',g(r2, r, , t2, t, )0', (r, ), (1.8)

(1.7) is considerably simplified, so that
lp

tn(%;(t2},%';, t2, t1}=f dt f d r
~

'P(r, t)
~

1

(1.9)

So far we have assumed that the states 4' are normal-
ized to unity and some comments should be made about
the application of (1.9) in a time-independent scattering
problem. In this case we must normalize the wave func-
tions of continuous spectrum in some large volume V.
The right-hand side of (1.9) is seen to depend on the
volume chosen; however, to obtain the traversal time per
particle we will have to divide tz by the incoming Aux
(see Sec. III) and the final result is, as it should be, in-
dependent of V.

In the same way that (1.1) has its meaning in classical
mechanics, matrix element (1.7) represents the mean
time spent in A by a quantum particle moving between
given initial and final states, and in the following sec-
tions we will refer to it as quantum traversal time, or
simply traversal time. One sees that expressions



4606 D. SOKOLOVSKI AND L. M. BASKIN 36

(1.5) —(1.7) are, in general, complex. This means that the
quantum traversal time is not an observable in the usual
sense. Yet in the following sections we will show that it
still possess some properties of the classical time param-
eter (1.1) and that there are simple relations between tn
and certain observables, analogous to those in the classi-
cal case.

II. LARMOR PRECESSION
AND THE TRAVERSAL TIME

In this section we establish a general relation between
the angles of spin rotation and the mean time spent by a
quantum particle in the region Q where an
infinitesimally small magnetic field H is localized. We
expect the result to be of-physical interest, since it re-
lates to the definition of traversal time as the ratio be-
tween spin rotation angle y and Larmor frequency coL,
which is widely known as the "Baz' clock method. " '

Again we start from the classical case. Let the parti-

cle move along the path r(t ). If in the initial point r& its
spin (or angular momentum) is directed normal to the
field H, then in the final point r2, it is rotated in the
plane normal to H by the angle

0 =coL t n(r2, r&, r), (2.1)

(2.2)

and the spin-dependent transition amplitude g takes the
form,

where to is classical traversal time as given by (1.1).
(From now on we consider potential V to be time in-
dependent, hence all the quantities depend on ~= t2 —t

&

only. )

Now consider the same problem in the quantum case.
Let H be directed along z, and the axis and the spin of
the particle (cr = —,') be polarized in x direction at t =0.
Thus we define the initial state to be

l 7 1 0
g(r2, r„r)= f Dr( )exp —S[r(.)]— pH f —en(r(. ))dt

0
(2.3)

or in the limit of small H,

1 0
g(r2, r„r)=g(r2, r„r) 1 — pHtn(r2, r„—r) 0 1

+O(H ) (2.4)

1

V'2
i 1

pHtn(rz, r, , ~—) 5(r —r2) .

(2.5)

Note that in (2.3) and (2.4) S and g are the spatial parts
of the action and transition amplitude as defined in Sec.
I.

With the help of Green's function (2.4) we obtain the
spin orientation in r2,

The main difference between the classical and quantum
situations is that in the latter case the spin of the parti-
cle is rotated around two rather then around one z axis.
It follows from (1.6) that tn acquires an imaginary part
if the transmission probability into the final state de-
pends on the potential in A, and we will show that one
indeed obtains a real traversal time in cases when there
is no such dependence. Expressions (2.6)—(2.7) illustrate
this fact since the presence of a magnetic field alters the

It follows from (2.5) that the spin of the particle has
nonzero y and z components (crr ) and (cr, ) in r2,.

(cr ) = — Retn(rz, r„r),AH

(cr, ) = — Imtn(rp, r„r) .AH
(2.6)

The spin is therefore rotated in xy plane as well as in the
plane parallel to the field by the angles y~ and y~~, re-
spectively (Fig. 2). Finally, following Refs. 8 and 9 we
consider the limit H~0 and as the angles g~

~~

become
infinitesimal, obtain

(o(r2) &

H

rO
y

IPj &L Retn(r2 ri ~)

~L Q( 2& 1&r

and for the total angle of rotation &p„, (Fig. 2),

(%/+%II) ~L
I
tn(r2 ri ~)

I

2 1/2

(2.7)

(2.8)
FIG. 2. The spin orientation of the particle in the initial and

final points.
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potential in 0 for the states with spin parallel and anti-
parallel to the field, which we superpose to obtain the in-
itial polarization (2.2).

We want to emphasize here that by performing in this
case the Baz' thought experiment, i.e., measuring the
expectation values of o.

~ and then that of 0., we obtain
two real parameters t~=y~/coL and

t~~
——g~~/coL. The

use of the total rotation angle y„, adds the third param-
eter t„,=p„,/~L and we are at a loss since we cannot
say which one of them, or which of their combinations
should be called the traversal time. We have shown that
the natural construction uniting both t~ and

t~~
is the

matrix element t~,

tg ——tg+lt~~

III. TRAVERSAL TIME IN CENTRAL SCATTERING

Now we apply the approach developed in Secs I and
II to determine the traversal times in the case when a
particle is scattered by spherically symmetrical potential
V(r). This problem was discussed in Refs. 2, 3, 6, and 8
in order to obtain expressions for the collision times and
lifetimes of the intermediate states in nuclear reactions.
We consider two physically difFerent situations in which
an incident particle with energy E has a known (a) angu-
lar momentum I or (b) momentum Rk.

(a) Let potential V(r) by short range, V(r) =0, r & R.
Following Ref. 8 we find the mean time a particle with a
given value of I spends in the scattering region SR
(r &R). We choose to describe the scattering with the
radial wave function specified by its asymptotic behavior
as r~oo,

(3.4)

(b) Now let the momentum Rk of the incident particle
be fixed. The corresponding wave function has the form
as r~~,

f«,B)
Wi,

——e' '+ ' e' ",
r

(3.5)

where

f (E,B)= f (E,B)
~

exp[i5(E, B)]
is the scattering amplitude. Now our purpose is to
determine the mean time ttt (E,B) a particle scattered at
the angle e spends in the vicinity of the scattering
center (Fig. 3). Since the state (3.5) describes all the par-
ticles scattered at diff'erent angles we cannot simply use
(1.9), but must return instead to (1.6). The energy in
(1.6) is undetermined in the general case and to fix it, we
take the limit in which r] and ~ go to infinity as their ra-
tio stays finite and equal to the particle's velocity
U =fik/m, and r2 is large enough to use the asymptote
(3.5) (see Fig. 3),

r] —+ ~, g —+ ~, r] /&=U, kr2 &&1 .

We expand the Green's function g in the form

(3.6)

which is exactly the result obtained by Baz' in his ex-
periment with the Larmor precession. Finally we ex-
press the right-hand integral in (3.3) in terms of scatter-
ing phases 6i. For l =0 we have, for instance,

m a5O(k)
tz (E,O) = +2R +—sin[2kR +50(k)]

Rk

—ikr +i farl /2
%i(r)= A

ikr —i m.l /2—Si(k)
ikk

g(r, , r„r)= d k exp — r 4„(r,) P&(r, ),
2m

k =Pi '&2mE

Si(k) =exp[2i 5i(k)],
where 5i(k) is the scattering phase shift.

Now we can use (1.9) to immediately obtain

tR(+i('r) +I r) =r I dr r
~

'Pi(r)
~

0

(3.1)

(3.2)

As the normalization of (3.1) implies, there is an incident
fiux of particles and (3.2) represents the mean time spent
in Sz by all the particles that have entered this region
during the time ~, and should therefore be divided by
their number n, . (We note here that the method used in
this case is close to that of Smith, who estimated the
time for which a particle is retarded in the scattering re-
gion by the rate of surplus density

~

4
~

around the
scattering center. ) Calculating n, as r times the total fiux
of particles in the incoming wave [this quantity is the
same for any sphere with radius larger or equal to R and
can therefore be calculated in the asymptotic region with
the help of the first right-hand term in (3.1)] we obtain
the traversal time per particle as

(3.7)

and insert (3.5) into (3.7). The integration of the product
of the first terms in (3.5) yields the free-particle Green's
function; to evaluate the other three integrals we use the
method of stationary phase. With the help of the rela-
tion

2mi k r elim„e' '= 5 —+-
r r

k r eikr—6
k r r

and noting that only one of the three integrals has a sta-

/f(E, e) e
C

tR(E i)= J dr r
~

0'i
~Ak o

(3.3)
FIG. 3. Scattering on the central potential.
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tionary point for k &0 as ~~ao, we obtain the asymp-
totic behavior of g in the limit (3.6),

g(r2, ri, r)=gp(r2, r„r)
Ikr2

+ f(E,B)g (O, r„r)+o(r '~ ),

and inserting it into (3.10) we find

t'ai(E, B)
l CO

2k EB 4m(21 + 1)Y, (cosB)g, r (E,/),
j=p

(3.13)

gp(r2, ri, r) =
' 3/2

exp
i~

I
r2 1

1 I

'
2A~

and

where go is a free-particle propagator,

(3.8)

(3.9)

where tz (E, l) can be expressed via 5i in the way it was
done for 1 =0 in (3.4).s

To close this section we return to the Baz' experiment.
From (2.7) and (3.8) it follows immediately that if a
small magnetic field H is created around the scattering
center, the spin of the particle scattered at the angle 6
undergoes rotation in the two planes as shown in Fig. 2,

r2. r
&8=~—arccos

r&r2

This provides us with the necessary decomposition of
g; clearly the first term in (3.8) describes the free propa-
gation from r& to r2, while the second term corresponds
to the scattering at an angle 6 and the energy of the
particle is in both cases E. To obtain tci(E, B) we apply
(1.6) to the second right-hand term in (3.8). This yields

(E 6) A' d
5 V(r)

d3 5ln
l f (E,B)s„" 5 V(r)

(3.10)

Unlike (3.3), the expression (3.10) is complex. As has al-

ready been mentioned, the imaginary part of the traver-
sal time describes the dependence of the scattering prob-
ability on the form of the scattering potential V. We il-

lustrate this again by taking the average of Imt~(E, B)
with respect to the scattering angle 0,
(Imt~(E, B))c3=cr '(E) J dQ

l

f(—E,B)
l
ilmt~(E, B)

5 lno (E)
sR 5V(r)

(3.1 1)

5 lnSi(k)
tz (E, I ) = —i fi J d r

5V(r)
(3.12)

Thus taking the logarithmic variational derivative of the
partial-wave expansion for the scattering amplitude,

oo

f(E,B)= . g v'4n(21+1)Y, (cosB)($,.—1),
2ik I=o

Here cr(E) is the total scattering cross section. Thus the
mean value of Imtz is proportional to the variation of
the total number of particles scattered per unit time and
per unit variation of the scattering potential. Note that
in the spherical wave (3.1) the number of scattered parti-
cles equals the number of incident particles and does not
depend on the form of V(r). This explains the real value
of tR(E, l) found by Baz'. '

Finally we want to establish the relation tz(E, B) and
tz(E, l) and express the first of the two parameters via
the phase shifts 5i. We use (3.3) and the stationary per-
turbation theory to show that, in accordance with (1.6),

yi(E, B)= coL Reta (E,6),
g~~(E, B)=col. Imtg (E,B),

(3.14)

and the Baz' definition of traversal time becomes ambi-
guous as was discussed at the end of Sec. II.

IV. THE TUNNELING TIME

2 2 2~ 1 2+ 1 2 (4.1b)

Finally, we choose the particle to be incident on the

, (
Q (x)

-ikx
A&e

Xg X&

ikx
A2e

FICr. 4. One-dimensional tunneling.

The question of how to define traversal time in the
case of tunneling has often been discussed, but no clear
answer has been given. In this section we use our ap-
proach to show that in one-dimensional tunneling there
exist two complex parameters t, (E) and ti(E),
representing the mean times spent in the barrier region
by the rejected and transmitted particles, respectively.

Let the barrier V(x) have a finite width
[V(x)=0,

l
x

l
&a] (see Fig. 4). For our analysis we

will need two sets of functions corresponding to the Aux
of particles incident on the left and on the right side of
the barrier,

Vi, (x)= Ie'""+3 ie '"", x & —a; A2e'"", x &a I,
(4.1a)

%i (x)= I A ze '"", x & —a; e '""+A ie'", x &aj,
~ gL, R

where 3, '2 ——
l

3 i'2
l

e " are the refiection and
transmission amplitudes, respectively. The amplitudes
A and A are not independent; using the Wronskian
relations between 4' and %' one can show that
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left, and everywhere in the following index L will be as-
sumed unless written explicitly. To distinguish between
reflected and transmitted particles we consider the situa-
tion in which a particle emitted from a distant point to
the left of the barrier is registered after a long time
somewhere in the right half-space. Thus, allowing for
the transmitted particle

xl —~ r ~ lxi
l

«=U xz&a (4.2)

(4.3)

Again the right-hand side of (4.3) contains a free-particle
amplitude g, multiplied by the transmission amplitude at
the energy fixed by (4.2). The form of (4.3) illustrates the
fact that the uncertainty principle AEht & 4 is related to
the moment of collision rather than to its duration. (4.3)
gives no information about when the particle crosses the
barrier, while the traversal time can be obtained from (4.3)
with the help of (1.6) with any accuracy.

Likewise for the refiected particle (xz & 0) we obtain

go(xz x i r) —gp(xzix irr)

+e 'A, (E)gp(0, x i, r)+0(r
(4.4)

constructing the Green's function with the help of (4.1a),
and following in the one-dimensional case the arguments
of Sec. III, we find the transition amplitude,

g, (xz,xi, r)=e 'Az(E)gp(0, xi, r)+0(r '
) .

ti(E)=—im 1 i+ 1(3B

A'k B, Bk 2kB,

(4.7)

t, (E)=—im 1 BBz Bi
haik B Bk 2k

and the expressions (4.7) allow the calculation of the
traversal times t& 2 for a barrier of arbitrary form, if am-
plitudes A

& 2 are known functions of energy E.
Equation (4.6) helps to establish a useful relation be-

tween t& and t2. If n
&

and n2 are the numbers of parti-
cles reflected and transmitted per second, respectively,
then

g+(x,x', E)=— ™
%i, (x & )%i",(x ( ),

R'kw,

and x& (x ) is the larger (the smaller) of the arguments
x,x'. [Note that the right-hand side of (4.6) is indepen-
dent of x.]

In (4.5) the integrals involving O'W can be expressed
via the energy derivatives of their Wronskians and us-
ing (4.1b) we get the desired result. In order to avoid
lengthy expressions we introduce quantities B& 2 related
to conventiona1 amplitudes A

& 2,

2i ka ~~, 2

to obtain'

and application of (1.6) to (4.3) and (4.4) gives

fi(niz) . fiin~ A, , ~t z(E)= —iii f dx ' +i' f dx—a 5Vx —a 5Vx

t (E):—(n i + nz ) '[n i t, (E)+nztz(E)]

0~k X 'dX . (4.8)

We can express t, (E) and tz(E) in terms of A i z and
their energy derivatives with the help of perturbation
theory. It is easy to see that

5A i z ———exp[+ikx] f 6 V( x')g +( x, x', E)+ k(
x')d x',

—a

x )& +a (4.6)

where g+ is the Green's function of time-independent
Schrodinger equation, which only contains outgoing
waves outside the barrier,

Equation (4.8) is analogous to (3.11), t(E) is the mean
time spent by an electron in the barrier regardless of
which process, reflection or transmission, occurs. This
mean time is rea1 and equals the ratio of the mean num-
ber of particles in the. barrier region to the incident flux.
Note that this expression can be deduced from classical
mechanics but it gives no clue for finding t

&
and t2 sep-

arately.
Consider the semiclassical limit of Eqs. (4.7). Using

semiclassical expressions for 3
& 2 we obtain

m dx ~ ~

v'2m (E —V(x)
~

if E) V(x)
i

i
v 2m(E —V(x)

~

if E & V(x) . (4.9)

g = A exp —$(E) +O(iil), (4.10)

Apparently for E & V, (4.9) is the value of the functional
(1.1) on the real-valued semiclassical path x (t), where p
is imaginary in the classically forbidden region. ' The
role of this path becomes more clear if, instead of using
(4.7) we apply (1.6) directly to the semiclassical asymp-
tote of g as given by (see Ref. 15), which takes us back to expression (4.9).

For the reflected particles we obtain, as R~O,

ti(E)=2 f ' +O(irt),—a P
(4.12)

where the time-independent part of the action S(E) is
calculated on the above-mentioned path. So we find

tz(E) = —f dx +0(R),5$(E)
(4. 1 1)—a 5 V(x)
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where x is the left turning point (see Fig. 4).
It is easy to interpret the Baz'-Rybachenko experi-

ment with magnetic field localized in the barrier. Ex-
actly as in the second part of Sec. III we obtain two an-

gles of spin rotation for reflection or transmission,

pl1, 2 ~gR'ti 2(E),

y~~i 2 ——co& Imti 2(E),
and again face the difficulties in defining the tunneling
time in the Baz' method. '

CONCLUSION

In the quantum case we have found the parameter tz
representing the mean time spent by a particle in a given
region of space. This parameter is most simply defined
in the Feynman path-integral technique, the accuracy of
its determination is not limited by AEht & A uncertainty
relation and it has the classical traversal time as its
(semi) classical limit. The traversal time tn is not an ob-
servable in the usual sense, but it still possesses some of
the properties of tz,' it is simply related to the angles of
spin rotations in the magnetic field and to the number of
particles in the region 0 (as given by f ~

+
~

dr ) if we

do not distinguish between the channels, the transition
probability for which depends on the form of the poten-
tial in the region of interest —for instance between
transmitted and reflected particles in the case of one-
dimensional tunneling. At the same time we cannot ex-
pect tz to play the role of the only relevant time param-
eter describing the motion of a quantum particle. We
will return to this question at the end of this section and
we now use our approach to explain the variety of
traversal times arising from the results of Refs. 1 —12.

First we establish the relation between tz and the
traversal time tp„k as defined by the wave-packet
method. ' ' The complete critical review of this method
can be found in Refs. 9—12. We note, however, that, as
is intuitively clear, tp k should be a reasonable estimate
when the size of the packet Ax is small compared to the
size of the region of interest xn. (Here we restrict our-
selves to the one-dimensional case. ) Let us also suppose
that reflection is small, i.e., we have only one packet,
whose maximum crosses the boundary of 0 at t& and t2,
respectively. Constructing wave packet of the form

e(x)t)= f dk c(k)e/, (x)e

c k 2dk=j.

and applying (1.9) we see that the integrand of the t in-

tegral is approximately unity if the packet is inside the
region and it is zero if the packet is outside. Thus
tp k tp t& is approximately equal to the traversal time
tn

hx
t „k——t~ 1+0pac x

and expanding the limits of integration i, ;-~+ oc we see
in addition that tp k in this case is just the mean value

coi T„i ((1,
where ~ is the frequency and Tz is given by

f (r —r)e„(r(.))dr)
T r r 0n(2

O~ r. dt
0

The quantities tz and Tz may display quite difierent
behavior as functions of the energy of the particle. For
instance at the energies E„ for which there is no
reflection from a rectangular barrier' tz goes to infinity
for the reflected particle, while T& stays finite and pro-
portional to the inverse level width I

The distinction between the two parameters vanishes,
however, in the semiclassical limit when (at least in one
dimension) only one path, whether real or complex, con-
tributes to the averages in the expressions for tz and
Tn r. Putting x2 at the boundary of Q (otherwise Tn in-

cludes the time it takes the particle to travel from 0 to
xz) we obtain

m dx
hms OTn(X2, X),r)= —2hms ptn(X2, x', '7)=

& 0 p
where p is real in the classically allowed and imaginary
in the classically forbidden regions. This illustrates the
well-known fact that the integral f dx/p plays the role

of tunneling time for time-dependent semiclassical tun-
neling problems in one dimension " '

Thus our approach shows that, except in the semiclas-

of t(E) as given by (4.8) taken with the weight function
~c(k)

~

a, which determines the shape of the packet in
k space;

t,„k—f dk ~c(k)
~

t[E(k)].
Now we consider the methods used in Refs. 3, 8, 9,

and 12. In Ref. 8 Baz' obtained the value of traversal
time tz in the case when angular momentum of the par-
ticle is fixed and t z has no imaginary part. Smith ar-
rived at a somewhat similar result, assuming the classical
relation between the quantum lifetime and the number of
particles in the region A. In Ref. 9 Rybachenko ignored
the second angle of spin rotation y~ while applying the
Baz' method to the transmitted particles in the tunneling
problem and estimated therefore only Retz. In Ref. 12
the "clock method" used by Baz' was applied to tunnel-
ing through a rectangular barrier and both angles y and

II

g~ were taken into account. The three tunneling times
that appear in Ref. 12 are in fact Retz, Imtz, and

~
tn ~. Note that the relations between the three times

obtained in Ref. 12 are correct only for a symmetrical
barrier.

However, since in general, all paths contribute to the
mean value of t'„' in (1.5), one may expect that besides t„
there may exist other time parameters that equal tz in
the classical limit but are quite diferent in the quantum
case. The detailed analysis of a situation when a particle
moves in a small time-dependent field localized in Q
shows that this is indeed the case. The motion of the
particle becomes adiabatic, i.e., the particle "sees" the
static potential V( ~ ), if the variation of the field is slow
in the sense that
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sical case, one fails to provide a single time parameter
describing the duration of quantum scattering process,
firstly, because the natural generalization of the classical
traversal time is given by a complex matrix element and,
secondly, because this generalization is not unique. For
this reason one has to analyze the type of parameters ap-
pearing in each particular quantum problem as well as
their relation to the observables of interest. We have
carried out such an analysis for the quantum traversal
time tz to show that this quantity possesses some degree

of universality. Thus we may expect that in the quan-
tum case the number of physically significant time pa-
rameters is not infinite and that the Feynman path-
integral technique is an efficient tool for their construc-
tion and classification.
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