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A quantum Monte Carlo technique to compute ground-state energies of He, H, and Ps is

described. Coordinates appropriate to a molecular description of atoms are used, and results with

good accuracy are obtained upon input of essentially just reduced masses and the nuclear charge.
The method minimizes the need to construct sophisticated variational or basis functions.

The dynamics of a pair of electrons moving near an ion-
ic core embodies all the characteristics of the many-body
Coulomb problem while minimizing other complicating
effects. An advantage of a theoretical study of two-
electron atoms is the variety of precision experiments per-
formed over a wide range of energies. Two-electron corre-
lations remain of fundamental interest since a proper
description of the pair requires an extreme departure from
the notion of independent electrons moving in Bohr orbits.

Variational and close-coupling methods are familiar in
atomic and molecular physics for computing stationary
states of the time-independent Schrodinger equation. For
low-lying levels in two-electron atoms their precision is
unsurpassed. A major shortcoming emerges, however,
when one considers excitations of two electrons near the
threshold for double escape. A successful explanation of
experimental observations in this energy range based on
variational or close-coupling schemes has never been
found. Only limited descriptions exist, such as the Wan-
nier one derived from an expansion of the system wave
function about a limited region of configuration space. '

In the conventional methods trial or basis functions must
be constructed for each system under consideration and
for each energy range. Expansion lengths and conver-
gence must be evaluated on a case-by-case basis. A strik-
ing example is the difficulty conventional methods have
explaining the remarkable similarities in He, H, and
Ps that the methods themselves so precisely predict. Re-
lated techniques such as adiabatic hyperspherical-
coordinate methods have been found to improve the ex-
traction of physical mechanisms, although high precision
is generally difficult to achieve. ' One is thus inclined to
try an alternative solution capable of recognizing the
correspondences between these systems but nevertheless
one with potential for high accuracy.

An unusual technique that has found good success in
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ep) z]X„"filter out" each in turn, like different species
in a radioactive sample, leaving as z ~ the exact
ground-state wave function Xp when (et p)e»zl. In
particular, the quantity

(y I
H

I y(z)) (3a)
(yI y(z))

—eo+aei I (Xi I 0)/(Xo I 0) I
'e ""+

OO

(3b)

with h, Ei =t i t. o, gives the exact ground-state energy t. o

as z ~. The diffusion filtering will converge on the first
excited state X~ if the initial state P is orthogonal, by sym-
metry for example, to the ground state Xo.

If the initial state p is taken to be a variational function,
obtained by minimizing e(z =0) =(p

I
H I p)/(p I p), then

the diff'usion is seen to be self-correcting in as much as it

computing ground states and some low-lying levels of cer-
tain molecules and atoms is the solution of the time-
dependent Schrodinger equation as a diffusion equation,
that is, as a function of the complex time z=—it. In
principle, exact eigenfunctions and energies can be ob-
tained from the exponential decay or "diffusion filtering"
of an initial or trial function. Consider the formal time
development of a solution y(z) of the diffusion equation
By/Bz= —Hy, where H is a system Hamiltonian. It is

easy to verify that

y(z) =exp( Hz) tt, —

with p the initial state. This solution can in turn be for-
mally expanded in the desired eigenfunctions X„of0 as
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leads itself from the variational trial state p to the exact
ground state Xo. Approximations inherent in the more
conventional methods are in principle eliminated. Of par-
ticular interest here, this self-correcting feature means
that the method is well suited for comparing the three sys-
tems He, H, and Ps with high accuracy but with a
minimum of input.

The trial function p can instead be used to improve the
e%ciency and ultimately the accuracy of the diffusion pro-
cess by introducing a drift, D —p grad&, into the dif-
fusion equation. ' When p is small the drift is large, driv-
ing the diff'usion away from regions where p is unimpor-
tant. Thus p is often referred to as an "importance func-
tion. " The diffusion equation for y(z) is transformed to
one for G(r)—:py(r), and (3a) is rewritten as

J"G(r) ~~ dV
e(r) = (4)

„G(r)dV
Here @~~=& 'Hp is a local energy and a function of the
particle coordinates. The transformation to G(r) also re-
places the Coulomb potential in the diffusion equation
with the local energy and with a proper choice of p
effectively removes destabilizing effects of Coulomb
singularities from the diffusion process.

Here we report an application of quantum diffusion as
an alternative computational tool for probing two-electron
correlations in He, H, and Ps . We feel that the key is
to introduce Jacobi relative coordinates of the interelect-
ronic axis R and of the position r of the two-electron
center of mass relative to the nucleus. These two vectors
specify completely the six coordinate degrees of freedom
in the center-of-mass system and reflect the symmetries of
the saddle in the three-body potential about the point
r =0.' These symmetries have been found to character-
ize the special Wannier excitations near the double ioniza-
tion threshold. In addition, this saddle and the resem-
blance of the two-electron-nucleus configuration to the
hydrogen molecular ion have led to a molecular descrip-
tion of two-electron atoms that accounts qualitatively for
observed similarities in the lowest doubly excited levels in

He, H and Ps . The relative coordinates facilitate an
alliance of this molecular description with quantum
diffusion. Although we report computations on only
ground states of He, H, and Ps, we have begun to ex-
tend our investigations to low-lying levels for which these
symmetries appear to be distinct. Analogous calculations
have been performed in molecules. '

For computational purposes it is convenient to perform
the time development as a path integral. ' One expresses
the solution G„+~ in the (n+1)th time step as a volume
integral over particle coordinates of an integral kernal
times the solution G„ in the nth time step with Go=& .
For small enough time steps dr the kernal is a product of
an exponential-growth factor, determined by e~~, and a
normal distribution with a mean determined by the drift
D. The diffusion can then be thought of as a long random
walk in the system coordinate space. A point in the six-
dimensional coordinate space becomes a random walker.
The computation thus lends itself to Monte Carlo integra-
tion but with a twist. The number of walkers is allowed to

increase or decrease in the (n+1)th time step depending
on the value of the exponential-growth factor. This
"branching" process greatly increases computational
efticiency by zapping walkers that raise the local energy in
the nth time step and replicating walkers that lower it.
Initially, the walkers are distributed by some suitable
means with a probability Go=& and, as this distribution
develops in time, are found in the nth time step distributed
according to 6„.

It is then a simple matter to obtain a Monte Carlo esti-
mate of the quantity in (4) in the nth time step as a sum
over all walkers N„of each walker's local energy,
e(n) =N„'g e~~(q). The well-known advantage of this
estimate is that its statistical variance depends largely on
the number of walkers as A„', independent of the num-
ber of coordinate dimensions. ' Most of the effort re-
quired in computing the algorithm involves the calculation
of the drift D and the local energy and the Gaussian ran-
dom numbers for the random walk. The drift and the lo-
cal energy depend in turn only on the importance function

Thus the variance of the Monte Carlo estimate of the
quantity (4) is also dependent on the quality of the impor-
tance function, while the calculational work involved is
minimized if the importance function is simple enough.
Hence a trade-off between computational speed and
diff'usion efficiency is sought in the choice of p. This
diffusion Monte Carlo technique is similar, and in fact
formally related, to the Green's function Monte Carlo
method, "' which solves directly the time-independent
Schrodinger equation and thus eliminates systematic er-
rors introduced by a finite time step. Both methods are re-
ferred to collectively as "quantum Monte Carlo. "

In the three-body center-of-mass system the local ener-

gy is expressed (in atomic units) as

(r,R) =y
—V, —Vg Z Z 1+ y
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with r ~ 2
=
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' R ~, and the drift along R and r as

DR (P l 2 mt') 4'Ct' +r (P I 24 )3 (6)

To change to a different system all that is required is the
input of the nuclear charge Z and the reduced masses.
Here p~2 = —,

' is the reduced mass (in a.u. ) of the two elec-
trons, and p~23 is that of their center of mass relative to
the nucleus. In H (Z=l) and He(Z=2), p~q 3=2, and
in Ps (Z =1), p~2 3 3 . The finite mass of the nucleus
(mass polarization) is included without approximation,
and the method would apply equally well to meso-
molecules, such as pdt, of interest in muon-catalyzed
fusion.

Appropriate to a molecular description we use an im-
portance function of the form p(r, R) =f(R) p(r, R). In
all computations we have taken the two-electron correla-
tion function to be f(R) =exp[R/(I+PR)l with P a con-
stant. In helium we have found that the single con-
figuration, independent-electron form of the "channel"
function, p(r, R) =exp[ —g(r~+r2)] with g a constant,
gives satisfactory results. In H this simple function also
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permits a satisfactory diffusion, although it gives for the
initial variational energy e(r =0) a value above the first
ionization threshold, that is, H unbound for any choice
of g. This effect is so severe in Ps —the second electron
is bound by only 0.326 eV relative to Ps—that the
diffusion with this simple function fails to converge at all.
Instead, one electron is allowed to walk off to infinity (the
first ionization threshold) leaving ground state Ps. The
sensitive nature of the Coulomb correlations thus forced
us to upgrade the channel function in Ps to two
configurations

ZaI'I Zy72 I Zat2 Zg, rl

akin to Chandrasekhar's variational function, although
we found it necessary to include in the screening parame-
ters a mild r~ or r2 dependence and define Z, t, (r~ 2)=—(, t, +k, t,/(I+c, br~ 2). In each computation the con-
stants (, &, X, b, c, b, and P were chosen (by hand) to min-
imize the initial variational energy e(r =0).

Perhaps we could emphasize that the choice of impor-
tance function does not affect the asymptotic mean-value
estimates of quantum Monte Carlo dynamical quantities,
as long as convergence to the desired bound system has
been ensured. The choice can, however, significantly
reduce statistical variances as well as the computational
labor involved. It is in this sense that a change to a
different system requires input of essentially just the nu-
clear charge and the reduced masses when relative coordi-
nates are used.

Table I presents the results of our computations of the
ground-state energies of He, H, and Ps and a compar-
ison with the best variational values. ' ' Because of
Anderson's extensive quantum diffusion work on helium'
we have concentrated our computing effort on H and
Ps . Thus in helium we restricted the initial number Wq

of walkers to 3000 but used up to 32000 walkers in H
and Ps . Although this number was allowed to vary as
time developed, it remained near Wp reflecting the stabili-
ty of the diffusion in the presence of the Coulomb correla-
tions. In each case we diff'used for several thousand time
steps, some tens of a.u. of time, to converge to the ground
state. We continued the diff'usion 20 to 50 a.u. of time to
obtain an average value for the asymptotic energy e(~)
which we took as our best estimate of the ground state en-

ergy ep. It is also of interest to compare with the best adi-
abatic hyperspherical energies for these systems, which

provide upper bounds on ep. One finds in He that
t.. & —2.89517 a.u. ,

' in H that e & —0.52592 a.u. ,
'

and in Ps that t..p & 0.2597 a.u. '

The statistical errors (standard deviations) associated
with this procedure are also given in the table. The errors
in the initial variational energies e(z=0) refiect the vari-
ance in the Monte Carlo estimate of the sum over the lo-
cal energies of all the random walkers, distributed at r =0
according to Go =p . The efficiency of quantum diffusion
is evident when comparing our initial variational energies
e(r =0) with the asymptotic averages en. Although these
computations should in principle be repeated for several
time step sizes d~ and extrapolated to zero step size, we
show only one since systematic differences in our results
with the best variational energies are smaller than our sta-
tistical errors, limited mostly by our available computer
time.

Our computations were performed on a Ridge 32/130
computer comparable in speed and efficiency to a VAX
11/750 with a fioating-point accelerator. We have pro-
grammed in C to access its array pointers and avoid array
indexing as in FORTRAN. This allows us to minimize
bookkeeping as the random walkers are zapped and repli-
cated from one time step to the next. In the nth time step
a new list is formed of all the walkers and their daughter
walkers that have lowered the local energy and thus sur-
vived zapping. At the end of the step this new list is
swapped for the old list from the previous time step by a
simple exchange of array pointers. Although we have op-
timized our program for a scalar machine, the algorithm
is well-suited for vector and parallel processing.

Although we compute the wave function as an ensemble
of points in coordinate space distributed according to
G (~) =py(~ ), it is possible to extract the ground-state
distribution y(~) =Zo. " Thus, one can calculate expec-
tation values of any dynamical variable and even overlap
matrix elements, ' such as the p-He sticking amplitude
following muon-catalyzed d-t fusion. '

We have begun to extend our calculations to a few spe-
cial excited states where the symmetries, as determined by
the molecular description of atoms, can be used to en-
sure that the importance function is orthogonal to the ex-
act ground-state wave function, (p ~

Xo):—0. Although it is
not presently known how to extend quantum Monte Carlo
methods to arbitrary excited states, we feel that the limi-
tation is perhaps a technical difficulty, not a fundamental
one, that could be overcome as new ideas are introduced

TABLE I. Results of quantum diA'usion computations on two-electron systems. Here No is the initial
number of random walkers, dr the time step size, t. (r 0) the initial variational energy, and eo our best
estimate of the ground state energy (all quantities in a.u. ). Calculations with No =32 K were performed
with the importance function from (7). For comparison, the best variational energies and their
difterences d with eo in a.u. and in meV are given.

System No di e(r =0) Ep Variational 4 (meV)

He
H

Ps

3000 0.01
3000 0.01

32 000 0.01
32 000 0.05

—2.874+ 0.006
—0.495 + 0.003

—0.5250 ~ 0.0004
—0.2573 ~ 0.0003

—2.903 ~ 0.001
—0.527 + 0.001

—0.5275 + 0.0004
—0.2618 + 0.0003

—2.903 72' 0.000 72
—0.527 75' 0.000 75

0.000 25
—0.262 00 0.0002

17
20

6.8
5.4

'From Ref. 13. bFrom Ref. 14.
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analogous to extensions of variational and close-coupling
methods in two-electron atoms to large radial distances. '

We note in passing that a reformulation of the scattering
solution of the Schrodinger equation amenable to Monte
Carlo techniques has been recently proposed. '

In summary, an algorithm has been described for com-
puting Coulomb correlations in two-electron atoms with a
minimum of input. The need to construct better varia-
tional or basis functions is minimized; rather an impor-
tance function is introduced and the burden of the calcu-
lation is shifted to the time development of a distribution
of random walkers. The self-correcting feature of the dis-

tribution of walkers as the diAusion progresses, unique to
quantum Monte Carlo, would appear to have unlimited
potential in view of current developments in computer
technology. Given enough computing resource the
method is capable of benchmark computations of wave
functions and expectation values.
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