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Faddeev-Born-Oppenheimer equations for molecular three-body systems: Application to H2+
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A nonvariational parameter-free molecularlike approach is developed for the three-body prob-
lem based on the Faddeev equations. Considering a system of two identical heavy particles (atom-
ic nuclei) and a light one (electron), we study the adiabatic limit of the corresponding Faddeev
equation in the absence of interaction between the heavy particles and using general heavy-light
potentials that are represented in a separable form through the Hilbert-Schmidt method. The re-
sulting rotationally invariant Faddeev two-center eigenfunctions are used to formulate an ansatz
for the solution of the full Hamiltonian where all three particles interact. A set of coupled
differential Born-Oppenheimer-like equations is obtained for the movement of the heavy particles.
Numerical calculations are shown for the 1so.g, 2so.g, 3do.g, 2po. u, and 2p~u electronic states in
H&+. The resulting molecular energy curves appear to converge to the exact ones when up to
fifteen terms are used in the Hilbert-Schmidt expansion of the Coulomb potential. The noncross-
ing rule for 2so.g and 3do.g curves is verified in our work.

I. INTRODUCTION

Since the pioneering work of Faddeev' on the formu-
lation of exact three-body theory, later extended by oth-
er authors to X-body systems, the solution of the few-
body Coulomb problem has been both a challenge and a
learning ground. Progress in this field has been slow not
only due to the multidimension and multichannel nature
of the problem whenever systems of electrons and atom-
ic nuclei are considered, but also due to the diSculty in
dealing with the singularities of the Coulomb potential
at positive and negative energies. For this reason the in-
itial hope that the new theory would quickly provide
more accurate solutions for atomic and molecular sys-
tems than the traditional variational or coupled-channel
methods used in atomic and molecular physics were re-
placed by more conservative expectations. In particu-
lar, one has learned that sometimes progress is better
achieved by using appropriate combinations of old
theories with new methods or vice versa. In the present
work we attempt to combine the traditional and success-
ful Born-Oppenheimer method for molecular systems
with the Faddeev theory for three particles. Although
the well-known molecular approach is now part of stan-
dard quantum-mechanics text books we find it useful,
for later comparison, to review it here in the framework
of the three-body problem.

Let us consider a three-body system made up of two
identical heavy particles (atomic nuclei) and a light one
(electron) interacting by pairwise potentials. The
Schrodinger equation in the Jacobian coordinates of Fig.
1(a) reads

H4'(r, R) =E%'(r, R),
where
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While V is the potential between the heavy particles, v is
the potential between the light particle and the heavy
one. If we denote by rrz (JR) the mass of the light
(heavy) particle, p and v are the appropriate reduced
masses

v=~(LH )/(rm+ ZAt ),
(4)

In the standard molecular approximation one considers
the eigenfunctions P;(r, R) of the two-center Hamiltoni-
an h,
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)

h f;(r, R) =E;(R )1t;(r,R),

as a complete orthogonal basis set to expand 4'

0'(r, R)= g 1(~(r,R)4, (R) .
J

(7)

In Eq. (16) s;(R) is the binding energy of the light parti-
cle which depends parametrically on the distance R be-
tween the two heavy particles. Substituting (7) into (1),
multiplying on the left by P,"(r,R), and integrating in
d r one obtains a set of coupled differential equations for
theN s,
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fi Vg+ V(R)+e;(R) E—&P;(R)= g I d r g,*(r,R)
2p J

[V~/, (r, R)]&5,(R)+ [V~/~(r, R)] [V~@,(R)]
2p

' ' ' ' 2p

Formally this is an exact equation where e;(R) acts as an
effective potential between the heavy particles due to the
multiple exchange of the light one. Nevertheless, in
practice, the solution of (6) is not easy to obtain. With
the exception of H2+ (Ref. 7) no exact solution of the
two-center potential problem exists for a general local
interaction v. For any other diatomic molecule, where
the number of light particles (electrons) is greater than
one, approximation methods based on the linear com-
bination of atomic orbitals (LCAO) (Ref. 8) together
with variational parameters are used to obtain the two-
center solutions g; in the frame where R is fixed and the
corresponding electronic energy curves are E;(R). If a,

rotationally invariant 4 is needed with well-defined total
angular momentum J further work is required to gen-
erate the wave function in the frame where R is rotating.
This is done using Wigner matrices together with ap-
propriate variational coefficients for each component of
the wave function leading to total J.

Although reasonably accurate solutions may be ob-
tained, particularly for low-lying electronic states, one
lacks a well-defined prescription on how to improve
upon existing results for g; and c,;(R) without increasing
the number of variational parameters or atomic orbitals.
Furthermore, to our knowledge, there is no connection
between formally exact X-body theories based on con-
nected kernel equations and the methods used in molec-
ular physics. A first step in that direction is the work of
Levin and Kriiger where the channel-permuting-array
(CPA) theory' together with the Born-Oppenheimer ap-
proximation is used to study the Hz+ molecule. Al-
though the wave function they use is identical to the
simplest molecular-orbit (MO) approximation, by using
different treatment of the dynamics they get improved
results for the equilibrium separation and dissociation
energy compared to the standard MO approach based on
the asymptotic (ls) state. In order to study the conver-
gence properties of the CPA theory" they use two
different sets of global basis functions: bound hydrogen-
ic states and Hylleraas-Shull-Lowdin states. In either
case it was found that there was not even an indication
that the results were converging to the exact values
when up to 21 terms were included. Both sets yield
values for the dissociation energy at the equilibrium sep-
aration that are oscillatory and too low. Further work'
showed that the oscillatory pattern was due to the use of
global basis sets and not to CPA formalism. A local-
basis-set calculation was undertaken using the finite-
element method' which showed good convergence re-
sults.

In the present work we attempt to formulate a rota-
tionally invariant Born-Oppenheimer-like approach to
the molecular three-body problem based on Faddeev's'
theory. Our aim is to develop a method that may be
generalized to more complicated diatomic molecules and

gives a clear prescription for how to improve upon exist-
ing results in an oscillation-free pattern. Since H2 is
the natural testing ground for any theory that aims to
calculate molecular states or energies, we start by treat-
ing the simplest molecular three-body problem where a
well-understood connected kernel theory such as the
Faddeev formalism for three nonrelativistic interacting
quantum particles may be used.

Our starting point is the Faddeev equations for the
underlying three-body problem in the absence of any
heavy-heavy interaction. Since at an intermediate step
we want to have access to an exact solution of the two-
center problem in the frame where the two heavy parti-
cles are rotating in space at distance R from each other,
we use the Hilbert-Schmidt expansion' (or Weinberg
quasiparticle method' ) to represent the heavy-light po-
tential v in a separable form. As was shown before' this
reduces the two-center problem given in (6) to the solu-
tion of an algebraic equation. With v separable, the
above-defined Fadeev equations reduce to a set of cou-
pled one-variable integral equations in the relative
momentum Q between the heavy-light pair and the spec-
tator heavy particle. If we now proceed to take the adia-
batic limit ~ /JR ~0 and use closure to write
Z=E —(fi /2')Q we find it possible to Fourier trans-
form with respect to the variable Q leading to a set of
coupled homogeneous algebraic equations that depend
parametrically on R. In a subsequent transformation we
couple the heavy-light orbital angular momentum l with
the heavy-heavy orbital angular momentum L to total
angular momentum J and parity P to get in each chan-
nel J~ discrete solutions e; (R ). The corresponding
homogeneous algebraic equation provides, for each R,
the necessary weight factors with which each channel
component g; (r, R;c) enters in the total wave function

(r, R) of well-defined angular momentum J and parity
P. Each g, (r, R) involves a sum over all components
g, gJ (r, R;c) where c denotes all possible combinations
of l, L, and separable component u that couple to J and
I'. Next we use these two-center wave functions tt; to
write down an ansatz for + in the form of a sum over
each component P, (r, R;c) times an unknown function

(R;c) of R alone. Proceeding as in the traditional
molecular approach one obtains a set of coupled
differential equations for the 4&; (R,c). The main
difference between the equations we get and Eq. (8) is
that, unlike (8), we always obtain a set of coupled
differential equations even when all molecular-orbit
states j other than i are neglected. Although we have
used a separable representation of v to obtain E; (R),
g; (r, R), and a new ansatz for 4, we take the full po-
tential v in H to generate new molecular-type equations
for the @; (R;c). Therefore these are formally exact
equations for the molecular three-body problem in a ro-
tationally invariant framework.
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In Sec. II we study the adiabatic limit for the two-
center Faddeev equations with separable v leading to an
exact solution for e; (R) and in Sec. III we write down
the resulting g, (r, R). Next we show in Sec. IV how to
get the new Faddeev-Born-Oppenheimer equations for
the N; (R;c) resulting from the definition of ql (r, R).
Finally, in Sec. V an application to Hz is studied and
the results presented for the electronic states 1s o.g,
2scrg, 3dog, 2pcru, and 2pwu.

where, in the usual notation of the three-body problem,
Qk is the relative momentum between the heavy particle
k and the remaining light-heavy pair k. The momentum
qk is the relative momentum between the particles in
pair k. The momenta qk and Qk are conjugate to the
Jacobi variables pk and %k shown in Fig. 1(b) and 1(c).
the reduced masses v and p are

v=~A, /(rm+Ai),

@=A,(A, /~)/(~+ZAi) . (12)II. TWO-CENTER FADDEEV EQUATIONS
IN THE STATIC LIMIT

Since at this stage we have neglected the heavy-heavy
interaction, the resulting Faddeev wave function for the
bound-state molecular three-body system' involves only
two components,

As we mentioned in the Introduction we consider first
the Faddeev equations for a system of two identical
heavy particles and a light one in the absence of the
heavy-heavy interaction. The interaction between the
light particle and the heavy particle is v which may be
any local short-range or Coulomb-like potential for
which a light-heavy t matrix may be defined,

(13)
k =1

The corresponding equation for the wave-function com-
ponents is

Qk g GOtk Qk'
(k'~k}

(14)

where tk is the light-heavy t matrix for pair k embedded
in three-body space. If we now take into account that
the two heavy particles are identical, the functional form
of the gk and tk is independent of k. Therefore for prac-
tical purposes Eq. (14) reduces to a single equation for f
whose momentum-space representation reads

(qkQk I
Go '

IqkQI &

~Zg2 t

~(qk —qk»(Qk Qk»—
2p

Aq
2v

f(q Q)= E — e — Q
fi

2v 2p

t =v +vg, t, (9)

where go is the free resolvent for the underlying two-
particle system. For simplicity we assume that v de-

pends only on the spatial coordinates. Let Go be the
free resolvent for the three-particle system whose
momentum-space representation is

xf qi E — O' Q'+ Q)
d'Q' A2

(2~) 2p

&&0 Q+ ~Q' Q' (15)

(a)

which is a two-vector-variable integral equation. It is
well known' that Eq. (15) reduces to a single-variable
integral equation when a separable representation is used
for t. Of all possible choices we use the Hilbert-Schmidt
expansion' or Weinberg quasiparticle method' to ob-
tain t in a separable form. The reason for this choice
will become clear in Sec. V. As shown in Appendix A
the partial-wave component of v may be written as

N(

v/ y~ g'„——(&) &g'„(&)(g'„(6)~, (16)

where u runs over the Nl different separable terms, 6 is
the light-heavy pair center-of-mass energy, g'„ the eigen-
values of the v~go kernel at 6, and g„ the corresponding
right eigenvector. Substituting (16) in (9) after partial-
wave decomposition, we get

N,

r, (@)=g ~

g'„(&))r'„(@)(g'„(6)~,

FIG. 1. Jacobi coordinates of the three-body problem. where
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—rl„'(&)
r'„(8)=

1 —rl'„(g)
(18)

As shown in Appendix A the full momentum-space rep-
resentation of t reads

we get a one-variable integral equation for the spectator
function 6 that depends only on the relative momentum

between the heavy particle and the remaining light-

heavy pair. The resulting equation reads

(q'
~

t(8)
~
q) =g +4~K~* (q')g'„(8;q')

rl E Qz
2p

G (Q;ulm)

l, m u

X '„(&)g'„(6';q)Y~ (q) . (19)

d 3Q I

g g f 3 (p;ulm
~

B(E)
~

p';u'1'm')
(2~)

X G(Q', u 'l'm '), (21)
If we now substitute (19) into (15) and define

' —1
I g2 g2

0(q Q)= g& E q' —— Q'
~m u

f2

E — Q;q Y, (q)G (Q;ulm),
2p

(20)

where

p=Q'+ ~ Q

The driving term B is given by

(22a)

(22b)

(p;ulm
~

B (E)
~

p', u'1'm') =4~

2 2

Y,
* (p)g'„E — Q', p Y~ (p ')g„E— Q';p'

2p 2p

E — p' — Q'
2v 2p

(23)

and represents the light-particle exchange diagram
shown in Fig. 2. Since the vertex function g'„depends
on the pair energy we must subtract the appropriate rel-

ative kinetic energy from the three-body center-of-mass

energy E.
If we now take the limit where rrz/JM~0 we note that

Since ~ &&JM the heavy-particle kinetic energy given by
(I /2p)Q and (fi /2p)Q' becomes very small com-
pared to the light-particle kinetic energy. In the absence
of heavy-heavy interaction we may use closure' to
define

p=p'=Q'+Q

and that

Q =Q = /pz

(24)

(25a)

2e=E — Q =E — Q'
2p 2p

as the binding energy of the light particle in the poten-
tial field of the two heavy ones. Therefore the driving
term B becomes

p=p, =A, /2,

R=%(———W2,

(25b)

(25c)

( p; u 1m
~

B ( c )
~ p; u

'
1

' m ' )

4~ Y~* (p)g'„(E;p) YI (p)g'„(Y.;p)

C — P
2/pz

(27)

u lv(

—Q

r=p, +R/2=p, —R/2 .

Q'

(25d) where p is given by (24). If we also use (26) in the left-

hand side of (21) we may easily Fourier transform with

respect to the variable Q after changing the d Q' in-

tegration into d p with the help of (24). The new equa-

tion is

Q

u'l'm'

[r'„(Z)] 'G(R;ulm)
d3

g g J 3 (p;ulm
~

B(e)
t

p;u'l'm')
i, m u

FEG. 2. Driving term for the two-center Faddeev equations. Xe'~ G( —R;u'l'm'), (28)



36 FADDEEV-BORN-OPPENHEIMER EQUATIONS FOR MOLECULAR. . . 4589

where the driving term B is given by {27). This is a
homogeneous algebraic equation which depends parame-
trically on R.

The subsequent step involves a partial-wave expansion
of the G's together with coupling to total angular
momentum J and parity P as is standard procedure in
three-body calculations. ' Defining

G (R;ulL)

III. TWQ-CENTER FADDEEV WAY E FUNCTION
IN THE STATIC LIMIT

Using (13) and (20) we may now study the Faddeev
equation for the two-center wave function in the static
limit and write down an expansion for g in coordinate
space. Starting with Eq. (20) we use (26) together with
(25a) to obtain, after Fourier transforming in the vari-
able Q,

f dQz YL~(R)G(R;ulm)C' M I
m, MM

(29)

gz
'(I'(q, R)= g g e — q

u 1, m

g'„(e;q)

and the inverse relation

G(R, ulm)= g Q G (R;u™YIM(R)C'~ M, (30)
J,M. L, M

where J=v'2J + 1 and C is a Clebsh-Gordon coefficient,
we substitute (29) and (30) in (28), make use of (27), and
obtain a set of homogeneous algebraic equations for each
J and P that depend parametrically on R alone,

[~'„(Z)] 'G (R;ulL)

X YI (q)G(R;ulm) .

g; (q, R)= g P; (q, R;ulL),
u, 1,L

tI'; ( q, R; u IL )

(34a)

Next, using (30) one easily projects out states of well-
defined angular momentum J and parity P that corre-
spond to the solution G; (R;ulL) for the eigenvalue—JP(R )

( u IL
~

8 ('E; R )
~

u 'I 'L ' ) G (R; u 'I 'L ' ), —JP(R )
2

2ivz
g'„(Z; (R);q)

(uIL
~

& (~,R)
i

u'I'L')
(3 la)

X PiL '(qR)G; (R;ulL), (34b)

= gX~ (IL I'L') I' P "" "" '
j~(PR) .

p
2/pg

+IL g YI {q)YIM(R)C' M M
m, M

(35)

(3 lb)

The j~ is a spherical Bessel function of order X and

Xg (IL;I'L')

The f; (ulL) are channel components which we some-
times denote as 1

" where c stands for a possible com-
bination of u, I, and L. As can be seen in (13) the full
wave function involves the sum of two components, each
one in the appropriate adiabatic Jacobi coordinates

I' X I
0 0 0 0 0 0

—[it" {pi»i)+(I"{P2»i)] (36)

X ~ ( I 'IL 'L;gJ), (32)

(0 0 0) is 3-j coefficient and W is a Racah
coefficient.

It is worth noting at this stage that Eq. (31) is the
two-center equation for the light particle in the frame
where the R is rotating with angular momentum L. The
light particle, while interacting with the heavy particle,
changes its orbital angular momentum from l to I ' while
the angular momentum between the heavy particles
changes from L to L ' such that the total angular
momentum J and parity P are conserved. For fixed J, P,
and R this homogeneous equation may only have a solu-
tion for a discrete set of Z; (R ) where i denotes the
di6'erent solutions to the problem. Therefore, for each J,
I, and i, E; (R) is the electronic binding energy as a
function of R that emerges from v taken as a sum of se-
parable terms.

p& =p

P2=P++
The explicit form of g reads

(37a)

(37b)

u I,L

X g'„( E", (R };q )

Xe'q~[1+( —1) e' '

]

'(q R)G; (R; IL), (3g)

where the &2 factor is added to account for the identity
of the two heavy particles. The adiabatic coordinates
A

&
and %'2 are given by (25c) (%,= —%2——A) and p&

and pz are defined as
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where G is related to G through an overall R-dependent
normalization constant I; (R ),

G; (R;ulL)=I; (R)G; (R;ulL), (39)

that makes P normalized to unity at each R. Comparing
(38) with (36) and (34) one can easily identify each com-
ponent P; (p&,%&) and tij, (pz, &2) which are sometimes
denoted as g'&' and g z', respectively.

Thus we have obtained in (38) an exact solution of the
two-center problem under the sole approximation of
having v represented in a separable form. This is a solu-
tion of well-defined angular momentum J and parity P
which is an exact nonvariational parameter free eigen-
function of the two-center Hamiltonian h in the
re /A, ~0 limit represented in the basis set that
represents v in a separable form. Now we may proceed
to obtain the full solution of H by expanding 4' in the
above defined P's.

proceed as in the standard molecular approach a few
simplifying assumptions that result from rrz «AL are in-
troduced. As we mentioned before we may use (25) to
write the Hamiltonian H in the limit where ~/A, ~O as

v'p v'a+ ~(R)+U(p)+v(
l p+

(42)

Although this approximation is not really essential to
what follows it makes the algebra a great deal easier and
the physics more transparent. Therefore we substitute
(41) and (1) and use (42) for H. As in the standard ap-
proach we multiply on the left by [P; (p, R;c')]' and in-
tegrate in d p and d Qz to obtain a matrix equation

g H;(R; JP)4; (R;c)=E g N (R;JP)4; (R;c),

FADDEE~-gORN-DPPENHEIMER EQUATIONS

I, C I, C

(43)

g g; ( u 1L ) = g —( p ';+ g 2'), (40)

where f; (ulL) is whatever remains of (38) after the
summation in ulL is removed. Denoting each possible
combination of u, I, and L as c, we may write down an
ansatz for 0 as

At this point we are ready to formulate an ansatz for
4 in terms of the two-center wave functions P; previ-
ously obtained in such a way that J and P are preserved.
In order to simplify the notation we go back to Eq. (38)
and write

and H a matrix operator that depends not only on R but
also on derivatives with respect to R. Because the two-
center wave functions f; are normalized to unity the
norm matrix satisfies the following property:

g N; (R;JP)=5;;
C, C

(45)

where X is the norm matrix defined as

N;(R; JP)= f d'p f dQ„[g,' (p, R;c')]*|i; (p, R;c),

(44)

+J~(p, R) = g g g; (p, R;c)@; (R;c),
C

(41)
for all R. Using (38) and (40) to get an explicit form for
Q; (p, R;c) we obtain

where the N's are unknown functions of R. Now we go
back to the Schrodinger equation (1) and use (41) as a
trial function. The N's are to be determined from the
solution of the resulting differential equation. Before we where

&&[G; (R;c')]"G; (R,c), (46)

N;(R; JP) = [A &
(R;&'iu'u)51I 5LI + A2(R;&'ic'c)]

dqAI(R;i'iu'u)= f 27T2 g2 2

e;(R)—
2/7Z

g'„(e; (R );q )g'„(Y,;(R);q )

f2 2

E; (R)—2~

(47)

2d
A (2Ri 'ic 'c ) = g X~ (1'L ', 1L ) f 2772

. j~(qR),
$2 2

E;(R)—
2fYZ

$2 2

( )
fiq
2/pg

g'„(e,'( R );q )g'„( c., ( R );q )
(48)

and X~ is given by (32). To simplify the notation here we have dropped the JP superscript in e;(R) and will continue
to do so. The matrix elements of H may be written as a sum of four terms,

H = T+L+ V+h, (49)

T,'(R;JP)= f d p f dQ~[P; (p, R;c)]*
R dR

~here T involves the differential operator with respect to R, L is the angular momentum operator in R, V the heavy-
heavy potential, and h the two-center Hamiltonian. The matrix elements of T are

P; (p, R;c), (50)
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where the differential operator acts not only on g but also on the &0 to which T is applied. In the traditional adiabatic
approximation ll) is considered a slowly varying function of R. Thus if one neglects derivatives of p with respect to R
the matrix elements of T become

T;(R;JP)=N;(R; JP)
d2

R dR
(51)

The matrix L involves the angular part of the V'z operator which is related to L . Therefore, starting from

L;(R;JP) = f d'p f d Ag [g; (p, R;c') ]* L2 P» r( Rc) (52)

we use the explicit form of P; (p, R, c) to obtain without any further approximation

L,'(R;JP) =
A,R

L(L +1) (, , A'

2
A, (R;t'tu'u)5( I5L L+

L (L +1)+L'(L'+1)
A2 R;t tcc

oo g2
+ g

K=o ~R A 3 (R;i'ic'c) [G, (R;c')]*G, (R;c),
2

(53)

where A
&

and 3 z are given by (47) and (48), respectively, and

2d
A3 (R;i'ic'c)= g ri&&.(E;1'L',1L)f 2772

The coefficient g~~ is

. jz(qR)j& (qR) .
$2 2A'

q
2~

$2 2

E,'(R )—
2/pz

g'„(E,'(R );q )g'„(E;(R );q )
(54)

L X IC L' X' E
.(K 1'L'lL)=iI + '( —1) X X' l l 'L L 'E

0 0 0 0 0 0

X+I:''
K'

l

0 0 0 (55)

Although the summation in K runs to infinity in practice
it can be truncated since large K implies large L and X'.
Due to the presence of the spherical Bessel functions j~
and j~ in the integrand of A3 the contribution of large
K values becomes negligible. The third term in (53) is
usually called the Coriolis coupling term.

The matrix element of V is the simplest one if V(R ) is
the same for all L. In that case

2

B;-,'(R; JP)= (P; (p, Rc') —c; (R)—

Xgcc(P, R;c)) .

Using the appropriate expression for g one is led to

(60)

V,'(R; JP) =N,' (R;JP) V(R ), (56)

where N is the norm matrix (44).
Since the matrix elements of h involve kinetic energy

terms and potential terms we write x [G; (R;c')]*G, (R;c), (61)

B;,'(R;JP) = [B) (R;i 'iu 'u)5tt 5LL, +B2(R;t 'tc'c)]

h =t+v, (57)
where

c', ,'(R;JPI=(g, . (p;R;c') — (' P; (p, R;c))

and add and subtract Z; (R ) to obtain

(58)

where U involves v(p) and U(
~
p+R

~

). For t we start
out with

q 2dq gI('(E; (R);q )g'„(E;(R);q )
B

&
(R;i 'iu 'u) =—

277 $2
E;(R)— q

2/pz

(62)
t ;','(R; JP) =N (R;JP)K; (R )+B;(R;JP)

where

(59)
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B2(R;i 'ic'c)

= g X~ (I'I'., IL)

qzdq g'„,(s,'(R);q )g'„(Z, (R);q )
x( —1)

2w
E, (R)— q

2Jvz

Next if we denote

1I, (p, R;uIL)

=i~e„(E;(R);p}Q& '(p, R)G; (R;ulL),
where

6'„(K;(R);p}

(71)

Xj~(qR) . (63)
2dqdq W 2

2w 2zpz
g'„(e;(R );q )ji(qp),

BI (R;iiu 'u) =5„„ (64)

Because of the normalization condition (A8) chosen for
g, for i'=i

(72)

and P is given by (35) with p instead of q, we get for the
last matrix element

and Bz ———B as given by (31b).
Concerning u, we first go back to (34), (36), (38), and

(40) to note that g; is the sum in c =(uIL) of two-
channel component g'&' in (p, R) and 11 2' in (p+R, R).
If we also denote u(p) and v(

~
p+R

~

) as u& and vz, re-
spectively, one may use symmetry arguments to show
that

ui I& ~~~= —IPl'+42 ~
l
Ul+~2

l ~ Ill'+42 ~)2 v'2

&@'&'
~

uz
~

P'&'& = g [XJ (I'L';IL)B3 (R;i'ic'c)]

X [G,' (R;c')]*G; (R;c),

where

B3 (R;i'ic'c)= f p dpe'„(E,'(R);p}u~(p, R)

x e'„(E,(R);p},

(73)

(74)

+ & g,'''' ~, ~ f '; & + & g ',
''' ~, ~ g '; &, (65)

where the g are given by (34) with G instead of G. Since
we are using the Hilbert-Schmidt expansion, the channel
component g'; is an eigenfunction of gov~ for the eigen-
value g'„(Z;) (see Appendix A)

and

X~ ( I 'L '; IL ) = i '+ '
( —1 )

+ I ' I L 'L

I' X I L X L'
0 0 0 0 0 0

(66)

X[G; (R;c')]*G; (R;c)5iI5L L,
(67)

u, g'j'(s; ) =g'„(E; )go '(E; )g'&'(E; ) .

Therefore

& P ',
'

~
v,

~ g '; & = —g'„( s; ( R ) }B'& ( R; i 'i u 'u )

x W(I'IL'L;XJ) . (75}

If an exact solution of the two-center Hamiltonian h is
known one can easily check how good are the eigenfunc-
tions 11; we have developed in Secs. II and III by calcu-
lating e; (R) as

&p'&'
~
vt

~

g2'& = —g„.(E; (R))B2(R;t'&c'c) 8", (R)=&q",
~

I
~

q", &, (76)

X [G; (R;c')]'G; (R;c),
&g/j2'

~
v&

~ g f & = —g'„(E;(R)}B2(R;ii'c'c)

(68)
and comparing with the exact solution. Using (59), (61),
and (65) together with (45) we get

X[G; (R;c')]*G; (R;c), (69) s~p(R)=s; (R)+ Q [B ;'(R;JP)+u ;'(R;JP)] . (77)

where B, and B2 are given by (62) and (63), respectively.
As for & 11', '

~
v2

~

11'&'& one needs some extra work. Since
the calculation is more easily done in configuration space
and its difficulty depends on the choice for U, we do it
here in a very schematic way. First we make a partial
wave expansion for u (

~
p+ R

~
),

4m
u(

~
p+R

~

)= g u~(p, R), Y~~(p)I'~~( —R) .
2

(70)

C, C

Now that we have calculated all matrix elements of the
theory and checked the accuracy of our basis set, we can
go back to (43) and write down a set of coupled
differential equations for the N's. To make things as
simple as possible we take (51) for T which involves
neglecting derivatives of f with respect to R. Although
this is not really needed in our theory it makes the result
more transparent. Therefore putting together (51), (53),
(56), (59), and (65) with (43) we get
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& ' N R P' ~ + R dR
d 2 d XJ (OL;OL') =5~p5LL 5JL, ( —1) (83)

+ V(R)+ e J~(R) F.—

+ [L ', ,'(R;JP)+B;,,'(R; JP)

Using (3 la), (31b), (18), (79), and (83) we get a single
equation for G(R)=G (R;10J),

1 — +—E G(R)1

Z

+v ', '(R;JP)] .4&, (R;c)=0, (78)

=( —1)f, j (pR)G(R) .
277 g —p

(84)

V. APPLICATION TO THE Hg+ MOLECULE

With the theory developed in Secs. II—IV we now
solve the corresponding equations for the Hz+ molecule
where an exact solution of the two-center problem is al-
ready known. First we solve (31a) and (31b) to obtain

(R) and G; (R;ulL). The g'„(Y.;p) are given in Ap-
pendix C. They are the eigenfunctions of the vigp(E)
kernel at the energy c where v is the potential between
the electron and the proton. The corresponding eigen-
value rl'„(E) is given by

ln'. (E)l '= —5,
Z

where

n =u+I,

(79)

(80)

(81)

in units of A=2rrz. = 1. If we also take the rydberg as the
unit of energy, the corresponding unit of length is the
Bohr radius. In those units

v (r) = —2Z/r, (82)

where Z is the charge number of the atomic nucleus
which is Z =1 for hydrogen. As mentioned before the
index u runs from 1 to N~ where N& is the number of se-
parable terms that are taken at each l, and n is the prin-
cipal quantum number.

In the framework of the equations we propose in Sec.
II, the simplest approach involves a single-term separ-
able representation of U through the lowest eigenvector
gl(E;p) which corresponds to the first hydrogenic state
n =1, l =0. From (32) we find that for l =l'=0 we get
only L =0 which implies L =L'. Therefore

which replaces the original adiabatic equation (8). There
are only two approximations involved in the process of
reaching Eq. (78). The first one involves the neglect of
terms in ~/A, in the original Hamiltonian H defined in
(2) to get (42). Considering that m, /m =2000 in molec-
ular physics, terms in ~/JM may be calculated in per-
turbation theory. The second approximation is the
neglect of derivatives of P with respect to R which is
something that can easily be included by working a little
harder. Therefore (78) are formally exact equations for
the solution of the molecular three-body problem in a
rotationally invariant nonvariational parameter-free
framework. Now we proceed to test our theory in Hz+
molecule where an exact solution exists.

At R =0 we may use the normalization condition for
the g's shown in (A8) to obtain

1+(—1) — )/ —e G(0) =0 .
Z

(85)

For J even a nontrivial solution to (85) implies

, +(0)= —(2Z) (86)

1 5+(1+5R)e ~=0
Z 7 (87)

(88)

which for Z =1 gives E, +(0)= —4 Ry. At R = oo the
right-hand side of (84) goes to zero and we get
E &+(oo )= —Z which for Z =1 becomes e|+( oo )= —1

Ry. In the united-atom limit (R =0) one has two pro-
tons interacting with a single electron which leads to a
hydrogenlike system with Z =2. Using (B13) with n =1
the ground-state energy of such system becomes c.

&
———4

Ry. In the separated-atom limit (R = oo ) the electron
goes with either one of the protons leading to c.

&
———1

Ry. Therefore our effective potential s, +(R) resulting
from the solution of the Faddeev two-center equation
(84) with a single-term separable representation of the
potential U = —2Z/r is exact at both extremes. This re-
sult is not independent of the method chosen to obtain a
separable representation for v. It is there that lies the
great advantage of the Hilbert-Schmidt (HS) representa-
tion. Had we taken the Ernst, Shakin, and Thaler (EST)
method, the unitary pole expansion ' (UPE), or the
Adhikari-Sloan (AS) approach the resulting one-term
approximation for the calculation of 8 1+(0) would differ
from the exact result. If EST (or UPE at the ground-
state pole) is used instead of HS, one gets
E &+(0)= —3.343 15 Ry for a single term in the expan-
sion of the e-p Coulomb potential which does not con-
verge to —4 Ry when more terms are used in the expan-
sion. Nevertheless, like HS, EST is exact in the
separated-atom limit (R = oo ) since one may explicitly
introduce there as many bound-state poles of the e -p po-
tential as one needs; the existence of each pole is associ-
ated with a single term in the expansion. This is not the
case for UPE or for any version of AS that does not
coincide with HS or EST.

For intermediate R we have to solve (84). Using (C8)
for gi, the integral involving jp(kR) may be easily done
analytically. A nonzero G(R) implies the solution of a
transcendental equation which for L even reads
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The corresponding Z J~+(R) is shown in Table I and the
normalized wave function g(p, R) resulting from (38)
reads

1(, +(p, R)= [4vr&2(1+S)]

i+(R)=Z &+(R)+ [ 25 [1+(1+5R)e ]
1

1+S
—25[1+2(1+5R)e ]

x [R io(p)+R io( I
p+R

I )],=s(~) (89) 2——[1—(1+5R)e "]] .
R

where R &o is the radial part of the hydrogen wave func-
tion given in (Bl) with a~ changed into 5(R) at each R,
and

S = ( 1+5R + —,
' 5 R )e

5=—5(R)=V —E )+(R) .

(90)

(91)

Therefore in lowest-order approximation we get a two-
center wave function similar to the well-known LCAO
wave function. At R =0 it becomes an exact solution of
the corresponding united-atom problem, and at R = ~ it
coincides with LCAO which is also an exact solution in
the separated-atom limit.

In order to check the accuracy of the wave function
(89) against an exact solution of h for the lowest
molecular-orbital state (Iso.g in the united-atom nota-
tion) we calculate (76)

(92)

Since all integrals involving B(R) and U(R) (see Sec. IV)
may be done analytically we get

(93)

The resulting e&+(R) is also shown in Table I and is
compared with the exact lscrg result. Since X &+(R) is
exact at R =0 the second term in (93) is zero in that lim-
it where 5=2. If we make E &+(R)=e&———1 for all R,
then 5 =a

&

——1 and (89) becomes the standard LCAO
wave function. Consequently (93) turns into the LCAO
two-center energy

2
ELc~o(R ) = —1—

1+S (1+R)e

+—[1—(1+R)e ]
1

R

(94)
which is also shown in Table I for comparison. If one
adds to the two-center energy e(R ) the proton-proton
Coulomb repulsion and subtracts the asymptotic energy
s(oo ), one gets the potential energy curve for the Iscrg
state which is responsible for a bound H2+ molecule.
Defining

TABLE I. Two-center binding energies (rydbergs) for a sin-
gle (1s)-state representation of the Coulomb potential. E (+ (R)=e)+(R)+——e)+( ca ),R (95)

R /ap

0.0
0.2
0.4
0.6
0.8
1.0
1.2
1.4
1.6
1.8
2.0
2.2
2.4
2.6
2.8
3.0
3.2
3.4
3.6
3.8
4.0

—z', +(R)

4.000 00
3.769 84
3.358 98
2.970 24
2.645 88
2.382 74
2.169 38
1.995 00
1.851 07
1.731 07
1.630 13
1.544 54
1.471 48
1.408 75
1.354 65
1.307 81
1.267 14
1.231 74
1.200 89
1.173 98
1.15049

—c)+(R)

4.000 00
3.856 77
3.597 97
3.333 90
3.093 63
2.882 50
2.698 90
2.539 37
2.400 39
2.278 79
2.171 91
2.077 53
1.993 85
1.91936
1 ~ 852 82
1.793 20
1.739 63
1.691 38
1.647 83
1.608 44
1.572 76

1sa.g
exact

4.000 00
3.857 41
3.601 57
3.343 01
3.108 95
2.903 56
2.724 61
2.568 53
2.431 86
2.311 62
2.205 25
2.11076
2.026 42
1.950 90
1.882 99
1.821 78
1.766 47
1.716 39
1.670 97
1.629 71
1.592 16

LCAO
(ls)

3.000 00
2.984 74
2.944 93
2.882 92
2.802 99
2.71076
2.611 55
2.509 66
2.408 33
2.$09 88
2.215 88
2. 127 29
2.044 65
1.968 19
1.897 88
1.833 57
1.774 96
1.721 73
1.673 48
1.629 82
1.590 36

o 6 E, (R)

CL
4

2

0

0
cL

2

we show in Fig. 3 our lowest-order result compared to
the known exact solution. The electronic Bohr radius is

o =0 528 177 A
In order to improve on the one-term approximation in

a consistent way we include more terms in the separable
expansion of U. This also leads to the possibility of
finding other molecular-orbital states which correspond

5.0
6.0
7.0
8.0
9.0

1.071 24
1.032 30
1.014 01
1.005 96
1.002 47

1.437 50
1.351 26
1.293 84
1.253 58
1.223 79

1.448 84
1.357 26
1.296 90
1.255 14
1.224 61

1.443 21
1.352 79
1.294 20
1.253 66
1.223 81

R/a,

FICx. 3. Potential energy curve (eV) vs R (Bohr radii). The
solid line denotes the exact 1so.g potential (Ref. 7) while the
dashed line is the result of our calculation with a one-term ex-
pansion for U.
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TABLE II ~ Possible channels of the two-center Faddeev
equation (31) for J =0+ and J =2+.

J =0+

JP=2+

to excited electronic configurations that bear support on
states with n ) 1 either on the united-atom limit or the
separated-atom extreme. Since we work with states of
well-defined angular momentum J and parity P, we note
that the lowest state only emerges for J even and parity
+ . Furthermore we find that e; (R) is the same for all

J's of a given parity. Nevertheless the resulting wave
function P; depends on J not only through the number
of channels c =(ulL) that couple to J but also through
the coefficients G; (R;c) that result from the solution of
(31a). In Table II we present the channels involved in

FIG. 4. Two-center binding energy Z &+(R) (rydbergs) vs R
(Bohr radii) for increasing number of separable terms in Eq.
(31). The dash —double-dotted line is the exact 1so.g result
(Ref. 7).

the solution of (31) for J =0+ and 2+ for a calculation
involving the three lowest hydrogenic states up to n =2.
Therefore we study first the lowest positive parity solu-
tion of (31) Z, +(R) corresponding to Iscrg as the num-

ber of terms in the separable expansion of U is increased
from one to 15. Denoting n, „and l,„ the largest n

TABLE III. Calculated electronic binding energy —c&+(R) (rydbergs) versus R (Bohr radii) for in-

creasing number of terms used in the separable representation of v. The exact 1scrg result is shown
for comparison.

max~ max )

R /ao

0.0
0.2
0.4
0.6
0.8
1.0
1.2
1.4
1.6
1.8
2.0
2.2
2.4
2.6
2.8
3.0
3.2
3.4
3.6
3.8
4.0

(1,0)

4.000 00
3.856 76
3.597 96
3.333 90
3.093 63
2.882 50
2.698 90
2.539 37
2.400 39
2.278 79
2.171 91
2.077 53
1.993 85
1.919 36
1.852 82
1.793 19
1.739 63
1.691 38
1.647 82
1.608 44
1.572 75

(2, 1)

4.000 00
3.856 13
3.596 23
3.334 08
3.097 13
2.888 53
2.705 95
2.546 15
2.406 05
2.282 89
2.174 31
2.078 28
1.993 09
1.917 32
1.849 76
1.789 40
1.735 40
1.687 01
1.643 61
1.604 63
1.569 59

(3,2)

4.000 00
3.856 92
3.600 27
3.340 81
3.105 80
2.899 47
2.719 66
2.562 70
2.425 00
2.303 42
2.195 38
2.098 81
2.012 02
1.933 68
1.862 72
1.798 29
1.739 68
1.686 34
1.637 78
1.593 61
1.553 51

(4,3)

4.000 00
3.857 16
3.601 15
3.342 31
3.108 09
2.902 52
2.723 25
2.566 65
2.429 26
2.308 14
2.200 87
2.105 46
2.020 26
1.943 89
1.875 19
1.813 15
1.756 94
1.705 82
1.659 19
1.616 53
1.577 40

(5,4)

4.000 00
3.857 25
3.601 46
3.342 90
3.108 87
2.903 36
2.724 14
2.567 73
2.430 75
2.31022
2.203 63
2.108 89
2.024 27
1.948 35
1 ~ 879 97
1.818 15
1.762 12
1.711 23
1.664 93
1.622 75
1.584 29

1sog
exact

4.000 00
3.857 31
3.601 57
3 ~ 343 01
3 ~ 108 95
2.903 56
2.724 61
2.568 53
2.431 86
2.311 62
2.205 25
2.11076
2.026 42
1.950 90
1.882 99
1.821 78
1.766 47
1.716 39
1.670 97
1.629 71
1.592 16

5.0
6.0
7.0
8.0
9.0

1.437 49
1.351 26
1.293 84
1.253 58
1.223 79

1.438 91
1.354 48
1.295 92
1.254 50
1.224 14

1.405 07
1.324 42
1.282 49
1.251 46
1.223 84

1.424 17
1.325 01
1.266 31
1.235 01
1.215 64

1.436 48
1.340 88
1.277 93
1.237 04
1.210 97

1.448 84
1.357 26
1.296 90
1.255 14
1.224 61
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and I included, we show in Fig. 4 how Z +(R) hc anges
w en n,„, ,„) takes the values running from (2, 1) to

'+ R
5,4. Likewise, in Table III we show th 1 bw e va ues obtained
or Ei (R) resulting from the calculation of (76) f

creasin
or in-

sing number of terms. Compared with the exact
lscrg curve we find that the calculated ei+(R) a ears
to conver ege monotonically to the exact result. At 11 R

c
&

appears

w e find that from an initial value for E with n,„=1 and
e . a

,„=0, one develops first a larger discrepancy relative
to the exact results before monotonic convergence is

term in the expansion of v which moves to —1.55351
Ry when all terms up to (3,2) are used for U. This initial
departure from the exact answer is reversed when higher
hydro genic states are included. The results becomes

t e weight factors G i+(R, c) change as more separ-
able terms are included. This is shown in Table IV for
R =4ao and (nm», lm») running from (1,0) to (5,4). The
weight factor of the (ls) term decreases first when the
number of terms increases from (1,0) to (3,2). At (4,3)
the trend is reversed and as shown in Table III from
then on c. +&4a( 0 ) converges monotonically. Therefore
one may conclude that at a given R, once the dominant
hydrogenic states are included, e

&

+ (R ) converges mono-
tonically to the exact electronic molecular energy. For
15 terms in the expansion of v we get three-digit accura-
cy for R between zero and almost four Bohr radii. In
Fig. 5 we compare the calculated E, + (R) with n,„=5
and l =4 to th e exact 1so.g potential energy curve.
At R =2a
the m'

0 w ich nearly corresponds to the positi f
J+

iion o
e minimum E& ———2.7616 eV and E = —2. 7911

eV.
1sog

e . Since in Table III at R =Sao one finds that for
(n, l )=(5 4)max ~ max ~, ', the trend away from the exact 1so.g
result has just been reversed, we expect that b
n m», m» ) = (&,7) we should be able to reproduce the ex-

c a y

—1—
O

2

I

X
LLI

0
CL

FIG. 5. Potential energy curve (eV) vs R (Bohr radii). The
solid line denotes the exact 1scrg potential (Ref. 7) h'l h

o te ine is the result of our calculation for 15 terms in the
expansion of v. (n „,l,„)= (5.4).

act 1sog potential energy curve in the whole range of R
values between zero and Sao. Due to computer limita-
tions at this time we restricted ourselves to just 15 terms
in the expansion of v which corresponds to
(climax, lm»)=(5i4) Finally, in Fig. 6 we show G i+(R c)
with l =I. as a function of R for diFerent channels and
(n 1 &= 54 Although, as expected, the dominant
component corresponds to the (ls) state, we find that
(2s), (3s) 2s, s, (Zp), (3p), and (3d) states have comparable
strength that increases with R before vanishing at
R ~no.

TABLE IV. %eight factors 6 &+(R;ull) at R =4ao for increasin n

State
(nl)

(1s)
(2s)
(3s)
(4s)
(5s)
(2p)
(3p)
(4p)
(5p)
(3d)
(4d )

(5d)
(4f )

(5f)
(5g)

(1,0)

1.41

(2, 1)

1.21
—2.44 x 10- '

—2.81 X 10-'

(n,„,l,„)
(3,2)

1.14
—2.63 x10
—1.19x 10-'

—2.62x 10
—1.73 X 10-'

—1.45 x 10—'

(4,3)

1.16
—2.61x 10—'

1.11X 10
—2.79X10 '

—2.24x 10-'
1.52 x 10

—5.49 x 10-'

—1.28 x 10-'
—8.25 x 10

9.10x 10-'

(5,4)

1.18
—2.53 x 10-'

1.01x 10- '

—2.71 x 10-'
—'5.27 x 10
—2.01x 10-'

1.41x 10-'
—5.71 x 10-'
—3.22 x 10-'
—1.29 x 10

8.89x10 ~

—1.12x 10
9 44x10

—3.81X10 '
6.30x 10-'
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TABLE V. Same as in Table III for —c2 (R). The exact 2po. u result is shown for comparison.

R /ao

0.0
0.2
0.4
0.6
0.8
1.0
1.2
1.4
1.6
1.8
2.0
2.2
2.4
2.6
2.8
3.0
3.2
3.4
3.6
3.8
40

5.0
6.0
7.0
8.0
9.0

(2, 1)

1.0000
1.005 32
1.021 04
1.046 32
1.079 41
1.11780
1.158 57
1.198 86
1.236 37
1.269 56
1.297 66
1.320 48
1.338 27
1.351 52
1.360 84
1.366 84
1.370 11
1.371 17
1.370 47
1.368 36
1.365 15

1.339 36
1.307 02
1.274 75
1.245 59
1.220 51

(3,2)

1.000 00
1.005 32
1.021 26
1.047 19
1.081 36
1.120 93
1.162 67
1.203 73
1.241 91
1.275 72
1.304 28
1.327 36
1.345 21
1.358 43
1.367 71
1.373 74
1.377 12
1.378 36
1.377 85
1.375 92
1.372 81

1.345 77
1.301 19
1.275 49
1.245 44
1.220 27

(nmax~Imax )

(4,3)

1.OOOOO

1.005 34
1.021 45
1.048 08
1.083 95
1.126 47
1.172 17
1.217 38
1.285 99
1.294 94
1.324 28
1.346 95
1.363 48
1.374 67
1.381 45
1.384 63
1.384 95
1.382 97
1.379 16
1.373 94
1.367 64

1.329 78
1.295 66
1.268 59
1.243 94
1.220 38

(5,4)

1.000 00
1.005 35
1.021 50
1.048 33
1.084 73
1.128 16
1.174 97
1.221 19
1.263 55
1.300 04
1.329 88
1.353 14
1.370 40
1.382 39
1.389 90
1 ~ 393 69
1.394 46
1.392 85
1.389 38
1.384 48
1.378 49

1.339 64
1.296 73
1.258 83
1.230 72
1.211 29

2po u

exact

1.000 00
1.005 35
1.021 58
1.048 61
1.085 48
1.129 62
1.177 22
1.224 15
1.267 21
1.304 46
1.335 07
1.359 12
1.377 15
1.389 91
1.398 22
1.402 85
1.404 43
1.403 58
1.400 82
1.396 54
1.391 10

1.354 58
1.314 62
1.278 26
1.247 21
1.221 31

TABLE VI. Same as in Table III for —c2 (R). The exact 2pmu result is shown for comparison.

R /ao (2, 1) (3,2)

( + max ~ Imax )

(4,3) (5,4)
2p 7Tu

exact

0.0
0.2
0.4
0.6
0.8
1.0
1.2
1.4
1.6
1.8
2.0
2.2
2.4
2.6
2.8
3.0
3.2
3.4
3.6
3.8
4.0

5.0
6.0
7.0
8.0
9.0

1.000 00
0.997 38
0.989 90
0.978 41
0.963 88
0.947 15
0.928 96
0.909 89
0.890 40
0.870 82
0.851 40
0.832 32
0.813 71
0.795 65
0.778 18
0.761 33
0.745 12
0.729 55
0.714 60
0.700 26
0.686 52

0.625 92
0.576 82
0.536 75
0.503 78
0.476 45

1.000 00
0.997 37
0.989 83
0.978 17
0.963 41
0.946 52
0.928 32
0.909 42
0.890 24
0.871 08
0.852 11
0.833 46
0.815 23
0.797 48
0.780 25
0.763 56
0.747 45
0.731 91
0.716 96
0.702 57
0.688 75

0.627 56
0.577 73
0.536 94
0.503 35
0.475 61

1.000 00
0.997 38
0.989 91
0.978 49
0.964 16
0.947 81
0.930 22
0.911 88
0.893 25
0.874 61
0.856 17
0.838 07
0.820 40
0.803 21
0.786 55
0.770 41
0.754 81
0.739 73
0.725 16
0.711 10
0.697 52

0.636 24
0.584 44
0.540 37
0.502 78
0.470 74

1.000 00
0.997 38
0.989 93
0.978 57
0.964 32
0.948 09
0.930 60
0.912 41
0.893 92
0.875 43
0.857 14
0.839 18
0.821 65
0.804 61
0.788 08
0.772 08
0.756 63
0.741 72
0.727 34
0.713 48
0.700 12

0.640 34
0.590 50
0.548 38
0.512 23
0.480 80

1.000 00
0.997 40
0.989 93
0.978 60
0.964 39
0.948 21
0.930 78
0.912 65
0.894 22
0.875 79
0.857 55
0.839 65
0.822 18
0.805 21
0.788 78
0.772 89
0.757 56
0.742 78
0.728 54
0.714 84
0.701 65

0.642 77
0.593 98
0.553 26
0.51902
0.490 05
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FIG. 10. Calculated electronic binding energy cz+(R) (solid
lines) an c,3+(R) (dashed lines) with (n,„,l,„)=(4,3). The
dash —double-dotted lines are in the exact 2scrg and 3dog re-
sults (Ref. 7).

I I i I I I i I I

0 1 2 3 4 5 0 7 I 9 10

R/~

FIG. 11. Weight factors G;+(R;ull) vs R (Bohr radii) for
several hydrogenic states (nl) included in a ten-term expansion
of U. (n,„,l „)=(4,3).

for R &5ao. In Fig. 10 we depict the exact 2so.g and
3d erg curves as well as the calculated s, + (R ) and
e2+(R) for (n,„,l,„)=(4,3). In Table VII we display
the corresponding numerical values to show the accura-
cy of the calculation and in Fig. 11, for ( n, „,1,„)
= (4,3), we show the G; + (R,c ) as a function of R for
the asymptotic channels c that correspond to (2s) and
(2p) states. We find that around R =4.ga0 the G's
change rapidly with R and for R & 10ao the weight fac-
tors for the (2s) and (2p) states are the only ones to
remain finite. Comparing the (2s) and (2p) weight fac-
tors corresponding to different molecular-orbital states
i =2 and 3 we find that there is no indication of curves

crossing in the solution of the equations we propose
here. Instead, the curves smoothly tough each other.
As discussed below this result may shed light on the
complicated problem of inhibited curve crossing in
molecular physics. The noncrossing rule that was first
pointed out by Neumann and Wigner states that "for
an infinitely slow change of internuclear distance two
electronic states of the same species (same symmetry
properties) cannot cross each other. " It does happen
frequently that in a certain approximation two potential
curves of the same species intersect; but according to the
noncrossing rule in a sufficiently high approximation this
interaction is avoided, that is, the upper curve on the

TABLE VII. Same as in Table III for —E2+(R) and —c3+(R). The exact 2so u and 3do.g results are shown for comparison.

R /ao

0.0
1.0
2.0
3.0
3.2
3.4
3.6
3.8
4.0
4.2
4.4
4.6
4.8
5.0
6.0
7.0
8.0
9.0

2$0g
exact

1.000 00
0.845 85
0.721 73
0.637 77
0.624 12
0.611 29
0.599 21
0.587 80
0.577 03
0.566 84
0.557 17
0.548 01
0.539 29
0.531 01
0.495 11
0.466 56
0.443 55
0.424 83

(5,4)

1.000 00
0.844 88
0.71999
0.634 72
0.620 70
0.607 51
0.595 09
0.583 49
0.573 03
0.565 61
0.568 08
0.578 70
0.587 68
0.594 60
0.612 23
0.609 95
0.595 15
0.573 70

—~J2+(R)

(4,3)

1.000 00
0.843 76
0.717 53
0.631 45
0.617 42
0.604 22
0.591 80
0.580 19
0.569 50
0.560 16
0.553 45
0.553 19
0.565 15
0.583 58
0.625 23
0.626 98
0.609 33
0.582 14

(3,2)

1.000 00
0.838 39
0.712 37
0.625 50
0.611 57
0.598 60
0.586 54
0.575 36
0.565 06
0.555 75
0.547 69
0.541 61
0.539 43
0.546 04
0.632 45
0.637 13
0.610 14
0.574 83

(3,2)

0.444 44
0.449 77
0.464 41
0.492 81
0.501 34
0.511 13
0.522 20
0.534 46
0.547 66
0.561 28
0.574 56
0.586 37
0.594 61
0.593 90
0.491 55
0.459 90
0.438 88
0.422 50

—E3+(R)

(4,3)

0.444 44
0.449 84
0.466 07
0.497 51
0.505 92
0.514 96
0.524 48
0.534 27
0.543 97
0.552 84
0.559 24
0.559 20
0.547 68
0.530 46
0.479 19
0.445 90
0.420 00
0.400 15

(5,4)

0.444 44
0.450 23
0.469 80
0.508 38
0.518 27
0.528 54
0.538 93
0.549 09
0.558 40
0.564 75
0.561 22
0.548 96
0.537 81
0.528 25
0.489 90
0.459 21
0.433 11
0.410 56

3d og
exact

0.444 44
0.450 37
0.471 55
0.515 00
0.526 12
0.537 61
0.549 19
0.560 56
0.571 45
0.581 61
0.590 86
0.599 05
0.606 11
0.612 02
0.624 99
0.616 84
0.597 02
0.572 22
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right of the point of intersection goes over into the
upper curve on the left and the lower curve on the right
goes to the lower curve on the left. In the Hz+ molecule
the lower approximation involves the solution of the
two-center problem in the rest frame of the molecule
where R is fixed. As calculated in Ref. 7 this leads to
curve crossing for the 2so.d and 3do.d energy states. In
our work the distance R is fixed but R can rotate with
angular momentum L such that L +l couple to total an-
gular momentum J (1 is angular momentum of the elec-
tron). Therefore we conclude that in Hz+ noncrossing
of electronic states of the same species is due to the
correct treatment of angular-momentum states so that
the two-center eigenfunction may have well-defined J
and P.

After we have shown how the results of our work
reproduce with reasonable accuracy the known exact
electronic binding energies for different molecular orbit-
als of the H2+ molecule, the only thing left is to solve
the set of coupled differential equations (78) to obtain,
for each J and P, the energy levels of the H2+ molecule.
For the low-lying states one may proceed as in the
Born-Oppenheimer approximation to neglect the cou-
pling to other molecular-orbital states other than the
iso.g. For (n,„,l,„)=(5,4) this amounts to the solu-
tion of 15 coupled equations for J =0+, 31 for 2+, and
35 for J)4. Using the spline method we are in the
process of developing a bound-state code for the solu-
tion of a general coupled-channel problem that allows
for large number of channels and provides at least four-
digit accuracy. For this reason the results of such work
will be reported at a later time.

VI. CONCLUSION

In the present work we have developed a nonvaria-
tional parameter-free approach to the molecular three-
body problem which is based on the exact solution of the
Faddeev two-center Hamiltonian h given in (5) for a se-

parable representation of the light-heavy potential v

through the Hilbert-Schmidt method. The wave func-
tion %' of the full three-body Hamiltonian H with total
angular momentum J and parity P is written in the form
of an ansatz involving the channel components P" of the
Faddeev two-center eigenfunctions we solved first with a
separable v and unknown coefficients +" that depend
only on the distance R between the two heavy particles.
Based on the above-mentioned ansatz for +, we were
able to formulate a set of coupled differential equations
for the unknowns N" which are formally exact equations
for the molecular three-body problem. Therefore the
wave function 4 we get has well-defined angular momen-
tum J and parity P and is a nonvariational parameter-
free rotationally invariant solution of H.

As a first attempt to test this new molecular approach
proposed here, we have solved the resulting equations
for the Hz+ molecule. For each J and P, we have calcu-
lated the electronic binding energy for different
molecular-orbital states as a function of R. We find that
for increasing number of terms in the separable represen-

tation of v the results of our calculation appear to con-
verge monotonically to exact electronic energies corre-
sponding to 1so.g, 2p o.u, 2p ~u, 2s erg, and 3d crg.
Reasonable accuracy is reached for 15 terms in the ex-
pansion of v which amounts to including all hydrogenic
states up to (5g). Computer limitations prevented us
from going any further at this time. Although we are
using a global basis set to span v, we find no difficulty in
getting monotonic convergence for all molecular-orbital
states we have tried, including 2sog and 3do.g which
asymptotically couple to different hydrogenic states.
This may be due to the nonvariational nature of our cal-
culation where the two-center eigenfunctions P; are ob-
tained from the exact solution of an homogeneous equa-
tion whose solution only exists for discrete E; (R). As
more terms in the separable expansion of v are included
the E; (R) approach the corresponding exact molecular
energy curves, and the weight factors G; (R;c) with
which each hydrogenic state (nl) contributes to g; in
channel c are exactly adjusted through the solution of an
eigenvalue problem. This natural adjustment may be the
key to the observed monotonic convergence for s; (R)
once the dominant hydrogenic states at a given R are in-
cluded. Therefore we expect to be able to reach four- or
five-digit accuracy in the range 0&R &10ao once the
computer facilities at our disposal allow us to go above
(n,„,1,„)=(5,4).

Another great advantage in our method is the use of
the Hilbert-Schmidt expansion for the electron-proton
Coulomb potential. This method is the only one that
provides an exact solution of the two-center problem at
both R =0 and R = oo for all molecular-orbital states
one might consider. Therefore having naturally con-
strained an exact result at both extremes the conver-
gence in between follows from the correct treatment of
the dynamics in the frame where the molecule rotates.
Finally, in the framework of our method electronic ener-

gy curves that cross each other in the rest frame of the
molecule (R fixed) smoothly touch each other in the
frame where the molecule rotates with total angular
momentum J and parity P. This confirms the noncross-
ing rule of Neumann and Wigner and shows how with
few terms in the expansion of v and the correct treat-
ment of the dynamics we get the needed electronic
molecular energy curves and simultaneously provide a
simple interpretation for the noncrossing rule in H2+

Although further work is still needed to solve the cou-
pled set of differential equations in each J we expect
our method to provide very accurate results for the ener-

gy levels of the Hz+ molecule as well as wave functions
with good J and P that may be used to calculate transi-
tion rates involving rotational and vibrational levels.
Furthermore, we expect to be able to generalize the
method so that it may be used in more complicated dia-
tomic or triatomic molecules such as H2, H3+, and oth-
ers, not to mention its application to the understanding
of the ddt mesonic molecule. Since m&/m, =250 we
expect factors of ~/A, to contribute more than in H2+.
Nevertheless, due to the nature of our formulation we
expect to be able to account for some of these factors.
Work in some of these problems is currently underway.
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APPENDIX A: WEINBERG NATURAL EXPANSION

Let u be a two-body potential and gp(6') the free resolvent whose momentum-space representation is given by

(k'lg (6')lk)= 6' — k
2v

6(k —k'), (A 1)

where 6 is the two-body center-of-mass energy and
Lippmann-Schwinger equation for the t matrix reads

d k"
(k'

l

t (8)
l
k) = (k'

l
v

l
k) + f (k'

l
u

l

k" )
(2m. )

$2
—1

k"
2v

(k"
l

t(6')
l
k), (A2)

v the appropriate reduced mass. In momentum space the

which after partial wave decomposition becomes

tt ( 6;k ', k ) = ui ( k 'k ) + J vI ( k ', k "
)

~ k" dk"
2m

(A12)

The full momentum-space representation of the t matrix
reads

where

$2
2

2v
t((6;k",k),

(A3)

NI

&k'lt(e) lk&= yy4~Y, * (k )g„'(@;k )r„'(@)
u l, m

xk'„(6 k)~im('k) . (A13)

(k'
l

v
l
k) = + 4rru~(k', k)Y~' (k')Yl (k) .

I, m

In operator form we may write (A3) as

(A4)

t&( 6 ) =u~+ vigp( 6)tI(6 ), (A5)

whose Kernel is uigp(6). In the Weinberg' natural ex-
pansion one uses the eigenvectors of the kernel to
represent U in a separable form. From

and

v~gp(6)
l

g'„(A') ) =g'„(8)
l
g„(@)), (A6)

gp(@)vi
l
0'. (@)&=g'.(@)

l

0'. (@)& (A7)

&g'„(6') lg, (@)
l
g'„(8)&=—&„„. (A8)

Using the eigenfunctions g'„ it can be shown' that u~

may be written as

NI

u, = y lg'„(~)&g'„(~)(g'„(&)l, (A9)

which once substituted in (A5) leads, with the help of
(A8), to

N,

(A10)

one obtains the right and left eigenfunctions of v~gp(8)
for the same eigenvalue 2/„(6). The index u denotes the
different eigenvalues of ui at 6. The eigenfunctions of g'„

are usually normalized such that

If the potential v has a bound state at B=Ep in 1 =0
then r/&(Ep)=1. If a second one exists at 6=E& then
7/z(E&)=1 while 2/&(E&) & 1. The same happens for 1 ~0.
Therefore tI develops a pole at the bound-state energies
through 2/'„(6). For potentials v(r) that are attractive
for all r the g's are positive for —(x) & 8 & 0 and
2/'„( —ao ) =0. The index u denotes the number of nodes
of the eigenfunction g'„. The eigenfunctions correspond-
ing to the lowest eigenvalue (u =1) has zero nodes; the
number of nodes increases with u.

APPENDIX B: BOUND-STATE FORM FACTORS
OF THE HYDROGEN ATOM

The radial part of the hydrogen wave function is given
by the well-known expression

R„I(r)= (na„)
n

' 1/2
(n —1 —1)! (

—a r
(2a„r) e

(n +/)!

Xl. '+', (2a„r), (B1)

L2I+1 ( )

where n is the principal quantum number, l the orbital
angular momentum, and I. the Laguerre polynomial.
The corresponding binding energy is c,„and
a„=Q—2v/R E„where v is given by (11). Using a
power-series representation for L,

—2/'„( & )r'„(6)=
1 —g„'(8)

(A 1 1) n —I —1

s=0
( 1), (n +/)l s

(n —1 —1 —s)!(21+ 1+s)!s!
where N~ is the number of eigenfunctions used to
represent v. Comparing (A6) with (A7) one may easily
relate g with P, we get

(B2)
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1/2
( n —l —1 )!( n + l )!R„1(r)= 2a„ (2a„r)'e

R„,(k) =( —1)'4r» f r'd» R„&(rj),(kr) .
0

Using the relation
1/2

(86)

n —I —1 ( —1)'(2a„r)'
(n —l —1 —s)!(2l + 1+s)!s! (83)

7T
j~(x) =

2x
Jl + 1/2(+ )

The total wave function Vl for the state with quantum
numbers nlm is

where J is a Bessel function of fractional order, together
with

(r) =R„1(r)I'1,„(r),
whose Fourier transforms is

'M„1 (k) =R„1(k)Y'( (k)

where

(84)

(85)

f 1+1/2+1+s arJ — (k )
0

I + 1/2

=( —1)' 2ad
do,'

we get

1/2
2k 2'(1+1)!k'

( 2+k 2)l+2

(88)

1/2

R (k)= ( —)'4 2 '/'(4 k)' (1 +1)!

n —1 —1 ( 2a„)' d
(n —l —1 —s)!(2l + 1+s)!s! da„

20.' „
(

2 +k2)I+2 (89)

The corresponding hydrogen-atom bound-state form fac-
tor is obtained from

tive energy A. Going back to (A7) we note that it may
be rewritten as

(810)

where v =Ze /r. In units of A' =2v = 1 we write f„1 (k )
as

f„i (k)= —(a„+k )i'M„, (k)=&4mf„, (k)I; (k),
(811)

u
I
1)/(&)&=go '(@)

I
P(&) &,

which in coordinate space is nothing but the
Schrodinger equation for the wave function P. The cor-
responding binding energy is 6 and the effective poten-
tial is

where the i' factor is added to make f„i(k) a real func-
tion of k. Comparing (811) with (85) we get

f„i(k)= — —i 'R„,(k), (812)

where R„i(k) is given by (89). If in addition to
R=2v=l the rydberg is taken as the unit of energy we
have

v'=u/2)(6 ) = 2Z'/r, —

where

Z'=Z /(281) .

Therefore 6 must satisfy the relation

6'= —(Z'ln )'= Z'l[n ri( 6 )j-
which leads to

(C2)

(C3)

(C4)

c. = —Z /n

a„=Q —e„=Z/n,
u (r) = —2Zlr,

(813)

(814)

(815)

APPENDIX C: EIGENFUNCTION
OF THE COULOMB KERNEL

Since the Coulomb potential v (r) given in (815) is re-
sponsible for an infinity of bound states at c„=—Z /n
one can easily determine the eigenvalues q and eigen-
function g of the Coulomb Kernel ugo(6) at any nega-

where r is in units of Bohr radius. The charge number Z
of the atomic nucleus which is Z =1 for hydrogen is left
here unspecified for generality of presentation.

(C5)

Therefore we may denote the eigenvalues of Ug0 as
il„(8) and the corresponding eigenfunctions as g'„(6')
and p'„(v). As mentioned in Appendix A the il„be-
come unity when 6= Z ln2. Because of (A—12) and
(A18) the g are related to the f's defined in Appendix B.
If in (89) and (812) we change a„ into 6 =& —8 we may
write

g'„( 6'; k) = —[f„1(k)]

where the &26 factor is responsible for the normaliza-
tion condition (A8).
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Since the quantum numbers n and t satisfy the condi-
tion n ) l +1 we rather index rl and g through u and l.
For a given l, u runs from one to a maximum value IVI.
Given u and l we denote the eigenvalues and eigenvec-
tors as g'„and g'„where

4g 5/2

k +5
8g 5/2

(k —5 )
(l 2+$2)2

(C8)

(C9)

n =u+I .

Therefore, defining 5=+—6', we get

(C7)
&4rr 16 g7/2 k
&2|' 3 (k'+S')' '

for the first three eigenfunctions.

(C10)
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