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It is predicted and confirmed numerically that the nonlinear stationary waves on the surface po-
lariton branch of a thin-film dielectric waveguide are unstable to transverse spatial fluctuations in

the dimension parallel to the confining layers. Bounded waves whose peaks are located within the
linear thin-film guiding layer show behavior in qualitative agreement with that of earlier studies
on the two-dimensional propagation problem.

An extensive theoretical literature has evolved since the
late seventies on the subject of nonlinear stationary waves
supported at optical interfaces and in layered dielectric
media. ' These latter structures are characterized by the
fact that one or more of the dielectric layers shows either
a positive or negative nonlinear optical response to an in-
cident electromagnetic wave. Included in this class of
problem are single interface surface polariton waves
which propagate unattenuated along an interface separat-
ing two dielectric media with a small refractive index
mismatch across the surface. These latter waves may, at
least in principle, be generated as a consequence of the
reflection of an incident Gaussian beam, at an angle close
to that for total internal reflection, from a nonlinear inter-
face. Trapped surface waves or transmitted self-focused
channels may appear above a critical incident energy
flux. A recent theoretical analysis, using an equivalent
particle in a time-varying potential analogy, substantiates
the numerical observations of Ref. 2 and leads to a global
interpretation of the nonlinear wave dynamics. Of specific

interest to us here are the nonlinear guided waves (NGW)
which exist in a thin-film planar dielectric waveguide with
the linear film, bounded by one or more nonlinear dielec-
tric layers (cladding and substrate). Our analysis as-
sumes a positive nonlinear (Kerr) coefficient.

An important consequence of the small refractive index
mismatch between adjoining media is the occurrence of a
power-dependent waveguide index P. Figure 1 illustrates
this dependence for a thin-film dielectric planar wave-
guide with a linear guide and substrate and a nonlinear
cladding. A variety of potentially useful all-optical de-
vices has been proposed based on such power-dependent
characteristics. The curve in Fig. 1 represents the power
versus P characteristic for a TE wave. Pictures such as
this are generated by ignoring propagation eff'ects and
solving a nonlinear second-order ordinary differential
equation (in x) for the electric field with matching of the
field and its derivative across each interface. The stability
of these waves can only be addressed by introducing an
additional spatial dimension representing the propagating
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FIG. 1. Power vs waveguide index characteristics for a TED NGW in an asymmetric thin-film planar waveguide. The solid curve
represents stable and the dashed curve unstable NGW's in two dimensions (x,z). Parameters used in the present problem are
no =n2 =1.55, n~ =1.57, ao =0.01, a~ =az =0, and the dimensionless guide width 2d/X =8.4.
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(z) dimension along the waveguide. This leads to a non-
linear partial diff'erential equation of the nonlinear
Schrodinger (NLS) type with rather unusual boundary
conditions due to the presence of the interfaces. The sta-
bility question is much more difficult and only one analyt-
ic prediction exists to date for the thin-film waveguide.
Stability can be established by numerically solving the
NLS-type nonlinear evolution equation using analytically
generated field shapes corresponding to difI'erent locations
on the power versus P characteristic. The dashed line in
Fig. 1 represents unstable waves determined by these
methods. We see that at a fixed energy flux (the horizon-
tal line in Fig. 1) there may exist three nonlinear guided
waves with one being unstable. The assumed form of the
optical nonlinearity is cubic so that

n (x, )IF I ) =nii+ao IF I
x &

n(x, I
F I

') =ni2, [ x [ & d,

and

n(x, IFIz)=nez, x&d,

and kp ( =2m/X, ) with k the free space wavelength.
The instability referred to above refers to an instability

to form where the NGW shape changes on propagation.
In the present work we include the third space dimension
(y), assuming, as in conventional waveguide analysis, that
the wave front is planar in the y dimension. The curve of
equilibrium NGW s shown in Fig. 1 is still applicable and
the question that we now address is whether the resulting
two-transverse dimensional profile is stable to weak trans-
verse modulations along the planar wave front in the y di-
mension. Field shapes corresponding to fixed power at
points 1, 2, and 3 in Fig. 1 are taken as initial data to the
following nonlinear evolution equation:

2ipko F(r,z)+v/TF(r, z) —ko[p n(x, IF—
I )]F(r,z) =0,

z

a modified NLS equation: transverse spatial coordinate r
=xi+yj, where i and j are unit vectors. Equation (1)
has an identical structure to the earlier one-transverse-
dimensional modified NLS equation employed to study in-
stability for form, except that the two-transverse-
dimensional Laplacian operator VT replaces tl /eix and
the initial data F(r,0) consists of a one-dimensional
NGW in x embedded in a two-dimensional (x,y) space; a
small amplitude perturbation of wave number K (uniform
in x), of the form BF(r,0) ecosKy with @=0.001, is
added to the initial NGW envelope F(r,0) in each case.
The NGW field shapes corresponding to the labels 1, 2,
and 3 in Fig. 1 have the following distinctive features.
The wave at label 1, stable to propagation in 2D (x,z), is
localized mostly in the guiding linear film with tails ex-
tending into the surrounding cladding and substrate lay-
ers. This should behave essentially as a linear TEO wave
of the guide. At label 2 the peak is displaced towards the
nonlinear cladding but most of the energy of the wave still
remains in the film. In 2D this wave is unstable and oscil-
lates back and forth in the film. The surface polariton
wave at label 3 is most interesting, being stable in 2D,
with its peak lying in the nonlinear cladding. Given that
this latter wave can be viewed as a perturbed spatial soli-
ton of the 1D NLS equation (x,z) we anticipate that it
most likely should be unstable to transverse fluctuations in
the y dimension. One of the few established instability re-
sults for the 2D NLS equation (x,y, z) is that of a 1D sol-
iton embedded in a 2D (x,y) space.

Equation (1) was integrated for each NGW (1,2,3) in
turn over 200 wavelengths employing periodic boundary
conditions in the y dimension. The relevant physical pa-
rameter values are given in the figure captions. Wave 1,
as expected, was stable over the full propagation length.
The NGW on the unstable branch of Fig. 1 (label 2)
showed the same qualitative behavior as in 2D. Figure 2
shows the initial x and y cross sections of this NGW at
z =0; the constant wavefront in the y cross section corre-
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FIG. 2. Cross sections of the two-transverse-dimensional
profile corresponding to label 2 in Fig. 1 in x and y at z 0 (ini-
tial data) and evolving in z between z 40 and 60. Both x and y
axes are in units of d/A. , the dimensionless guide half-width.
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FIG. 3. Similar to Fig. 2 for the surfa
be13 in Fig. 1.
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