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The long lifetime of photons in a high-g micromaser cavity is used to generate a I
n&-state

maser field by injecting atoms, one at a time. Every atom is probed for its excitation after leaving
the cavity so that the precise number of photons in the field is known. We calculate the probabil-
ity of obtaining n photons after m atoms have passed the cavity.

In the present paper we show, using state reduction log-
ic, that a pure number state

l
n) (Ref. 1) is achievable

with a micromaser operated at sufficiently low tempera-
tures and negligible cavity losses in which the radiation
has a very long cavity lifetime (up to the order of
seconds). Such cavities are actually now available. Un-
der those conditions it is possible to obtain a state with no
Auctuations in the photon number.

The fact that a number state can be reached must be
seen in connection with efforts to generate "squeezed-
state" systems. These systems have received much study
both theoretically and experimentally because at
present optical measurement has reached the point such
that photon statistical shot noise is the limiting factor in

many types of experiments. Examples include the passive
laser gyroscope, the laser gravity wave detector, and opti-
cal heterodyne communication. In such experiments the
error signal is determined by the uncertainty in the photon
number, and the limit in sensitivity due to this uncertainty
is known as the shot-noise limit.

While the generation of squeezed states involves gen-
erally nonlinear processes, the micromaser in our proposed
experiment is a direct oscillator for the n-state radiation
field. If very-high-Q optical cavities are available, one
might envision performing a similar experiment with
atoms whose two laser levels decay into two different
metastable levels. After the atoms have left the cavity, it
can be inferred from their final state whether they have
emitted a photon or not.

Specifically, we envision producing pure number states
in the following way (cf. Fig. 1): Atoms in their excited
state are injected into the cavity. After they leave the cav-
ity, they are probed by a static electric field which ionizes
all atoms in their upper level. All the atoms that are not
ionized have emitted a photon in the cavity. When these
atoms are counted (via electron detection as in Fig. 1), the
total number of photons in the maser field can be inferred.

We emphasize that state reduction and the connected
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FIG. 1. Proposed experimental setup. Rydberg two-level

atoms in their upper state are injected into the micromaser cavi-

ty. When they leave the cavity, the atoms pass an electric field

which ionizes and deAects the excited atoms. The atoms in the
lower level which have emitted a photon in the cavity are count-
ed, and to check the total number the atoms in the upper level

are counted as well.

ideas of measurement theory are essential to this logic.
By the determination of the state of the outgoing atoms
the photon number in the field is exactly known, i.e., the
state of the field is reduced to a pure number state. Since
we start the experiment with no radiation in the cavity,
the field is always in a number state when an atom enters
the cavity. By the interaction of the atom with the field,
which is in a state l v), the field state will be changed to a
superposition of states

l v) and
l
v+1). Due to the mea-

surement of the atomic state afterwards this superposition
is reduced to one of the states

l
v) and

l
v+ 1), depending

on the result of the measurement.
It is important to emphasize that a feature central to

the present
l
n)-state generation scheme is the long life-

time of the photons in the cavity. The decay time for pho-
tons is given by their frequency v and the quality factor Q
of the cavity:

r Q/v

For v —2X10' s ' and Q —5X10', which is now possi-
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ble to reach, we obtain r—2 s. The Auxes of atoms used
in these experiments is of the order of 1000 s '. Loss of
radiation is a statistical process. This can be seen by in-
vestigating, for example, a beam splitter. For such a de-
vice we assume the probability for a photon to propagate
in one direction is zi. When light in an

~
n) state is shined

onto the beam splitter, the field behind the beam splitter
will no longer be a pure number state. Instead, its state
will be

n

q (I —g)" /m),
rn =0

which is a binomial superposition of number states.
Therefore, we must have zero losses in order to maintain
pure number states via the state reduction argument. In
the experiment, thermal photons in the cavity have to be
suppressed. This is achieved by cooling down the cavity to
a temperature close to absolute zero. The mean number
of thermal photons for v=2X 10' s ' is (n, h) =0.016 at
T=0.25 K and (n, h) =3.3X 10 at T=o. l K. These
temperatures can be reached in a He cryostat which is
now available for our maser. Thermal photons do not only
induce statistical decay but result in a superposition of
number states from the beginning of the experiment.

Now, with zero cavity 1osses, we will maintain a number
state since no radiation will be lost from the cavity in the
present experiment. However, we will have only a priori
probabilities as to which number state we actually gen-
erate in the present state reduction scheme. These a
priori probabilities should not be confused with photon
statistical distributions. For example, if one considers a
coherent state of the radiation field, then every laser or
every system being considered would be in an indefinite
superposition of number states. Whereas in our experi-
ment, every system is in a specific number state; however,

1

p(z) = U(z)
~
a, v)(a, v I

Uf(z) =cos (4v+ I gz) I a, v)

we do not know prior to the experiment which state that
will be. Therefore we have to perform the experiment re-
peatedly with a constant total number of atoms, thus gen-
erating a large number of diff'erent number states. The
distribution of the photon numbers will be given by the a
priori probability distribution, which we are going to cal-
culate. It should be emphasized that the number of atoms
leaving the cavity in the lower state is equal to the number
of photons in the cavity only for a lossless cavity.

It should be mentioned here that if there is a photon
field other than a pure number state initially in the cavity
(e.g. , a thermal radiation field), one does not obtain a
number state but a superposition of number states. If the
atoms leaving the cavity in the lower state of the maser
transition are counted, the statistical distribution of these
numbers diff'ers from the case where no radiation was
initially present in the cavity. If, for example, every emit-
ted photon decays before the next atom enters the cavity,
so that the field is in a steady state, every atom interacts
with the same radiation field, and the number of atoms in
the lower state follows a biominal distribution.

We now turn to the calculation of the probability
P„(m ) of having n photons in the field after m atoms have
passed the cavity. To obtain this probability, we derive a
recursion relation. When we assume that the field is the
state

~
v) with v photons, the time-development operator

U(z) for the interaction of one two-level atom with the
field is given by

cos(Jv+ Igz) i sin(Jv+ Igz)
U(z) =

,
—i sin(Jv+ Igz) cos(Jv+ Igz),

where g is the coupling constant for the interaction and i
its duration. We start with the combined density operator
for the atom in the upper level

I a) and the field

p =
I a, v)(a, v I

. After the interaction time z we have

(a, v
I
+ sin (dv+ 1 gz) I b, v+ 1)(b, v+ 1

~

+i sin(dv+ lgz)cos( 4 v+ 1 gz) [
~ b, v+ 1)(a, v

~

—
~
a, v)(b, v+ I

I
] (2)

where I b) denotes the lower atomic level. The state of the
radiation field is now determined via state reduction.
That is if we determine that the atom is in the upper state

I a), then the density matrix (2) is reduced to the state

p(z) =cos (4'v+ I gz) ~ a, v)(a, v
~

(3a)

and if the atom is found to be in the state I b) the system
density matrix is given by

p(z) =sin (v v+ 1gz) I b, v+ 1)(b, v+ 1
I

From this we find that the probability for the field to
remain in the state I

v) is c(v)=cos (dv+Igz) and the
probability for a transition to the state

I
v+ 1) is

s(v) =—sin'(v'v+ I gz)
When m —1 atoms have passed, the field is in a state

n) with the probability P„(m —1) and in the state
n —1) with a probability P„~(m —1). The probability

for the field to be in the state I n) after m atoms have been
in the cavity is then simply

P„(m) =c(n)P„(m —1)+s(n —1)P„~(m —1) .

We assume that the field is initially in the vacuum state
I
0), i.e., Po(0) = 1. Then we have for one atom

Po(l) =c(0) and P~(1) =s(0), for two atoms

Po(2) =c(0)Po(1)= [c(0)j',
P (2) =c(l)P, (1)+s(0)P (1)=s(0) [c(0)+c(1)1
P (2) =s(1)P,(1)=s(0)s(1)

and for three atoms

P, (3) =c(O)P.(2) = [c(0)] ',
P, (3) =c (1 )P, (2) +s (0)P (2)

=s(O) [[c(0)] +c(0)c(1)+[c(1)l [,
P, (3) =c(2)P,(2)+s(1)P, (2)

=s (0 )s (1 ) [c(0)+c ( I ) +c (2 ) ]

P3(3) =s (2)P2(2) =s (0)s (1 )s (2)

Obviously P„(m) =0 for n & 0 or n )m. In view of the
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above we can derive the general expression

n —1

i 0 i 0J j n

(5)

where we define

i ~0J
(i

m —1

n in

~ i„0i„~I 0

1, form n

0, form &n

im —2 m 1+ c(ij), for m & n,
i 0 j n

'7

orn &0 .

With this definition and that of the product symbol +; 'ps(i) =1, we obtain the correct result for m =0, i.e., the initial
condition for the experiment Pp(0) =1. For m =1 we get

—1 0 0 0

Po(1)=+ () g + (,)= (O), P (1)=+ ()1= (0),
i 0 ; ~0j 0 i 0

IO

and P„(1)=0 for neo, l.
Assuming that Eq. (5) is

n —
1

P„(m) =c(n) + s(i)
i 0 i 0J

«m-2 —' ' ' —'n)( ~ ~ ~ ( '

U c(iJ ) +s (n —1) Q s (i)
J n i 0

correct for m —1, we have with Eq. (4)

i 0J
(i 2( . (i„ I)

j n —1

n —1 m —1 n —
1 n —1 m —1

i 0
si cn

i 0J
(i I

. - ~ 1„„)
c(iJ)+ + s(i)

j n+1 i 0
+ c(iJ)

i 0J j n

(i I i)
n —1 les -2 n —

1 &m —2 m —1

() ( ) g g . . g g (J)+g (.) g . g g «J)
i 0 ~0 i ~0 i ~0 j~n+1 i ~p i ~0 i ~0j ~n+1

n —
1 im-2 m —1

S l C l ' ' ' C lJ
i 0 0 i 0 i oj n+1,&n In+ I Inl —I

n —1

= Q s(i)
i 0

m —1

Q c(iJ),
i 0J j n

(Im-I — —I, )

which proves Eq. (5).
The probability distribution can be evaluated numeri-

cally for different values of gz as a function of the number
of passing atoms. We show results for up to 1000 atoms.
Obviously, the probability P„(m) is very strongly depen-
dent on the value of gz. This parameter can be varied ex-
perimentally by changing the velocity of the atomic beam.
When gz & 1, then a peak in the photon distribution de-
velops and moves towards weigher photon numbers as the
number of passing atoms grows (cf. Fig. 2). This peak
halts its drift and becomes very narrow when a photon
number np~ (n/gr) is reached because then the proba-
bility s(np) to add one photon to the field becomes very
small. In theory, s(np) could become exactly 0, so that
the probability distribution will be a 8 function in the
steady state, a case discussed by Filipowicz, Javanainen,
and Meystre. ' In any experiment, however, the velocity
distribution of the atomic beam is never that sharply
defined.

Therefore the height of the peak in the probability dis-
tribution diminishes as more atoms are injected, and a

new peak develops in front of the next barrier at about
(2rrjgr) . Thus the realization of a number state is cou-
pled to the detection via the outgoing atoms.

Atomic velocity itself is not a complicative factor in the
present scheme of n-state preparation. It leads to a
change in the probability of emitting a photon, but only
the fact whether a photon has been emitted or not is im-
portant for the experiment. The basic notion of atomic
observation leading to field information is in force regard-
less of complicating influences such as atomic motion. If
the experiment is performed repeatedly, however, the
statistics of the obtained photon numbers in the number
states will be influenced.

In conclusion, a pure number state is generated in a
lossless maser cavity and determined via atomic intercep-
tion and state reduction. The a priori probability of be-
ing in the number state

~
n) after m photons have passed

through the cavity is given by P„(m). By performing the
experiment very often for a given m, the probability distri-
bution P„(m) can be measured, and it is sensitive to the
photon statistics in the cavity.



4550 KRAUSE, SCULLY, AND WALTHER

P„(m)](
0.5-

0.4
g7 = 0.4 ~ m=1000

m=500 ~

0.3-- m=250

0.2- m=) 00

0. 1

m=50
15 in=35

0 20 40 60

FIG. 2. Probability of obtaining n photons in the cavity after m atoms have passed. The curves are calculated for gi =0.4.
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