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We have carried out numerical calculations for the classical bremsstrahlung spectrum, angular dis-

tribution, and polarization resulting from electrons scattering in screened atomic potentials. The cal-
culations utilize the classical theory of electromagnetic radiation from moving charges together with
the classical mechanics of energy-loss-free orbits of charged particles in such potentials. The trajec-
tories of incident electrons in the given central potential are calculated numerically, and the doubly
differential bremsstrahlung cross section is obtained by taking the Fourier transform of the accelera-
tion of the dipole moment of the projectile and integrating the radiation over the impact parameters
of the beam. Results have been obtained for several neutral atoms for electron energies from 1 eV to
500 keV, using self-consistent Dirac-Slater atomic potentials. Comparisons with quantum-
mechanical partial-wave results for the spectrum show that, as in the point Coulomb case, the classi-
cal method is generally good for screened potentials for low incident electron energies. The classical
method therefore can be useful in low-energy situations for which the usual Elwert-Born form-factor
method is not satisfactory. We have also obtained and examined the angular distributions of classical
bremsstrahlung. Screening reduces the value of the asymmetry parameter which characterizes the
angular distribution of dipole radiation. The difference of screened results from the point Coulomb
results increases with decreasing incident electron energy. At very low energy the value of the asym-
metry parameter oscillates with energy, and this also leads to oscillations in the degree of polariza-
tion.

I. INTRODUCTION

In this paper we present calculations of the bremsstrah-
lung process from isolated neutral atoms using a classical
method. The bremsstrahlung process as treated in a static
potential is fairly well understood, and in many situations
an accurate theoretical description of the resulting radia-
tion can be obtained. Accurate predictions for brems-
strahlung spectra and angular distributions from relativis-
tic partial-wave calculations for selected energies and tar-
get elements have been published. ' Tables of brems-
strahlung spectra and angular distributions interpolated
from these results are also available. However these
tables do not provide data for electron energies lower than
1 keV, which is basically the lower limit of the energy
range for which the code was designed. While a code
could be written for lower energies, the existing data sug-
gests that simpler methods may suffice.

Several simple approximations are available to calculate
bremsstrahlung cross sections. Some analytic expressions
are available for bremsstrahlung from a point Coulomb
potential, and Born approximation provides a simple pre-
diction for the effect of screening. Among these ap-
proaches are the classical Coulomb formula, nonrelativis-
tic quantum-mechanical dipole approximation for the
Coulomb potential, nonrelativistic Born approximation
and Elwert-Born form-factor method, ' and relativistic
Born approximation. These simple approaches are useful
not only because they give appropriate predictions for the
bremsstrahlung cross sections in certain situations, but
also because they help us to understand the features of
bremsstrahlung, tracing the origins of the properties of the

process.
For the point Coulomb potential fairly accurate results

can be obtained using these simple approximations ap-
propriately. " For screened potentials the Elwert-Born
form-factor method is available. However, this method
does not apply to the low-energy case, for which numeri-
cal quantum-mechanical partial-wave calculations are
unavailable. Such calculations would be complicated and
expensive.

The classical method is known to give accurate results
for low-energy bremsstrahlung in the point Coulomb
case. ' This approach is based on the classical motion of
electrons in the scattering field and the classical elec-
tromagnetic theory of radiation. Electrons coming into
the atomic field are accelerated by the Coulomb force of
the field and hence emit bremsstrahlung radiation. The
motion of each electron can be determined precisely from
the classical dynamics. The intensity, the spectrum, and
the angular distribution of the radiation can then be deter-
mined from classical electrodynamics.

Important early work on classical bremsstrahlung in
electron-atom scattering is due to Kramers. He obtained
the bremsstrahlung spectrum (the cross-section differential
in radiation frequency) in closed form for hydrogenic
atoms. His method assumes that the loss of electron ki-
netic energy due to the radiation is negligible and there-
fore does not affect the electron trajectory. This method
also omits retardation and does not contemplate multipole
radiation. Relativistic effects on the electron motion are
also normally neglected.

With the help of modern computers it is possible, under
the same assumptions, to carry out full numerical calcula-
tions of the classical bremsstrahlung for screened poten-
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tials. The validity of the classical method in the screened
case has been unclear. As far as we know there has been
no work on the numerical calculation of classical brems-
strahlung for screened potentials.

Recently, we have developed a computer code (cLB) to
calculate the spectra and angular distributions of classical
bremsstrahlung for electrons scattering from screened
atomic potentials. The code calculates numerically the
trajectory of an incident electron in a central potential ac-
cording to classical dynamics. The radiation spectrum
from a trajectory is obtained from the Fourier transform
of the dipole moment of the electron on that trajectory.
The total radiation spectrum is then obtained by integrat-
ing the spectrum over all trajectories. In this ca1culation
we neglect the effect of energy loss due to the radiation.
Higher multipole radiation and retardation effects are also
omitted.

The code is designed to accept numerical potentials as
input; in our work we have generally utilized self-
consistent Dirac-Slater potentials with Kohn-Sham ex-
change energies, which well characterize a neutral atom.
The incident electron kinetic energy ranges we considered
in this calculation are from 1 eV to I MeV, depending on
the atomic number of the target atom.

Features of classical bremsstrahlung from a screened
potential are discussed in terms of our results. The validi-
ty of classical results in the screened case is examined by
comparing with available quantum-mechanical results. It
is found that, for low-energy bremsstrahlung, the classical
method is also good in the screened case (as well as the
Coulomb case) and gives better results than the form-
factor method. Thus this method can provide a simpler
way to obtain the spectrum and distribution of low-energy
bremsstrahlung, where screening is too important to be
neglected. For high energy, the classical method fails to
give correct absolute cross sections, but it still can be use-
ful in predicting the ratio of the screened result to the
Coulomb result, providing probably an easier way to ob-
tain exact screened results from exact Coulomb results.

It should be noticed that the range of validity of classi-
cal results is much wider than may be anticipated. Jack-
son, ' for example, describes the classical spectrum as
confined to very low frequencies, for quanta of energy low
compared to the incident electron kinetic energy. Howev-
er, this results from the consideration only of small-angle
scattering (small momentum transfer); higher frequencies
are radiated in larger-angle scattering, as in Kramers's
original work. With our numerical calculation, which
considers all possible momentum transfers, we find that,
for low incident electron energy, classical results for the
spectrum can be valid in the entire range of the spectrum.

Our results for the angular distribution show a rather
complicated phenomenon. The asymmetry parameters for
screened potentials are increasingly reduced from the
Coulomb values with decreasing electron incident energy.
However, below a certain energy the asymmetry parame-
ter begins to increase rapidly with decreasing energy and
then oscillates. This phenomenon is related to the large
scattering angles possible for electrons in a screened
Coulomb potential.

We begin in Sec. II with the basic formalism of classical

bremsstrahlung and a description of our numerical
method. In Sec. III we present our results for spectra and
discussions of their features and validity. In Sec. IV we
present results and discussions for the angular distribu-
tions. In this section we also discuss the polarization of
the bremsstrahlung radiation.

II. DESCRIPTION OF THE METHOD

The intensity of dipole radiation from a charge system
emitted into a solid angle d 0, in a direction n, is given by
the expression' (we use natural units, i.e., m, =c =A'=1)

(dXn) = —,'(d +d, )+ —,'(d —3d, )cos 0, (2)

and the radiation distribution is then

f "[—,'d + —,'(d —3d, )P2(cos8)]2~pdp,4~ o

where 0 is the angle between n and the z axis, P2 is the
Legendre polynomial of second order Pz(x) =(3x —1)/2.

In electron-atom scattering problems the radiation in-

dE( ) 4'
where d is the electric dipole moment of the system, and
d is the second time derivative of d.

For the electron-atom scattering problem, we consider a
beam of electrons of unit current passing through the po-
tential field of an atom. The electrons are accelerated in
the potential and it is this acceleration which leads to ra-
diation. Because the scattering field is spherically sym-
metric and the incident beam is parallel, the scattering,
also the radiation, has axial symmetry about an axis in
the direction of the beam passing through the scattering
center. We choose this axis as the z axis. The x axis is
chosen so that n is in the x-z plane [Fig. 1(a)].

Consider an electron coming into the field. Because of
the spherical symmetry of the potential the entire trajecto-
ry will be in a plane O-x&, z determined by the impact pa-
rameter p (which is perpendicular to the z axis) and the z
axis [Fig. 1(b)]. For a given potential and given incident
energy, the trajectory of an incident electron is fully deter-
mined by the impact parameter, either in terms of nonre-
lativistic or relativistic dynamics. Note that in this usual
treatment the energy loss due to radiation is not con-
sidered in determining trajectories. The intensity of the
radiation from one electron is determined by Eq. (1) with
d= —er, where —e is the electron charge. The total radi-
ation emitted in the direction n from all electrons is then
obtained by integrating Eq. (1) over all electrons in the
beam. This is done by first taking the average of the
quantity (dXn) for all electrons having the same magni-
tude of impact parameter, then integrating over the mag-
nitude of the impact parameter from 0 to oo . Since
(d X n) =d —(n.d), only (n.d) is affected by the
averaging process. Again, because of the symmetry, it is
obvious that the terms d, d„, d„d„and d~d~ will vanish
when averaged. We also have (d„)= (d» ) =(d —d, )/2.
This yields'
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]g X with

&6~2k 4

p I
dk(p) I

' .
3

(9)

Ze

Here A &(p)dp represents the contribution to the spectrum
from electrons with impact parameters between p and
p+dp.

The angular distribution of radiation of electron brems-
strahlung from a central potential can also be described in
terms of the shape function

xo
]i x)
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S(Z, Ti, k, 8)=
dkd Qp

do
dk

(10)

P
I

Comparing Eqs. (5), (6), and (8) we have, for dipole radia-
tion, that

a2(Z, T„k)
S(Z, T„k,8)= 1+ Pz(cos8)

4m 2

(b)

FIG. 1. Geometry of classical bremsstrahlung.

tensity is usually described by the doubly differential cross
section kd o./dQ dk, the radiation in the frequency inter-
val between k and k +dk emitted into the solid angle dQ
per unit density of the target per unit current density.
This quantity has the dimension of area. The cross sec-
tion for the radiation of a given frequency emitted in a
given direction can be obtained by taking the Fourier
transform of the dipole moment, defined as

dk ——f + "
d( t)e '"'dt, (4)

where k is the frequency of the radiation. Then the dou-
bly differential cross section can be obtained by replacing
d and d, by their Fourier components dk and d~, in Eq.
(3) and multiplying by 4m. . The result is

(d Xn) Xn/Ro ——[n(d n) —d]/Ro . (12)

Since n~ =0, the y component of Eq. (12) is —d~/Ro.
The intensity of the radiation in the direction of n, with
its electric field vector in the y direction, is determined by
the mean square (d~) =(d —d, )/2. For the cross sec-
tion with such polarization we obtain

kd 2 PcI
= —,

' f (1 k
—d kz )2vrp dp .

0
(13)

where a2 B/——A is the so-called asymmetry parameter (in
some work it is called the "particle parameter"' ). This
parameter characterizes (in dipole approximation) the
shape function.

We may also discuss the polarization properties of the
radiation. The intensity of the radiation from a given
electron can be decomposed into two parts. One part is
polarized in the x -z plane (we will call this parallel polar-
ization or x-z polarization) and another part is polarized
in the direction perpendicular to the x-z plane (we will
call this perpendicular polarization or y polarization. )

Both components are perpendicular to the vector n. The
electric field vector at distance R0 is

with

= A + —,'BP2(cos8),kd o.

d Adk

The other component can then be obtained using o
par+ per.

kd o-, ~ —'d' 2
2 par

dQdk 2 f [3 k kz

2k
A = 2~pdp dk p

4 f"2~p dp[ I
dk(p)

I

' —3
I "k.(p)

I

'] .

(6)

Here we used the fact that dk ———k dk.
It should be noticed that the second term in Eq. (5)

vanishes after integration over angles of radiation emis-
sion. The bremsstrahlung energy spectrum, the total radi-
ation within the frequency interval dk, is given by

+ —,'(d k —3d k, )P2(cos8)]2mp dp . (14)

(15)

(16)

Equations (13) and (14) can be rewritten in terms of the
quantities A and B of Eqs. (6) and (7):

kd oP"
dQdk

kd oP" = —,'[A —,'B +BP2(cos8)] . —

kd o.

dk
k f"2~pdp

I
dk(p) I

= f"A)(p)dp, Thus the perpendicular component is isotropic while the
parallel component has an angular dependence entering
through Pz(cos8). Usually the degree of polarization is
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represented in terms of a parameter P defined as

P I d aP~I.

dQdk dO dk

d 2 Per d 2 Par

dQ dk dB dk

(17) 4=2 arcsin
ZA

2T]p
( 1+Z2&2/4T2 2)1/2 (22)

For electrons scattering from an attractive point Coulomb
field the scattering angle can be calculated analytically:

In our case

B —BPz(cosg) 1 —P2(cos8)P=
2 2 +BP2 (cos8) 2/a z +P2 ( cos8)

The polarization is directly related to the shape function
through the asymmetry parameter a2. Thus determining
both the shape function and the polarization reduces to
the problem of determining the asymmetry parameter.

Our discussion so far is valid for all central potentials.
To obtain the bremsstrahlung spectrum or the angular
distribution for electrons scattering from a particular po-
tential of interest, one needs to evaluate the trajectories of
the electrons in that potential. The equation of motion
for electrons in a central potential V(r) can be derived
from energy and angular momentum conservation:

,'r + ,'r g —+V(r)=T—,, (19)

where g is the angular velocity. The second and third
terms can be combined to form an effective radial poten-
tial V,ff. The radial motion of electrons is then deter-
mined from the following equation:

2
r'=2' [T~ —V,ff(L,r)]', V,ff ——V(r)+

z2r
(20)

2p dr —77
r [r p rV(r)/T)]'— — (21)

where L is the angular momentum, L =r f =2T&p
with p the impact parameter. There is a minimum dis-
tance ro (corresponding to dr/dt =0) which an electron
of given kinetic energy and angular momentum can reach
in a given potential. This distance is called the classical
turning point. For screened atomic potentials there can
be a barrier and a inner well in the effective potential
V ff depending on the angular momentum (i.e., on the
initial velocity and impact parameter), present for angular
momentum less than some limit (but nonzero). For elec-
trons with energy T& lower than a certain limit, it is con-
sequently possible that an electron with proper impact pa-
rameter reaches exactly the top of the barrier at r =rp. In
this case both dr/dt and dV, ff/dr vanish simultaneously
at the point. An electron will stay in this unstable circu-
lar orbit until a perturbation occurs. This is called a clas-
sical resonance. In our present work we do not treat
these resonances. The highest energy for which a reso-
nance can occur depends on the potential. In the self-
consistent Dirac-Slater potential which we use the energy
limit for the resonance is about 0.5 eV for Z =13, 30 eV
for Z =47, and 40 eV for Z =79. All the energies we
consider are above these resonance energies. Study of the
resonance region would clearly be an interesting future
subject for investigation.

The scattering angle N, defined as the angle between
the directions of initial and final velocity of the scattering
electron, is determined from the expression

The trajectories in the point Coulomb case are a11 hyper-
bolic. Mathematically there is a singular case when the
impact parameter is exactly equal to zero. The trajectory
for this case would be a straight line passing through the,
origin. However, this straight-line orbit does not contrib-
ute to the cross section since the area in impact-parameter
space associated with this orbit is zero. Note that this
singular orbit is not the limiting orbit for p~O. The lim-
iting value of the scattering angle N for p~O is not zero
but m In F. ig. 2(a) we show the scattering orbits and the
scattering angle as function of the impact parameter. The
scattering angle begins with %=180' at p=O (we mean
the limiting value of &0 when p~O) and decreases mono-
tonically as p increases.

In the screened case the scattering angle N is still deter-
mined by Eq. (21) but the solution has to be obtained with
numerical methods. In Fig. 2(b) we show the orbits of
electrons scattering from the charge distribution of a neu-
tral aluminum atom. The Dirac-Slater potential is used to
describe the static potential field. The scattering angle for
p~O is the same as in the point Coulomb case, i.e.,
+=180'. In neutral atom potentials at low electron ener-
gies, with increasing impact parameters, W initially in-
creases, unlike the point Coulomb case where + decreases
as p increases. N increases to a maximum value and then
it decreases to zero as p goes to infinity (or beyond the
range of potential). Very-low-energy electrons can make
several turns around the field before escaping. ' ' The
scattering angle changes rapidly with impact parameter
close to the value for which the maximum scattering
occurs. This rapid change of scattering angle plays an im-
portant role in the angular distribution of the radiated
spectrum in circumstances when most contributions to the
spectrum come from such orbits. We will discuss this in
Sec. IV.

Our computer code CLB is designed to calculate the
doubly differential cross section of classical bremsstrah-
lung in both the point Coulomb and the screened central
potential. This is a numerical code. All important steps
of the calculation are done numerically. The central po-
tential is prepared separately and input to CLB as numeri-
cal data. The electron trajectories for selected impact pa-
rameters are calculated by integrating the equation of
motion. Then one takes a numerical Fourier transform of
the acceleration r'. For a given potential and given in-
cident electron energy, the electron trajectory is deter-
mined in full by the impact parameter. Neglecting energy
loss by radiation, the outgoing electron has the same ener-

gy as the incoming electron.
Due to the spherical symmetry of the potentia1, each

trajectory is symmetric about an axis which is perpendicu-
lar to the trajectory at the point of closest approach to the
center of the potential. We denote this symmetry axis as
the 0-zo axis [see Fig. 1(b)]. It is obvious that in the coor-
dinate system 0-xp zp only half of the trajectory needs to
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(p/rp) =1—V(rp)IT) . (23)
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low-energy range in which we expect classical results are
valid, our results agrees with others' ' within a few per-
cent. Because of the differences in the methods, we do
not expect precise agreement. We also tested our code for
the high-frequency limit. Here we mean by the high-
frequency limit the limit of the classical bremsstrahlung
spectrum as k/T&~oo. Of course, this is beyond the
physical limit of the real situation. According to Kogan
and Kukushkin, the high-frequency limit of classical
bremsstrahlung given by Kramers for the point Coulomb
potential will not be changed by the existence of screen-
ing. Our results confirm this conclusion. For Z =13 and
T i

——1 eV, the cross section o.= [(p/Z) ]kd o/dk o. b-
tained with the CLB code reached the Kramers's value
o.=5.605 mb at k /T& ——10 while within the normal
range of the spectrum (k/T, =0—1) the cross section is of
the order of 10 mb.

The numerical error of the CLB code mainly comes
from the following sources: (i) limited accuracy of inter-
polation of the numerical potential especially at large dis-
tances, (ii) the finite number of impact parameters utilized
in integrating over the beam, and (iii) numerical Fourier-
transform methods. Further improvement of the code to
increase the numerical accuracy is possible if necessary.

III. RESULTS FOR SPECTRA

A. Dependence on impact parameter

As defined in Sec. II, A ~(p) characterizes the radiation
intensity from electrons with impact parameters between p
and p+dp. For a fixed value of k/T~, 2 ~(p) is a func-
tion of p. Figure 3 shows the dependence of A &(p) on the
impact parameter p, for fixed values of k/T&, for Z = 13
and T&

——150 and 50 eV.
In the point Coulomb case, Ai(p) can be obtained

analytically

z
Ai(p)= 2 p H;„" (ipse)3T]

(27)

where H"' and H"' are the Hankel function and its
derivative with respect to the argument, e is the eccentrici-
ty of the orbit, related to the impact parameter by

g —( 1 +4T ~p2/Z irz2 )
~ ~i (2&)

p, =vik/2T, , v&
——Za/p with p the incident electron ve-

locity, Z is the atomic number of the target element, and
a is the fine-structure constant. The limiting values, as
functions of the impact parameter, are

A i(p~0) =0, A i(p~ oo ) =0 . (29)

I.O

~ ~
~ ~
~ ~

For the screened case, the limiting values of A&(p) for
p=0 and p= oo are the same as in the point Coulomb
case. Only a certain range of impact parameters contrib-
ute significantly to the radiation. In the point Coulomb
case, for a fixed p, A

&
is a function of the combined vari-

able y=(2Tip/Za) [note: e=(1+y)' ]. Figure 4
shows on a semilog scale 3] versus y for various values
of p. The curves in Fig. 4 are normalized so that

f tidy= l. We find that for p from 0.01 to 2 the peaks
of 3

&
occur for about y=1. With screening this effective

range involves smaller y (i.e., closer to the origin) and the

O
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FIG. 3. A&(p) for fixed k/Tl as functions of the impact pa-

rameter p for Z =13, k/T& ——0.2 and 0.8. (a) For Tl ——150 eV,
point Coulomb potential; (b) for Tl ——150 eV, screened potential;
(c) for T& ——50 eV, point Coulomb potential; (d) for TI ——50 eV,
screened potential.

FIG. 4. A I (p) as functions of y = (2Tip/Za) for fixed
p= —'(k/T, )(Za/P) for the point Coulomb potential. A~ is

normalized so that f 3 &dy = l.
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curves are more narrowly peaked. Due to the fact that
potential drops faster than in the point Coulomb case, the
contribution from scattering in outer orbits is less impor-
tant. For a given potential the location of the peaks de-
pends on the electron energy. For high incident electron
energy, more of the radiation comes from small impact
parameters (the peak is close to the nucleus) while for
low-energy electrons are more of the radiation comes
from larger impact parameters.

16'o'cc= (1+ harp)ln
3

2 +&(p'), p ((1
rv

16+ao'cc=
3zz [I+dip +d2p33/2

+2dld2p '+0(p '")) p»I

situations have been derived from Eq. (30):

(31)

(32)

B. Features of spectra

(1) The point Coulomb case A. n analytic expression
for the classical Coulomb bremsstrahlung spectrum was
obtained by Kramers:

2 3

ace= ipH „"(ip)H;„"(ip) .

Here the reduced cross section o =(P /Z )kdo/dk. The
subscript CC denotes the classical Coulomb case, while
we will use CS for the classical screened case. Tabulation
of crcc as a function of p can be found in Ref. 12. Figure
5 shows the results for the classical Coulomb bremsstrah-
lung spectrum evaluated from Eq. (30) for Z =13 and
T&

——1 eV —1 MeV. For the Coulomb potential the three
variables Z, T&, and k/Tj appear only in the single com-
bination p. All the curves of Fig. 5 are in fact the same
curve and will coincide if plotted against p=v&k/2T&
rather than k/T&. Expansions for two important limiting

where y =e = 1.781 07, C =0.577 21 is the Euler's con-
stant, d i

——0.217 741, dz ———0.013 121 4. Equation (31)
and the first two terms of Eq. (32) were given by Kra-
mers; the remaining terms of Eq. (32) were obtained by
Florescu and Costescu. '

Consider first the hard photon region. Equation (32)
says that in the p »1 region the asymptotic value of the
spectrum is a. =16~a /3 =5.61 mb. For low energies,

p »1 in the hard photon region and the spectrum is flat.
For high energy, p is small and the tip value is still far
larger than the Kramers value.

In the soft photon region, all curves of Fig. 5 diverge
logarithmically as k/T, goes to zero. For fixed k/T&,
the cross section decreases with decreasing incident elec-
tron kinetic energy but never drops below the Kramers
values, i.e., the Gaunt factor of the classical Coulomb
spectrum is always bigger than 1. For fixed T&, the
Gaunt factor increases with decreasing value of k /T& and
goes to infinity when k/T& ~0. However, the integral of
the energy spectrum over k IT, from 0 to 1 (which is the
integrated energy-loss cross section) does not diverge.

(2) Screened case. For a screened potential the spec-
trum is generally a function of all three variables Z, T&,
and k/T&. ' Spectra do not scale and have to be calculat-
ed for individual cases. In Fig. 6 we present the classical
screened (CS) results for spectra for Z =13 and 79. The
following features are different from the Coulomb case.

(1) The logarithmic divergence of the spectrum at the
soft photon end point no longer occurs. This is due to the
fact that the screened potentials for neutral atoms (in our
case, the Dirac-Slater potential) are short-range potentials
and the integration of the radiation intensity over impact
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100 &V 10keV

keV
Z =79

1 I
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I

IO

IO

30eV
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0 0.2 0.4 0.6
k/T,

0.8 1.0 IO I I I I I I I I

0 0.2 0 4 0.6 0.8 0 0.2 0.4 0.6 0.8 I.O

FIG. 5. Classical bremsstrahlung spectra for point Coulomb
potential for Z =13 and T& from 1 eV to 500 keV. The dashed
horizontal line indicates the Kramers value o =5.61 mb.

FIG. 6. Classical bremsstrahlung spectra for screened poten-
tials (a) for Z =13, (b) for Z =79. The dashed horizontal line
indicates the Kramers value o.=5.61 mb.
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10 = 7i =10keV
2= I 5

parameters converges.
(2) Cross sections are reduced from the Coulomb re-

sults. Screening becomes increasingly important with de-
creasing electron energy T&. The Kramers value is no
longer the lower limit of the spectrum. The Gaunt factors
are smaller than 1 for low electron energy (below about
20 keV in the case of gold and 1 keV in the case of alumi-
num). For very low energies the spectrum drops almost
linearly with energy.

(3) For fixed Ti, the spectrum for a low Ti increases
with k/Tj while the spectrum for a high T& decreases
with k/T&. In either case the trend is to reach the Kra-
mers value. It is predicted that, in screened potentials,
the high-frequency limit o (k~ oo ) remains the same as in
the point Coulomb case, i.e., the spectra for all energies
reach the same value o.=5.61 mb when k/T, ~0o. The
argument is that from the classical theory of electromag-
netic radiation, very-high-frequency radiation is associated
with very high angular velocity of the electron motion.
This very high angular velocity is possible only for elec-
tron orbits very close to the center of scattering, where the
potential is like the Coulomb potential. In Fig. 7 we
show the asymptotic behavior of the classical bremsstrah-
lung spectrum in a screened potential up to ultrahigh fre-
quencies, obtained with our numerical code. These re-
sults confirm that the high-frequency limit does not
change in the case of a screened potential. Note however
that this high-frequency limit will not be correct if the

screened potential does not have Coulombic behavior at
the origin, i.e., the prediction is valid only for point, not
structured, nuclei.

C. Ualidity of classical predictions for spectra

(1) The point Coulomb case. The validity of classical
results for bremsstrahlung spectra in the point Coulomb
potential has been studied, for example, by Florescu, '

Feng, and others. According to Feng's work, the region
of validity in electron and photon energy can be charac-
terized by a single parameter r/=vi(1 —k/Ti). For
g~0. 7, classical results for the Coulomb potential case
agree with nonrelativistic quantum-mechanical results in
the same potential within 5%. Figure 8 illustrates the re-
gion of validity of classical results with respect to
Sommerfeld's nonrelativistic quantum dipole approxima-
tion calculation for the same potential.

Comparisons with accurate numerical partial-wave re-
sults are also available. Figure 8 also shows the region of
validity of the classical results with respect to the exact
partial-wave results (EC) in the point Coulomb potential.
While the characteristic nonrelativistic Coulomb variables
are v& and k/T&, for the exact partial-wave calculation
the dependence of o. on the three variable T&, Z, and k
cannot be reduced. Thus the region of validity also de-
pends on the atomic number Z.

We see from Fig. 8 that for large v& and small k/T&
(low energy and soft photons) the classical method gen-
erally correctly predicts the bremsstrahlung spectrum.
For very large v& this validity extends to the entire spec-
trum.

(2) Screened case. Figure 9 shows the comparison of
the classical screened results (CS) with the relativistic
partial-wave screened results (ES). Data for quantum-
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(d). (c) (b)/ (a)/
il
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10%(' 10% ~
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FICr. 7. Classical bremsstrahlung spectra in a screened
Coulomb potential, showing (unphysical) high-frequency behav-
ior. Spectra are shown as functions of k/Tl for Z =13 and for
T& between 1 eV and 10 keV. All curves asymptotically ap-
proach the Kramers value when k/T& ~ o0.

FICx. 8. Region of validity of classical results for bremsstrah-
lung spectra in the point Coulomb potential. Curves shown are
the boundaries of the region in which the classical results have
errors less than the specified percentage in comparison with (a)
and (b) the nonrelativistic quantum dipole method (Sommerfeld
formula), (c) and (d) the exact relativistic partial-wave multipole
expansion method, (c) for Z =74 and (d) for Z =26.
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TABLE I. Comparison of CC, CS, EC, and ES results for bremsstrahlung spectra. Numbers given are the reduced cross sections
cr=(P /Z )kdo/dk in millibarns. CC, classical Coulomb; CS, classical screened; EC, exact Coulomb; ES, exact screened. The last
column shows the ratios of the screening factors.

13

Ti
(keV)

1.0 0.1

0.4
0.6
0.8
1.0

CC

10.15
7.90
7.44
7.16
6.94

o. = (P'/Z')kdo /dk
(mb)

CS

3.82
4.23
4.46
4.65
4.79

EC

9.98
7.35
6.77
6.40
6.16

ES

3.77
3.99
4.06
4. 13
4.17

(O CC/~CS)/(O EC/~ES)

1.01
1.01
1.00
0.99
0.98

10.0 0.4
0.8
1.0

9.72
8.55
8.23

8.61
7.99
7.78

7.77
6.28
5.82

6.89
5.83
5.49

1,00
0.99
0.99

50.0 0.1

0.2
0.4
0.6
0.8
0.9

14.88
13.04
11.37
10.48
9.90
9.68

13.10
12.27
11.07
10.32
9.80
9.59

11.20
9.08
6.86
5.50
4.56
4.17

9.46
8.35
6.65
5.46
4.55
4.17

0.96
0.98
1.00
0.99
1.01
0.99

79 10.0 0.6
0.8
0.9

6.86
6.66
6.59

4.45
4.61
4.67

6.73
6.50
6.41

4.16
4.26
4.30

0.95
0.95
0.95

50.0 0.1

0.2
0.4
0.6
0.8
1.0

10.46
9.14
8.09
7.60
7.29
7.09

6.89
6.90
6.74
6.60
6.50
6.42

10.80
9.30
7.95
7.26
6.78
6.45

7.14
6.92
6.42
6.03
5.77
5 ~ 59

1.01
0.99
0.97
0.96
0.96
0.96

500.0 0.5
0.9
1.0

9.58
8.59
8.44

9.33
8.44
8.30

6.07
3.83
3.43

5.64
3.53
3.13

0.95
0.94
0.93

20

0

0 keV
Z =79

a, —1forp
In Fig. 12 we illustrate the shape function as a function

.of angle for several different values of a2. When a2 ——1

more radiation is emitted in the direction of the incoming
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FIG. 10. Errors of bremsstrahlung spectra for screened poten-
tial as predicted by multiplying the ratio of screened to Coulom-
bic results calculated from the classical method by the exact
Coulomb results, as compared with corresponding errors of
Elwert-Born form-factor (EBF) predictions.

IO IO IO

FIG. 11. The asymmetry parameter for classical Coulomb
bremsstrahlung spectra as a function of )j, = 2(Za/p)(k/T~ )

based on data from Ref. 22.
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electron beam, while a2 ———1 implies more radiation in
the direction perpendicular to the beam. For a2 ——0, there
is isotropic radiation. The case aq~1 corresponds to
small values of p and thus high electron incident energy
and/or low photon energy, while a2~ —1 corresponds to
low electron energy at fixed k/T].

In the screened Coulomb potentia1 the angular distribu-
tion is still determined by the asymmetry parameter.
However, in this case the dependence of the asymmetry
parameter on Z, T&, and k cannot be simplified to a one
variable function a&

——a2(p). With screening, the value of
a2 can be lower than —1, the Coulomb limit. In Fig. 13
we show a comparison of values of a 2 (Z, T~, k IT, ) for
the point Coulomb potential [classical coulomb results
(CC)] and a screened potential (classical screened results)
for Z =13 and T, from 1 eV to 500 keV. The behavior
of the screened results for a2 can be classified into the fol-
lowing three regions.

(A) For high-energy (above 10 keV in this example), CS
results are basically the same as CC results except in the
soft photon region of the spectrum, in the example for
k/T& ——0.2. The screening effect is negligible for high-
energy scattering except in the soft photon region.

(B) In the medium-energy region screening effects be-
come important. CS results are below CC results (more
negative). However, the pattern of change remains similar
to the CC results.

(C) In the low-energy region (below 150 eV in this ex-
ample) the values of a2 change dramatically with the elec-
tron energy, showing some oscillation in energy, similar in
character for all k/T&.

We have also obtained similar results for the Z =79
case. In this case the large changes of a2 occur at higher
energy. The value of az reaches a minimum when T& is
about 1 keV. It starts to increase as T& continue to de-
crease, reaching a peak at about T] ——300 eV, and then be-
gins to decrease again.

These features can be understood by considering the be-
havior of the individual scattering trajectories of the elec-
trons in the beam. Each electron has its own orbit deter-

0.4

—0.4

—1.2
I

2

FIG. 13. Asymmetry parameter a2 of classical bremsstrah-
lung spectra for the neutral aluminum atom, as a function of in-

cident electron energy, compared with the point Coulomb re-
sults. Solid lines are for the point Coulomb results; dashed lines
marked with symbols are for neutral atoms results. Three values
of k/Tl are illustrated.

mined by its impact parameter. Observed quantities, for
example, the angular distribution of the radiation, are in-
tegrated results over angular distributions from individual
electrons in the beam.

The angular distribution of a subline (a subline is the
spectrum of radiation associated with given impact pa-
rameter as a function of klT&) can be expressed in the
same way as for the spectrum, by a parameter a (p), the
asymmetry parameter for the subline. Namely,

dp A&(p) 1+ P2(cos9)
a (p)

dkd Q o 2
(33)

From Eqs. (5)—(9), we find that

a (p) = (d k
—3d k, )/d k . (34)

The asymmetry parameter of the resulting spectrum (ob-
tained by integration) can be expressed in terms of an in-
tegration of the asymmetry parameter weighted by the
magnitude of the subline, i.e.,

8 (deg)
120 180

a2(Z, T, ,k) =—J "dp A, (p)a(p),
0

with

3] pdp=l .

(35)

(36)
FICz. 12. The shape functions of classical bremsstrahlung

spectra, as a function of the emission angle with respect to in-
coming electron direction, for several values of the asymmetry
parameter a2. Numbers in parentheses are the corresponding
values of p in the point Coulomb case.

In the point Coulomb case both A ~(p) and a (p) change
smoothly with impact parameter, as we see from Figs.
14(a) and 14(b) which shows a (p) and A ~(p) as functions
of p for fixed k /T] at two different energies T ~

——150 eV
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FIG. 14. Radiation intensity A &(p) of a given impact parame-
ter, the corresponding asymmetry parameter, p,r a( ) and the an-
gle o of the symmetry axis of the trajectory, as fu

ter p, e c
functions of the

impact parameter p orf Z =13 T =150 and 50 eV, (a) and (b)
for the point Coulomb potential, (c) and (d) for screened poten-
tials.

and T~ ——50 eV. We find that the a (p) curve for T~ =50
eV is owerV is lower than that for Ti = 150 eV for all values of p in
the effective range. We mean by effective range that range
of p within which A~(p) has significant magnitude. In
Fig. 14 the A ~ (p) curves are all normalized so that

s to theThe energy dependence of the a (p) curves leads to t e
energy dependence of the integrated asymmetry parameter
aq. The energy dependence of the a (p) curve can be un-
derstood qualitatively by the following argument. The ra-

part of the trajectory close to the scattering center (where
the maximum acceleration occurs). A g) A small re ion of the
trajectory near the symmetry axis 0-zo plays an important

1 . In this region the vector d mainly lies along the zoro e. n is
~ ~ ~ ~ ~

iondirection, us, th the maximum radiation is in the direct'
er endicular to the zo axis since the radiation intensity is

proportional to (dXn) =d csin 0. e
ponents of this radiation will depend on the angle go. For

/2 the smaller $0 is, the less radiation will
be in the z direction. In the point Coulomb potentia, or
the same impact parameter, a lower-e gy— ner electron has a
larger scattering angle (&0 close to rr, ~&o close to 0) and
therefore produces less radiation in the z direction. This,
as we can see from Fig. 12, corresponds to lower values of

For a screened potential, in the high- and medium-
energy range, e enth energy dependence of the subline asym-
metry parameter is similar to the p

'~ ~ ~

h oint Coulomb case.
With decreasing energy the value of a (p) for a given p de-
creases. Hence the integrated value a2 also decreases.
However, in the screened potential case the values of a2
are more reduced than in the point Coulomb case. This
can be exp aine y1 d b the behavior of the scattering ang e.
In a screened potential, when the impact parameter p in-

creases rom, un if 0 like in the point Coulomb case, the
scattering ang e o1 does not begin to decrease immediately
from the starting value ~. Instead, it increases with in-
creasing impac pat rameter reaches a maximum value at a
certain impac paramt rameter and then decreases back to vr.

After that it continues to decrease with increasing impact
parameter until it reaches the minimum value 0. The
maximum scattering angle depends on the electron ener-
gy. Except for very low energy, the maximum scattering

1
' '

t 1' htly larger than a. The large scattering
es of andangles around rr are related to small values of Po an

therefore low values of a (p).
In Figs. 14(c) and 14(d) we show A, (p), a (p), and go

versus p or e screef th ned potential of the aluminum atom
Fi . 14(c),(Z =13). We see, in the T, =150-eV case [Fig. c,

red to the point Coulomb case (Fig. 14(a)], that gocompare o e
ortantis restncte o av

'
t d t have a smaller value within the impo

muchrange of p. This causes the a (p) curve to have a muc
lower value than the corresponding curve for the point

lomb case. Generally speaking, in a screened poten-
tial, due to the large scattering angles of the trajectra ectories
with the important impact parameters, the asymmetry pa-
rameters of sublines associated with these trajectories are

Coulomb case. Therefore, the integrated asymmetry pa-
rameter has a lower value for the screened potential.

Now, let us discuss the oscillation of a2 which we have
Fi . 13. With decreasing energy, the maximum

value of the scattering angle become much larger t an ~.
The corresponding values of $0 are no gno ion er small ~ For
example, for T~ ——50 eV, as shown in Fig. 14(d),
can be as ig as ~ ab /4 t about p=1 a.u. Remembering
that a larger value of ttIo corresponds to 'gs to a hi her value o
a(p), we see a pea o a pk f a(p) at about the same distance.
The hi h value of a (p) around p= 1 a.u. has a great con-
tribution to the integrated result because it occuurs in the
important range of p. Compare to the T =150-eV case
[Fig. 14(c)], it is obvious that the integrated asymmetry
parameter or I

—— ef T =50 V has a higher value, as we have
already seen in Fig. 13.

tterin an leFor even lower energies, the maximum scattering ang e
can be very large (even several times ~) When t e.

scattering angle increases from 0 to the me maximum and de-
creases back to 0, the corresponding value of g oscillates.
This oscillation causes a (p) to oscillate corresponding y.

A ( ) is more narrowly peaked, with a position moved

curve the oscillations of a (p) are unlikely to be averaged7

b the integration. The actual value of a2 is determined
b a combination of these factors, nam y p
the oscillating a (p) falls in the dominant range of p.
Lowering electron energy, the peaeak of the A 1( ) curve
moves outward and a (p) oscillates more rapidly with p.
The highs and the lows of a (p) enter the important region
f alternatively. The result of these changes is the oscil-

lation of the integrated a2. All these discussions of the
asymmetry parameter are based on the ideas of the classi-
cal theory. We have not attempted to formulate a corre-
sponding quantum theory, an it is not clear whether
similar features would persist.



36 NUMERICAL CALCULATION OF CLASSICAL BREMSSTRAHI UN'

B. Ualidity of classical angular distributions O. I 2

The validity of the classical predictions for the brems-
strahlung angular distribution should be examined sepa-
rately from the validity of spectrum predictions, as it fur-
ther clarifies the validity of the classical method. The
asymmetry parameters calculated from the classical
method and from the quantum-mechanical method has
been compared by Florescu et al. for the point Coulomb
case. The classical results are good for large values of v&

and small values of k/T&, as in the case of the spectrum.
However, the region of validity for the asymmetry param-
eter is more restricted to the larger values of v& than it
was for the spectrum. For example, for v&

——20 and
k/T& ——0.2 the relative error of classical results for the
asymmetry parameter is about T%%uo, while for the spec-
trum it is less than 2%.

The relative error of classical results for the shape func-
tion can be estimated from the relative error of the asym-
metry parameter:

a2P2(cosO) 5a

2+a2P2(cosO) ap
(37)

The absolute value of the multiplier in Eq. (37) is smaller
than one for all possible values of 0 and a2. This means
that the shape function has less relative error than the
asymmetry parameter. Figure 15 shows the numerical
values of the multiplier as functions of 0 for some selected
values of a z. Except for a 2 ~—1, which corresponds to
infinitely large p, and 0&30 or 8&150, the absolute
value of the multiplier is smaller than 0.3. In these cases,
the agreement of classical results with quantum results for
the shape function is better than for the asymmetry pa-
rameter by a factor of 3 or more. (We do not show, in
Fig. 15, the cases when a2~0, since they are related to
small values of v&, and the classical method is not valid
anyway. )

For the screened case the validity of the classical results
for the angular distribution of bremsstrahlung radiation
can be obtained by comparisons with quantum results, as
we did for the spectrum. In Fig. 16 we show comparisons
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V) 0 I I I L I I L
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l80

FIG. 16. Comparison of CS (solid lines) and ES (dashed lines)
results for the shape function for Z =79, Tl ——5 and 10 keV.
The ES results include contributions from higher multipole radi-
ation and therefore are not symmetric about 8=90.

of the shape function for Au obtained with the classical
numerical method and with the exact partial-wave
method. The results from the exact partial-wave method
include contributions from higher multipole radiation and
so do not have the symmetry which exists in the dipole
radiation case. However, from the comparison with the
ES results we still can get some idea about the validity of
the classical method. For Z =79, T

&

——10 keV,
k /T& ——0.4, 0.6, and 0.8 the discrepancy between the clas-
sical results and the ES results is about 10—25% in the
8=0 —180' range. For lower energy (see the T&

——5-keV
case in Fig. 16) the discrepancy is smaller. The large
discrepancy in the 90'&0&180 range is due to the con-
tribution from higher multipole radiation, which we have
not included in our classical calculations.
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FIG. 15. Ratio of relative error of the shape function to rela-
tive error of asymmetry parameter a2 as a function of 0 for
several values of a2.

FIG. 17. Polarization degree I' as a function of 0 for several
values of a2.
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C. Polarization

The polarization of classical bremsstrahlung in a central
potential is related directly to the angular distribution of
the spectrum. Once the asymmetry parameter is deter-
mined both the angular distribution and the polarization
are determined [see Eqs. (11) and (18)]. I' = 1 corre-
sponds to 100% linear polarization in the y direction.
Full polarization in the x -z plane is represented by
P = —1. If P =0, the radiation is not polarized. For a
given a&, the polarization degree P is a function of the an-

gle 0.
Figure 17 shows the polarization degree versus the an-

gle L9 for four different values of the asymmetry parameter
a2. In the point Coulomb case the value of a2 is limited
to the range from —1 to 1, so a2 ( —1 is meaningful only
in the screened potential case. We see that in the forward
and backward directions (0=0 or 180') radiation is not
polarized. Maximum polarization occurs at 6I =90'. With
a2 ——1, the maximum polarization is 100% y polarization.
In the Coulomb case the lowest value of az is —1 and
therefore maximum polarization is 60% in the x-z plane.
If a2 ——0, which corresponds to isotropic radiation, then P

is also equal to zero and the radiation in all directions is
unpolarized. Since a2~0 corresponds to high incident
electron energy, strong y polarization for 0=90 occurs
for high-energy bremsstrahlung. Similarly the strong x -z

polarization for 9=90' occurs for the low-energy (finite
k/Ti) bremsstrahlung.

In the screened cases, polarization is different from the
point Coulomb case because of the shift of the value of a q.
The predictions follow from the asymmetry parameter a2
together with Fig. 17. In general, screening reduces the
value of a2. This results in more polarization in the y
direction compared to the point Coulomb case. At very
low energies where a2 oscillates with energy the polariza-
tion degree will also oscillate.
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