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We have studied quantum-mechanical behavior of a driven Morse oscillator coupled to a bath
of harmonic oscillators. The purpose is to compare the quantum behavior of such a system with
the classical solutions of a driven damped Morse oscillator. We start with the quantum Liouville
equation, in which the Hamiltonian of the Morse oscillator is expressed in terms of generators of
an su(2) Lie algebra. This algebra and the Markovian approximation allow us to derive the gen-
eralized master equation {for the reduced density matrix of the Morse oscillator), which contains
level-dependent energy and phase relaxation terms. We have numerically integrated the
dift'erential equations of the matrix elements to obtain the time evolution of the reduced density
matrix and the energy of the Morse oscillator. We show that the energy of the Morse oscillator in
general varies with time and eventually reaches an asymptotic oscillatory state. The mean energy
value of the asymptotic oscillatory state is studied as a function of the relaxation rates and laser
frequency and amplitude. Vibrational distributions have also been found as functions of laser fre-
quency and amplitude. The shape of the distribution changes gradually as laser amplitude in-
creases; it first peaks at the ground state at a small field amplitude, then it peaks at some excited
state at a large field amplitude, and for an amplitude in between it can have two maxima. This bi-
modal vibrational distribution reflects the bistability observed in the classical and semiclassical
models. Thus bistability exists in quantum results, not as a hysteresis loop, but as a bimodal distri-
bution. Finally, we show that as laser intensity increases, the time series of the oscillator energy
evolves from regular to quasiperiodic behavior, and eventually a chaotic-looking series appears.

I. INTRODUCTION

H, =a afire —a a(a a+1)he, {1.2)

can be obtained from the expression of the Morse eigen-
values by substituting the number operator a a for the
vibrational quantum number. The dynamics of this os-
cillator is described by the quantum Liouville equation

It has been shown that classical solutions of the driven
damped Morse oscillator

x +yx +e (1 —e ) = A cos(cot )

exhibit bistable behavior. ' This means for a certain set
of parameter values: A, co, and y, the (x,x ) phase space
made of initial states leading to bound motion can be di-
vided into basins of attraction for two attractors. We
shall call the attractor with a smaller amplitude (x,„)
the lower branch and that with a larger amplitude the
upper branch. The attractors are of either periodic or
chaotic type. ' It can be shown that chaotic attractor
can exist on both branches and the scenario leading to
chaos is period-doubling bifurcations.

Such bistability exists ' also in an approximate
quantum-mechanical study of the dynamical behavior of
an anharmonic oscillator which is in contact with a bath
and is driven by a classical field. The Hamiltonian of
the oscillator, given by

in which the effects of bath are included as two relaxa-
tion terms; one each for the phase and energy relaxation.
The equations of motion of the expectation values of
operators (a ), (a ), (a a ), . . . can then be construct-
ed. This infinite hierarchy of equations can be truncated
by introducing factorization ansatz and a set of three
first-order nonlinear differential equations for ( a ),
(a ), (a a ) is then obtained. Because the factoriza-
tion techniques used are typical of most semiclassical
models, we shall call this approach a semiclassical one
below. The steady states of the above-mentioned set of
equations are roots of a cubic equation and can be de-
scribed by a cusp catastrophe, ' when the steady-state
values of (a a ) are plotted as a function of the driving
field amplitude and frequency. We note that, the steady
oscillations of Eq. (1.1) can also be described by a cusp
catastrophe, when the amplitude of oscillation, x,„, or
the average oscillator energy is plotted against the same
control parameters. However, there is a difference be-
tween results of these two models, the steady states of
the semiclassical model on the upper and lower branches
of the cusp catastrophe are always stable (if the ratio be-
tween the transverse and longitudinal relaxation time is
taken to be less than 2, the physical upper bound), but
the periodic states of the classical solutions on both the
upper and lower branches can become unstable and
chaos may arise as a result. On the other hand, since
Eq. (1.2) is not exactly a Morse Hamiltonian, only a
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II. THE FIELD-FREE SYSTEM: MORSE
OSCILLATOR PLUS RESERVOIR

The Hamiltonian of a Morse oscillator plus reservoir
system can be written as

H =Hg+H~ +HER, (2.1)

where the Morse Hamiltonian Hz, the Hamiltonian of
the reservoir H~ and the interaction between them, Hzz,
are defined, respectively, by

Hamiltonian which yields Morse eigenvalues in the har-
monic basis, we cannot draw conclusions about the com-
parison between the quantal versus classical behavior
based on this model alone.

The objective of this paper is to present a more accu-
rate quantum-mechanical study of the driven damped
Morse oscillator problem. A legitimate way of introduc-
ing damping in a quantal approach is to start with a
larger system in which the system of interest is in con-
tact with a reservoir, which can be approximated by a
large number of harmonic oscillators. This was the
procedure adopted in the semiclassical treatment. ' Our
system is a one-dimensional Morse oscillator whose
Hamiltonian is expressed in terms of generators of an
su(2) Lie algebra. ' A generalized master equation for
such an oscillator when coupled to a harmonic bath
through linear coupling terms has been derived be-
fore. ' '" We shall outline the procedure in the next sec-
tion and generalize it to include some bilinear coupling
terms. The time evolution equation of the density ma-
trix and an application of it to a simple model will be
presented. In Sec. III we derive the generalized master
equation for a Morse oscillator pumped by a classical
monochromatic field. Also derived are the generalized
master equation and the temporal evolution equations of
the matrix elements for the combined Morse oscillator
plus reservoir plus field system. Results of numerical in-
tegration will be presented in Sec. IV, where we show
how the energy and phase relaxation rates, the driving
intensity and frequency affect the energy absorption
efficiency of the oscillator. We show also how vibration-
al distributions vary with these factors and discuss why
these results suggest the existence of bistable behavior.
The time series of the oscillator energy reaches a steady
oscillatory state, which varies from a seemingly periodic
state to a quasiperiodic and eventually to a chaotic-
looking state as field intensity increases. We shall ana-
lyze these results by using fast-Fourier-transform (FFT)
spectra. Finally, in Sec. V we shall discuss the
significance of our results.

Lie algebra which satisfy the following commutation re-
lations:

[A, A+]=I
[A+ Io]=+2xoA

(2.3)

3 + and 3 function as the raising and lowering opera-
tors of the Morse eigenstates as given by the following
relations:

A+
~

m ) =[(1—xom)(m +1)]'
~

m +1) (2.4a)

m ) = {[1—xo(m —1)]m ]
'

~

m —1), (2.4b)

Io ~m)=(1 —2xom) ~m) . (2.4c)

In Eqs. (2.4), xo is an anharmonic parameter, related to
one-half of the total number of bound states. Levine '

has shown that the exact Morse eigenvalues and eigen-
functions are obtainable from Hs [Eq. (2.2a)]. a~ and a~
in Eqs. (2.2) are the ordinary creation and annihilation
operators of a harmonic oscillator with frequency co, .
The interaction Hamiltonian Hzz contains the linear
and bilinear terms, which are given separately by

H, = g A(tr& A+ai+tr~*a~ A ),
i=1

(2.5)

(2.6)

in which I is an operator in the reservoir space and ~~ is
a complex constant. '

We can derive the generalized master equation for the
Morse oscillator, starting with the Liouville equation

dW(t)ldt = —i [Ls+Ltt +Lsd ]W(t), (2.7)

where W(t) is the statistical density operator for the en-
tire system and J;X is defined by

L,X= [H, ,X]le . (2.&)

W(t) =p(t) Wg, (2.9)

where p(t) is the reduced density operator for the system
defined by

p(t) =Trz [ W(t) ]

and Wg by

(2.10)

The procedure that we shall follow is that of Ref. 11, but
here we include not only linear interaction terms but
also a bilinear one. ' We assume weak interaction be-
tween the system and each degree of freedom of the
reservoir and that the reservoir is never far from thermal
equilibrium and any deviations from equilibrium are rap-
idly eliminated due to some dissipative mechanisms.
Therefore W(t) can be written as

Hs ——%co( A + A +I() l2), (2.2a) (2. 1 1)

(2.2b)

Hgg ——H)+H2 . (2.2c)

In Eqs. (2.2), A +, A, and Io are generators of an su(2)

Besides the weak-interaction approximation we intro-
duce furthermore the Markovian approximation that the
relaxation time of the bath correlation functions is much
shorter than the characteristic time of the system, the
generalized master equation can be written in the follow-
ing form
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dp/dt= i—Lsp+g f exp( ir—oxoT)I (B(T)B )0[exp(icoIoT)A p(t), A+]+(B B(T))0[A+,p(t) exp(icoIoT)A ]

+ (BB (T) )0[A,p(t) exp( ic—oI0T) A +]

+ (B (T)B )0[exp( ice—IOT)A p(t), A ]}dT

+g[[A+A p(t), A+A ]+[A+A,p(t)A+A ]},
l

(2.12)

where

B

=ganja

/g,
J

B (t) =exp(iH~ t/R)B exp( iHt&—t /A'),

m, n

(2.13)

(co& ) „ is the frequency difference of the bath in m and
n states. In deriving Eq. (2.12) we have omitted the
weak interference term between H& and H2. One can
easily show Eq. (2.12) reduces to the master equation of
a harmonic oscillator coupled to a harmonic bath in the
harmonic limit xo ~0.'

The time evolution equation of the off-diagonal ele-
ments of the density matrix pk can be derived from Eq.
(2.12) by sandwiching this equation between kth and
mth Morse eigenstates and utilizing Eqs. (2.4). The pro-
cedure is similar to that used in Ref. 11. We obtain'

dpk /dt = i~k—pk +[(k+1)(m+1)]' (y, k+)+y& +) )pk+) +)
—[ky, k+rny, +(k+1)y,k+(m +1)y, +g(k —m ) ]pk +(km ) [y«k —))+y« —))]pk —),

(2.14)

where we have dropped the imaginary part of the
coefficients, corresponding to small level shifts. '

cok is
the frequency difference between the kth and mth levels
of the Morse oscillator and given by

cok ——co(k —m)[1 —x&)(k +m)] .

Other symbols are defined as

D(coj )
I aE& )=l*

J
t)E&m)lk& T

n =je
y, =cr (n +1),
p fm +m + lnm +1

EE (m) =Ace[1 —(2m —1)xo],
m =m [1—xo(m —1)] .

(2.15)

(2.16)

The spectral density distribution of the bath D(coi) was
introduced when we integrate over the bath frequency in
evaluating the correlation function in Eq. (2.12). For the
diagonal elements the evolution equation becomes

dp /dt =2y, +)(m + 1)p +) +)
—2[y„m+y, (m +1)]p

+ V~ (m —]) pm —]m —1 (2.17)

In the harmonic limit xo~0 Eqs. (2.14)—(2.17) reduce to
those of a harmonic oscillator in contact with a harmon-
ic bath, namely, the equations obtained by replacing m

by m and dropping the level dependence of the relaxa-
tion rates in the above equations. Equations (2.14) and
(2.17) make clear that the effects of a Morse oscillator
are that the energy relaxation coefficients are level
dependent and the factor multiplying the coefficients, m,

is replaced in the anharmonic case by a smaller number
m.

Other things to be noticed are the following.

(1) Equation (2.17) satisfies the detailed balance rela-
tion.

(2) A level couples only to its nearest neighbors is the
result of the form of the couplings assumed in Eqs. (2.5)
and (2.6).

(3) The level-independent phase relaxation coefficient

g appears only in the equation of the diagonal elements,
not in that of the off-diagonal elements.

(4) Unlike its harmonic analog, Eq. (2.17) is highly
nonlinear in m and thus much more difficult to solve
analytically. '

Equation (2.17) has many features different from its har-
monic counterpart and to illustrate some of these
features we have studied relaxation properties of a dia-
tornic molecule in contact with a bath which has a Oat
spectral profile, namely, a constant D(co). The molecu-
lar parameters used are approximately those of an HF
molecule: co=4140 cm ' and xo ——0.0211. To reduce
the number of parameters involved we further assume all
Kj thus 0. , are identical. We shal 1 drop the subscript
of cr and use the value a =0.1'co/2m in our calculation.
Equation (2.17) can be rewritten into the following form:

dp /dt =2crn mp )+2cr(n +)+1)(m +1)p +)
—2o [n +,(m + 1)—(n + 1)m ]p, (2.18)

where we have denoted p by p . The matrix on the
right-hand side has the following properties.

(I) It is tridiagonal.
(2) The sum of all the elements in each column is

zero.
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creases with energy. In carrying out the calculation the
temperature is taken to be 300 K, and we have checked
numerically that the results are not sensitive to the tem-
perature for the range of interest here.

5.0—

III. THE FIELD-DRIVEN SYSTEMS

The Hamiltonian of a Morse oscillator driven by a
classical field can be written as

n

I

10

H =Hg+HgF,

where HzF is given by the form

(3.1)

FIG. 1. Relaxation time (T~ ) of the field-free Morse oscilla-
tor as a function of the initial vibrational quantum number no.
TR is scaled by 2~/co. The damping coefficient is fixed at
o. =0. 1 ~/(2~) and the temperature is at 300 K.

(3) All diagonal elements are negative and off-

diagonal elements positive.

HsF —pe( 3 + 3 ) cos(ci)f r ) (3.2)

We assume in HzF that p( A ++ 3 ) denotes the dipole
moment operator and c is the field amplitude. Since it is
not known how to express the oscillator coordinate in
terms of 3 +, 3, and Io, we have used an expression
for the dipole moment which yields the correct form in
the harmonic limit. The master equation is given by

As proved in the Appendix, these properties guarantee
that all eigenvalues of the matrix are real and nonposi-
tive. Thus the dynamics should be simple. If the tem-
perature is sufficiently low, all level populations decay
exponentially except that of the ground state.

We integrate Eq. (2.18) by using the fourth-order
Runge-Kutta method to obtain p (t)'s, and from them
calculate the expectation value of the oscillator energy at
time t according to the relation

(E(&))=gp (&)& (2. 19)

where E is the mth Morse energy level. For the har-
monic analog energy decays exponentially as given by
the following formula

(E(t) ) = (Eo )e '+n (co)(1—e ')fico, (2.20)

where (Eo) is the initial energy and n (co) the average
excitation of each degree of freedom of the reservoir
given by

(2.21)

and X is the decay constant related to a. . In the case of
the Morse oscillator the decay is almost exponential.
We shall define the relaxation time as the time at which
the energy decays to half of its initial value. Our results
are presented in Fig. 1, where we have plotted the relax-
ation time (T~ ) as a function of the initial excitation no.
The results show that the relaxation time increases as no
increases, in consistency with the fact that the period in-

dp(t) Idt = —tL&p iL+Fp, (3.3)

H =H~+HR +H~R +HgF . (3.5)

The full master equation is obtained by adding the
second term of the right-hand side of Eq. (3.3) to the Eq.
(2. 12). Similarly the full time evolution equation can be
obtained by adding the new term in Eq. (3.4) to Eq.
(2.14). In following this procedure we have neglected
small interference terms that would arise from the cou-
pling between H~F and H&R.

The p which satisfies the full time evolution equation
oscillates rapidly with time due to the presence of
—icok pk term. This fast oscillation can be removed
by making the following transformation:

km
P1 km =e '"

Pkm (3.6)

where coq is given by Eq. (2.15), to a rotating coordi-
nate frame. The time evolution equation then becomes

where LsF is defined by Eq. (2.8), and the time-evolution
equation for the matrix element becomes

dpi'~/dt = —Lcok~pk~ —If),g cos(co f)r

)& Ik' Pk, +(k+1)' pk+i m

—m PI, &

—(m +1) p& +&I
—1/2 1/2

(3.4)

where AR is the Rabi rate defined by pc. /fi.
The total Harniltonian for the driven dissipative sys-

tem is

1/2
—i [2(k —m)xo]cut

dp, „ /dr =(km ) (y„,+y, , )e p„
1/2 1/2 i [2(k —m)xp]Mt+(k+1) (m+1) (y, q+, +y, +()e p, q+)

—[ky, k+my, +(k+1)y,q+(m+1)y, +g(k —m) ]P, I,

—i [(2k —1)xo —1)cut i [(2k + 1)x() —1)cut—Qz coscof t Ik e p&1 &
~+(@+I) e Pl k+1,m

i [(2m —1)xo 1]cot 1/2 —i [(2m + 1)xo —1]cut—m e p, q, —(m +1) e P 1 k, +1 Im (3.7)
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The transformed matrix p& is the one which has been
evaluated numerically and results are presented in Sec.
IV.

IV. RESULTS OF CALCULATIONS

We have solved Eq. (3.7) numerically by using the
fourth-order Runge-Kutta method and present all results
in this section. Because the computation time increase
quadratically in n „, the total number of levels con-
sidered, we have calculated the density matrix as a func-
tion of time for only the lowest seven energy levels. As
discussed below in some cases we have done calculations
using a larger n,„(up to n,„=10) to verify our
findings are not caused by a smaller n,„. In principle,
the factors o''s, appearing in the energy relaxation rates
y's [see Eq. (2.16)] are level dependent, we shall assume,
as in Eq. (2.18), that the special density of the bath is so
Hat that all the cr's can be considered equal. Of course
this does not reduce our problem into a harmonic one,
for m still is a function of the anharmonicity. Molecular
parameters simulating the HF molecule, as given in Sec.
II, will be used through out the calculations. All energy
quan i

'
uantities are scaled by Ace and time quantities scaled by

2n. /co. We summarize results below.

A. Effects of the relaxation rates
on the time evolution of (E(t) )

0.20—

0
CO

0.15—
C:

CA

0.10—
C

LJJ

0.05—

0.00 &

0 100 200 300 400 500
Time (units of 2n / ~ )

FIG. 2. Energy absorption of the Morse oscillator as a func-
tion of the phase relaxation rate g. The energy is scaled by fico

and time by 2a/co. The parameters ~~, o. , and a are set at
4000 cm ', 0.05, and 0.22. The labeling symbols are the fol-
lowing: ~, g=0.05; ~, g=0. 15; ~, g=0. 35; and o, g=0. 80.

creases above a certain value (0.45), the oscillator
strength is spread out so thin within the level width that
it hinders pumping. Incidently we point out that some
of the effects of the rotational levels can also be included
in the phase relaxation. For the rest of the calculations
reported in this section g is set at 0.2.

Since the system is driven by a sinusoidal external
field, it will not reach any equilibrium state but some
steady oscillatory state. The effect of increasing o. witih
all other parameters fixed is to shorten the transient and
to lower the average energy of the Morse oscillator in
the asymptotic oscillatory state. This also means that to
pumump energy efhciently into the molecule we need to in-
crease the intensity. For most of the calculation below
o. will be fixed at 0.05. This corresponds to a very small
and unrealistic relaxation time, roughly 0.2 psec for HF.
This value is chosen to speed up the calculation, other-
wise the calculation will be forbiddingly long. The cor-
responding field strength used will therefore be unrealist-
ically high. For example, a=(2~i')Aq ——0.07 corre-
sponds to 1 TW/cm for HF.

The effects of increasing the phase relaxation rate (g)
is more interesting as illustrated in Fig. 2, where the pa-
rameters are set at co =4000 cm and a=0.22. For a

—1f
g=0.05 or 0.15 we see the vibrational energy of the
molecule oscillates with large amplitude as a function of
time and eventually settles down to a steady oscillation
with smaller amplitude. As g increases the large ampli-
tude oscillation is damped out and (E ) approaches the
steady oscillation smoothly. The asymptotic energy
averaged over several oscillating periods (which is usual-
ly order of magnitude longer than the optical period),
E,„(not to be confused with (E(t) )), first increases with

q, then decreases as g increases beyond 0.45 as shown in
Fig. 3. To understand the phenomenon we notice that g
can be interpreted as level width. Because of the anhar-
monicity the Morse oscillator is hard to excite, but as
level width increases the resonance condition becomes
easier to satisfy, thus E,„ increases. But when g in-

O.2O-
a
tO

~~
0.18—

C3
CL
LJZ 0.16—
4J

LLJ
C3

0.&4—

0.[2—

0.10
0.0

l

0.2 0.4 0.6 0.8
q (units of m/2n)

FIG. 3. The average asymptotic energy E„ofFig. 2 plotted
as a function of g.

B. Effects of varying the field intensity and frequency

With cu fixed at 3960 cm ' we have plotted E„as af'
function of the field amplitude, parametrized by a, in
Fig. 4. We see that E„ increases with a as it should be,
but what is worth noticing here is that there is a thresh-
old value of a above which E„rises suddenly and seems
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Bimodal vibrational distributions have been seen in
the experiments of infrared multiphoton excitation of
SF b Bagratashvili et al. ' ' and Mazur, Burak, and
Bloembergen. ' In the former experiment the spectra of
the Stokes signals from the Raman scattering have been
determined. It was found that they have two well-
separated peaks; one ensemble contains molecules which
are vibrationally hot and the other vibrationally cold.
This result is consistent with that observed by Mazur et
al. in the anti-Stokes signal with low Auence. ' Bagra-
tashvili et a1. ' ' also showed that the effect of adding
buffer Xe gas to SF6 is to enhance the signal of the hot
ensemble. The present model suggests one possible
mechanism for the vibrational distribution to become bi-
modal. But since we are not simulating the multiphoton
excitation process of SF6 here, we cannot tell whether
th present mechanism is indeed the one responsible fore p
the bimodal distribution of SF6. On the other hand, i
we simusimulate the effects of the buffer gas by changing the

itshase relaxation rate g in our equations, then the resu ts
presented in Fig. 2 can be qualitatively interpreted as
saying that the average oscillator energy increases with
the pressure of the buffer gas, due to the fraction of the
hot molecules increases, up to a pressure above which
the excitation starts to go down. But again we should

avoid the temptation of inferring too much from our re-
sults. Multiphoton excitation of SF6 molecules is being
investigated in our group by using the present mo e .el.

We note that in order to speed up the calculations the
relaxation constants used in our study are much larger
than the realistic values. Consequently, the laser intensi-
ty used here is also unpractically high. Even with the
large damping constants used here the computation is
still very time consuming. This prohibits, as mentioned
above, the extensive study needed to unravel the bifurca-
tion mechanism of the time series. For the latter investi-

ations we may have to resort to approximate quantumga ion
methods. One of the methods is to solve the Heisen-10

berg equations for a truncated set of operators and then
take the expectation values and introduce the factoriza-
tion assumptions, as was done in the semiclassical treat-
ment. The brute force solutions presented here can
then serve as a benchmark for these approximate
methods.

The dissociation continuum of an Morse oscillator is
not included in an su(2) Hamiltonian. In order to con-
sider the continuum we should use a noncompact

rou such as an su(1, 1) algebra. This will, of
course, be an important extension of the present treat-
ment, for we can then investigate interesting processes
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such as laser-induced dissociation of a molecule and
desorption of surface-absorbed molecules. One goal that
particularly concerns us here is to lower the threshold
laser intensity for seeing interesting dynamic behavior.
A possible answer to it is to choose weakly bound sys-
tems, but then the dissociation channel must be properly
included. A weak link at the present time of the alge-
braic methods, either using su(2) or su(1, 1), is that the
expressions of the coordinate and momentum in terms of
the generators of the group are still not known.

Another legitimate question to ask is whether hys-
teresis can be found at all in a quantum approach. In
our opinion it is possible. For instance, a favorable situ-
ation is when the response of the bath is slow compared
to the time scale of the molecular response ' so that
memory effects play a role. It is well known that de-
layed feedback often induces instabilities. ' Other pos-
sibilities of seeing quantum hysteresis include formula-
tions of dissipative quantum mechanics in which the
equation of motion is nonlinear in the density matrix.
Until now our understanding of dissipative quantum
mechanics ' is rather limited and much more needs to
be done along this direction.
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APPENDIX

We show in this appendix that any matrix 3 satisfy-
ing the following conditions has nonpositive real eigen-
values.

(1) 2 is a tridiagonal matrix.
(2) The column sums of 3 are zero.
(3) All diagonal elements are negative and otf-

diagonal elements positive.

The matrices associated with Eq. (2. 18) and with ordi-
nary master equations belong to this category.

A proof can be given in three steps.
Step 1. If T is a tridiagonal matrix, then we can find a

diagonal matrix D such that D 'TD is symmetric and
still tridiagonal.

Step 2. A real tridiagonal matrix must have real ei-
genvalues. This follows from step 1 and the fact that a
real symmetric matrix has real eigenvalues.

Step 3. For the last step, we resort to a theorem due
to Gerschgorin. ' Theorem: Let 3 be an n, n matrix.
For each column i construct the circle centered at a;;
with radius equal to g a~; . Then the eigenvalues of

j+I
3 lie in the union of these circles.

Since 3 has negative diagonal elements and positive
off-diagonal ones, and the column sum of the off-
diagonal ones equal to the absolute value of the diagonal
element of that column, the Gerschgorin circles are all
centered on the negative real axis and tangent to the
imaginary axis at zero. Thus the eigenvalues lie in the
left half plane. Since they are real, they must be zero or
negative.
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