
PHYSICAL REVIEW A VOLUME 36, NUMBER 9 NOVEMBER 1, 1987

Emclent algorithm for estimating the correlation dimension from a set of discrete points

James Theiler
Department of Physics I03-33, California Institute of Technology, pasadena, California 9II25

(Received 27 March 1987)

We present an algorithm which computes the standard Grassberger-Procaccia correlation di-

mension of a strange attractor from a finite sample of N points on the attractor. The usual algo-
rithm involves measuring the distances between all pairs of points on the attractor, but then dis-

carding those distances greater than some cutoff ro. Our idea is to avoid computing those larger
distances altogether. This is done with a spatial grid of boxes (each of size ro) into which the
points are organized. By computing distances between pairs of points only if those points are in

the same or in adjacent boxes, we get all the distances less than ro and avoid computing many of
the larger distances. The execution time for the algorithm depends on the choice of ro, the smaller

ro, the fewer distances to calculate, and in general the shorter the run time. The minimum time
scales as O(NlogN); this compares with the O(N'-) time that is usually required. Using this algo-
rithm, we have obtained speedup factors of up to a thousand over the usual method.

I. INTRODUCTION

It is known that complex aperiodic behavior can result
from deterministic physical systems with few degrees of
freedom. ' Further, dissipative dynamical systems
which may have many degrees of freedom (such as
Auids) can —after an initial transient time —settle down
to a state in which only a few degrees of freedom are
relevant to the dynamics. In this post-transient state,
the system's trajectory through phase space is confined
to a low-dimensional subset of the available phase space.
When the subset is a strange attractor, motion is com-
plex aperiodic and typically chaotic. On the other
hand, the motion of a dynamical system may be compli-
cated just because the system itself is complicated; a full
description would require many degrees of freedom.
Here a stochastic analysis is usually more appropriate.

An experimentalist, observing a system that displays
apparently erratic motion, seeks to distinguish between
these two kinds of motion, deterministic "chaos" and
stochastic "noise. " Does the system have a (low-
dimensional) strange attractor in its phase space, and if
it does, what is its dimension?

The first dimension algorithms were based on a box-
counting principle, ' though this was soon judged to be
computationally inefficient. Algorithms based on dis-
tances between pairs of points were introduced, ' and
of these the correlation dimension of Grassberger and
Procaccia" and Takens' is among the most widely used.
There are a number of limitations and potential pitfalls
with the correlation algorithm and many of these we
leave to be discussed elsewhere, ' '"' ' but one prob-
lem has always been that the computation can be very
time consuming.

We address the issue of computational efficiency with
a new algorithm: box-assisted correlation. By recogniz-
ing that it is the shortest distances which are important,
and by devising a way of finding those short distances

II. CORRELATION DIMENSION

We wish to estimate the dimension of an attractor A
which is embedded '' in an m-dimensional Euclidean
space from a sample of X points on the attractor, that is,
from the set {x,, x2, . . . , x~ I with x, EM CR'".
Grassberger and Procaccia" suggest that we measure
the distance between every pair of points and then com-
pute the correlation integral

2
C(N, r)=

N(N —I) I,j
(1&i &j &N)

where H(x) is the Heaviside step function. The summa-
tion counts the number of pairs (x;,x~ ) for which the

without computing all of them, we have developed an al-
gorithm for estimating correlation dimension which is
much faster than the standard algorithm. We hope that
this will allow the numerical estimation of dimension to
become a more widespread test of experimental data.

In Sec. II we introduce the correlation dimension and
its definition in terms of the numerical problem that is to
be solved; namely, we estimate the dimension of an at-
tractor A from a finite sample of discrete points
{x,, xz, . . . , x~) on the attractor. In Sec. III the basic
ideas behind our algorithm are motivated and intro-
duced. Section IV provides a theoretical evaluation of
the algorithm's performance over a range of input pa-
rameters (such as box size) and shows that for well-
chosen values 0 (N logN) computation time can be
achieved. Section V discusses the program itself and its
performance on a real computer, and demonstrates its
speedup with the example of the Henon attractor. Fi-
nally, in the Appendix, we introduce "prism-assisted
correlation, " a generalization of the "box-assisted corre-
lation" algorithm which is more effective at large embed-
ding dimension.
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distance ~~x;
—x, ~~

is less than r.
For a set such as a strange attractor with dimension v,

the correlation integral scales like r for small r; in par-
ticular, we expect for large N and small r that

C(N, r) =(r IR)', (2)

where the constant of proportionality R provides a con-
venient measure for the "efFective radius" of the attrac-
tor. To find this v, Grassberger and Procaccia prescribe
that a log-log plot of C(N, r) versus r be constructed and
that the dimension be read off as the slope of the curve
over some range r ( rp (see Fig. 1).

A variant of this method, suggested by Takens, ' in-
volves computing the logarithm of every distance r & ro,
taking the average

a= (log(r lrp) ),
and finally setting v= —1/a. This, Takens shows, is a
maximum likelihood estimate for the correlation dimen-
sion. In both cases, finding a or finding C(N, r) all of
the 0 (N ) distances between each of the pairs of points
must be computed, even though only those for which
r &ro are actually used. Because there are so many dis-
tances, the operations performed in determining them
and in subsequently updating a or C (N, r) dominate the
computational workload in estimating correlation di-
mension.

puting all those extra distances that this algorithm is
able to achieve its advantage.

Indeed, we find that for appropriately chosen ro, we
can find the smallest 0 (N) distances in 0 (N logN)
time. ' This can be dramatically faster than the 0(N )

time that is usually required. We present an example
below with N =64000 points that can be implemented
on a personal computer; our algorithm cuts the compu-
tation time by a factor of over 1000.

In our procedure, points are distributed into m-
dimensional "boxes" of size ro. Then, rather than com-
pute distances between every pair of points, we only
compute distances between points which are either in
the same box or else are in neighboring boxes. This way,
we get all of the distances in the range 0&r &ro. In the
process, we also compute a few extra distances in the
range rp & r (2rp (Ref. 19) which are discarded (see Fig.
2).

There is, to be sure, an inefficiency in these discarded
distances, but it is no more inefficient than the standard
algorithm which computes and discards all distances
r & ro. On the other hand, there is a certain amount of
"overhead" with the box-assisted correlation algorithm:
One must keep track of which points are in which box
and which boxes are neighbors of each other.

The primary extra work, we find, comes from search-
ing for neighbors of the boxes. When we set up our grid

III. THE BOX-ASSISTED
CORRELATION ALGORITHM

(a)

In this paper, we propose that only the small distances
ought to be computed. We introduce an algorithm
which computes all distances r & r 0 and some
(but not all) of the distances r &rp. It is by not com-
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FIG. 1. Correlation integral for a typical strange attractor
of dimension v (axes are logarithmically scaled). Here, r+ is
the smallest of the —'N distances, R is the "effective radius" of
the attractor, and r ( ro is the scaling region, over which
C(N, r) =(r/R) .

FIG. 2. (a) A square grid of boxes of width ro is placed over
the points of the attractor. (b) Here, distances are computed
from point x to other points on the attractor. Distances are
computed to points which are in the same (e.g. , point a) or in
adjacent boxes (e.g. , points b, c). Any of these distances which
are greater than ro (such as to point c) are discarded. Points
(e.g. , point d) not in adjacent boxes are not considered. In oth-
er words, distances to points (a, b, c, not d) inside the bold box
are computed, but only those (a, b, not c) inside the dotted box
are used.
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of boxes we do not actually provide a separate memory
location of each box. If we did, then we would find, for
a typical attractor of dimension v & rn, that most of the
boxes would be empty. Instead, we have what amounts
to a list of box positions. From the point of view of
computer storage, empty boxes do not exist. Given the
position of a box's neighbor, the searching routine must
determine whether or not a box exists at that neighbor-
ing position, and if it does, which points are inside it.

In our algorithm, we associate a box position with
each point. Then the points are sorted lexicographical-
ly according to the position of each box. This
effectively sorts our list of boxes and at the same time
provides a convenient way to determine which points are
in a given box. Furthermore, since the boxes are sorted
in linear order, a binary search can effectively find
which, if any, box is at a given position. The cost of all
this extra sorting and searching is only 0(N logN). For
small ro, therefore, the total execution time for comput-
ing a correlation dimension can be dramatically reduced.

IV. EVALUATION OF EFFECTIVENESS

In this section, we analyze the efficiency of the box-
assisted correlation method and discuss in more detail
the various operations which comprise the algorithm s
overhead.

where B is the number of nonempty boxes and the vari-
able S—into which all of the complication is
incorporated —is the average number of "search steps"
per box.

In practice it is these last two terms, the distance com-
putations and the neighbor searches, which take all the
time. Except for very-low-dimensional systems (m &2)
and/or very small boxes ro ~0, the reading and sorting
times are comparatively negligible.

In the standard algorithm, by contrast, there is no
searching and sorting, but all of the distances are com-
puted, so that

l ar&
Tstg„dard +regdrV +%dist 2

c v

As long as D ~& —,
' N and the searching term does not

dominate [the sorting time cannot dominate, since it is
manifestly 0(NlogN)], the running time for the box-
assisted correlation algorithm will be much less than
that for the standard algorithm.

The cOeffiCientS 7 read& sort& +dist& and ~search ale machine
dependent, ' though they are all of essentially the same
magnitude. ~d;„ increases directly with embedding di-
mension m; ~s„t and ~„„,h increase more or less linearly
with I but level off for large m. For our program,
points are read in directly as a time series and then em-
bedded' into IR, so that ~„„d is independent of m.

A. Run time B. Choice of box size

We divide time required to execute the box-assisted
correlation computation into four components: a read-
ing time, a sorting time, a distance-computation time,
and a neighbor-searching time. We write

TbQx —assisted Tread + TSQrt + Tdist + Tsearch (4)

These correspond more or less to the chronological
operations of the algorithm. First, it reads all the
points; next, it sorts the points; and finally, for the rest
of the time it switches back and forth between searching
for neighboring boxes and computing distances between
points in those boxes.

The reading time can be written directly

dist +dist

which still leaves us to estimate D for this algorithm.
Just as the searching routine is the most complicated
part of the algorithm, estimation of T„„,h is the most
diScult. For now we will write

Tsearch
——%scarc hSB

Tread korea dN

where ~„,d is the time to read a single point and associ-
ate a box location with it. Sorting N points can be done
in 0(N logN) time, so we write

TsQr, ——~sQ«N logzN

The time spent computing distances is proportional to
the number of distances D that are ultimately computed,
that is,

The box size rz is the only parameter over which the
user has full control in the box-assisted correlation algo-
rithm. How D, B, and especially S depend upon ra is
nontrivial, though we will make some estimates below.

Two attitudes can be taken toward optimum choice of
box size ro. We might for instance specify beforehand
that we want all distances less than that value of ra
which determines the scaling region. Arguing that the
more distances the better the statistics, we say that we
want to compute as many distances as possible and ex-
clude only those beyond which the r ' scaling fails.

The second approach chooses ro so that 0(N) of the
—,
' N distances is less than ra. The standard algorithm

provides the full 0(N ) range of C(N, r) but it takes a
time which is also 0(N ). Since it is a log-log plot of
C(N, r) versus r that will ultimately be constructed, we
may want to optirTiize the logarithmic range obtained
per unit of computing time, that is, (logD, )!T, where
D, is the number of distances less than r o and T is the
time it takes to do the computation. We will later see
that

T=0(D, )+0(N logN) .

Thus, choosing D„=0(N) optimizes (logD, )/T.
Now we can estimate C(N, r) with, for instance,

C(~N, r); this will cost 0(N) and give a range in the
correlation integral of 0(N) —in particular, this esti-
mates C(N, r) for the larger distances. If we can com-
pute the smallest 0 (N) distances cheaply, in 0 (N logN)
time, say, then we will have obtained an 0(N) range for
the C (N, r) curve which is distinct from the large-
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which, when we apply the approximation
C(N, ro) =(ro/R)', we can invert for ro to obtain

ro ——R (2/N)' ' . (12)

This may seem a bit circular, defining r0 in terms of v,
the quantity we are ultimately after, but rough estimates
of v and R are usua~ll available, and at any rate can be
estimated from C(&N, r).

distance O(N) range. These two ranges may then be
"pasted together" on logarithmic axes, providing O(N )

range with significantly less than 0 (N ) work.
To find r0 so that N distances are less than r0, we in-

voke the definition of the correlation integral to get the
implicit equation

N = iN C(N, ro),

lim B=N .
ro ~0 (17)

If we model the distribution of points among the avail-
able boxes with the Poisson formula, then the number
of nonempty boxes is

/2R )B = (2R /ro )"(1—e ) . (18)

and (2R/ro)' (Ref. 23) is the number of boxes expected
to cover the attractor. Now if r0 is sufficiently large that
there are many points per box, then (2R /ro)' is a
reasonable estimate of 8. On the other hand, since the
number of points X is finite, we expect that as r0 de-
creases more and more of these covering boxes will be
empty. In particular, as the boxes become even tinier,
the points will eventually come to be individually
wrapped —a separate box for each point. That is,

C. Number of distances

Of the D distances we compute, the "desirable" dis-
tances are those less than r0. We can write this number
down exactly, in terms of the correlation integral

D~ = ,'N C(N, r—o)= —,'N (ro/R)' . (13)

For r0 ~ 2R /3, this equation overestimates D; the num-
ber of distances calculated is never larger than —,'N . It
follows that the time spent computing distances is

Tg;„——rd;„D = (3/2)'D„(„

which for fixed v varies linearly with the number of
desirable distances. Should be desire O(N) distances,
Td;„will be O(N) as long as the coefficient (3/2)'((N.
That is,

v & log»2N = 1.7 log2N . (16)

In fact, as we will later see, it is not the extra distances
but the increased search time that limits how large a di-
mension we are able to efficiently compute with the box-
assisted correlation algorithm.

D. Number of boxes

If R is the "radius" of the attractor, then (2R /r0) es-
timates the number of boxes along any one dimension,

Now the actual D includes some distances that are
greater than r0, and so will be larger than this. We esti-
mate the ratio of desirable distances to the total D by
considering distances from a single (typical) point (see
Fig. 2). The number of desirable distances measured
from this particular point will be proportional to (2ro)'
since a hypercube with diameter 2r0 centered on the par-
ticular point will contain all those points to which the
distance is less than r0. By the same token, a hypercube
of diameter 3r0 centered not at the particular point but
at the center of the box in which the particular point re-
sides will contain all the points to which distances are
measured. Hence the ratio of desirable distances to total
distances computed will be (2/3)', and

D = —,'N (3rD/2R) (14)

E. Number of neighbor searches

Unlike D and 8, which depend on the geometry of the
attractor S the average number of searching steps from
each box depends on the cleverness of our search stra-
tegy. Although this makes it difficult to give a good
general estimate for S in terms of the other parameters,
we can provide some upper bounds. We will provide
two upper bounds in particular, each associated with a
different strategy for neighbor searching. Our algorithm
uses a hybrid of these two strategies, so both bounds ap-
ply. In many cases, it turns out that the actual S is
much less than both bounds.

From every box, we can search each of the neighbor-
ing positions to see if there is a nonempty box at that
position. Since the boxes are sorted, each search can be
done in logqB steps. If (b, , . . . , b ) is the position of
the "from" box, then the positions of the "to" boxes will
be of the form (b&+bb&, . . . , b +bb ), where
b, b; E I

—1,0, 1 I for i = 1, . . . , m. Thus, there are 3
"to" positions. We can write

3 —1S & log28,
2

where the —1 is to exclude the case Ab i
——Ab 2

=b, b =0 (the "to" box is the same as the
"from" box) and the factor of 2 stems from the symme-
try of distance: d(A, B)=d(B, A). Having found all the
distances from points in box no. 1 to those in box no. 2,
we need not compute distances from points in box no. 2
to those in box no. 1.

For intermediate numbers of boxes, 3 &8 «X, and
with v —m Eq. (19) not only bounds but reasonably esti-
mates S. For low-dimensional attractors v«rn, a box
typically will have many empty neighbors and the
effective S will be much lower than this bound.

The alternative strategy is to go through the list of
boxes one at a time and determine whether or not each
is a neighbor. There are B/2 such candidates (with the
factor of 2 arising as above), and the binary search is
avoided, so

(20)
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3 —1
search & search g2™

2
(21)

which formally is O(N logN). We note, however, that
this "order" is sensible only if the coefficient is not too
large; this is for 3 «N or

m « log3N =1.6 log2N . (22)

In practice, we find that the search time begins to over-
run the total execution time of the standard algorithm at
m =0.751og2N. From the second bound in Eq. (20), we
have

Tsearch +search 2
V (23)

which shows that in the worst case the search time is
O(N ). In this case, the total execution time for the
box-assisted correlation method may exceed that of the
standard method —this certainly is a case to be avoided.
But at least the search time is never any worse than
O(N ). No matter how large m or how poorly chosen
ro, the search time will never be atrociously longer than
the total execution time for the standard algorithm.

This second bound provides a reasonable estimate of S
only when B is very small or when v is very large (see
Appendix).

We can use these bounds on S to bound the search
time. Using B (N and Eq. (19), we have

tually spent computing distances (and of the 1.88X 10'
distances that computed, only 1.15 & 10 are actually
used); the rest of the time is spent "setting up. " It takes
7 min to read in and box the points, 15 min to sort the
points, and 10 min to search for neighboring boxes.
However inefficient this seems at first, it is still dramati-
cally faster than the standard approach of computing all
—,'N =2.05&10 distances, which on our PC would take
over 30 days.

This choice of ro=0. 0005 is much smaller than what
might conventionally be considered the scaling regime,
but it enables us to get the shortest 0 (N) distances com-
puted and tabulated. As a separate computation, we can
take a smaller sample of 0 (&N ) points and get an esti-
mate for what the "rest" of the correlation curve looks
like, and again this will only take O(N) time. What we
end up with, in this case, is the full O(N ) dynamic
range in C (N, r ) computed with 0 (N logN) work (see
Fig. 3).
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APPENDIX: "PRISM-ASSISTED
CORRELATION"

F. Large and small box-size limits

Our bound in Eq. (20) tells us that the search time is
negligible if ro is so large that all the points fall into a
single box. In that case all of the distances are comput-
ed, and all of the computation goes into computing dis-
tances. In other words, the ro &~R limit of box-assisted
correlation does exactly what the standard algorithm
does and does it for essentially the same computational
cost.

We consider also the limit ro~0. In this case, B~N,
and although formally both bounds on the search time
are at their maximum here, the boxes are becoming
sparser and more isolated from each other. Eventually
none of the boxes have any neighbors and the actual
search time plummets to as low as ~„„,hN. In this limit
we also have D~O, so the total execution time is very
small. Of course, with no distances computed, not much
is learned about the attractor (this much is learned: that
the smallest distance is greater than ro) so that there is
not much practical benefit in this limit.

Correlation integral
Henon attractor: m 2

Z 4

U
O —5—

++
Standard algorithm

+ with N~ 1 Opp points

lation
ints

Because there are so many potential neighbors (-3 )

in systems with large embedding dimension, we find that
the search time increases very rapidly [though not quite
exponentially —it is limited ultimately by the bound in
Eq. (22)] with increasing m. Empirically, we find with
random data that the box-assisted algorithm becomes

V. IMPLEMENTATION

A program to implement this algorithm has been
written in the C language and tested on an IBM PC run-
ning at 4.77 MHz with 640K RAM. We find that
memory limitations (not time constraints) prevent us
from processing a time series of more than 64000 points.

As an example, we compute the dimension of the
Henon attractor from a sample of N =64000 points.
Using r o ——0.0005 and rn =2, the whole computation
takes about 36 min. Only four of those minutes are ac-

log10 "

FIG. 3. Log-log plot of the correlation integral for the
Henon attractor. The small distances in the lower half ( ) of
the curve were computed with N =64000 points using a box
size of ro ——0.0005. The upper half (+ ) was computed with a
much smaller sample of N =1000 points using a box size so
large (ro ——3.0) that all distances are computed. Both compu-
tations together took less than an hour on a personal comput-
er. To compute the entire curve in one piece with the standard
algorithm would have taken over a month.
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Dz„, ———,'N (3ro/2R ) (24)

distances to compute. Let us take ro, as usual, so that
O(N) desirable distances are computed. We substitute
Eq. (11) into (24) to get

worse than the standard algorithm for embedding di-
mension larger than m =0.75 log2N.

Recently, however, we have devised a variant of this
algorithm which gets around this large-rn limitation. In
the m-dimensional space we impose a b-dimensional grid
where b is less than m. The "boxes" in this space are
m-dimensional rectangular prisms with b short sides of
length ro and m —b long sides which extend the entire
length of the attractor. As before, we compute distances
between pairs of points only if those points are in the
same or in adjoining prisms. Note that b =m is just the
regular box-assisted algorithm and b =0 corresponds to
the standard algorithm.

With b ~ m, there are fewer neighbors and the
coefFicient of the search time looks like 3 instead of 3
We can take m as large as we like and the search time
will not increase. On the other hand, for fixed m, a
smaller value of 6 means more distances are computed.
This is because of the distances we have to compute be-
tween points at opposite "ends" of these long prisms.
Following Eq. (13), we have

C0

O0
x

4 '&i&

QQ( r

,' "&i3

h- 0
200

&00

50
v

Random data: N 4500, m 13
compute distances
search neighbors

b=3
h=4

t3=1P

h —t)

b=]2 b=13

box dimension, b

FIG. 4. Prism-assisted correlation for N =4500 points of
random data (uniformly distributed over [ —1, 1] & IR ) em-
bedded in m =13 space with ro ——0.66 chosen so that -4500
*'desirable" distances are computed. Taking b =m corresponds
to the usual box-assisted algorithm and b =0 is the standard
unassisted algorithm. Although this is a case where the stan-
dard (b =0) algorithm is better than the box-assisted {b =m)
method, we find that we do get improvement from the "prism-
assisted" correlation algorithm with 0~ b (8 and that the best
performance is achieved at b =6=0.5log24500. The contribu-
tion to total execution time due to initial reading and sorting is
about 1 min.

D = —'N [—'(N/2)'i'] (25)

In choosing the best value for b we have these two
competing eAects. The number of distances computed
decreases with increasing b, and the number of neighbors
the program has to search for increases. The sum of the
two times we can estimate as

noting that the term for search time is valid only for
b &v. Formally, we can optimize by setting BT/Bb =0.
The resulting expression is quite unwieldy, but in the
limit of large N and large v (»logN), we have

T „,, =rd;„—,'N [—', (N/2)' ]
b= log% =0.5 log2N .

log(9/2)
(27)

3 —I+%search 8 log2~
2

(26) Numerical experiments with random data confirm this
estimate (see Fig. 4).
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this reference.
This assumes the L or "maximum" metric. For the L, or
"taxicab" metric, the appropriate inequality is r &2mro; for
the Lz or Euclidean metric, it is r & 2&m ro.
In the "lexicographic" ordering, we say that a &b, where in

coordinate notation a=(a, ,a&, . ~ . , a ) and b=(b, ,

b&, . . . , b ), if and only if a«b& for some k & m, and

a; =b, Vi &k.
On our IBM PC, we find wd;, , ——(0.5+0.2m) msec. In the
Takens method, we have also to take a logarithm of all dis-
tances less than ro; these cost 4.3 msec each (with an 8087
floating point co-processor). Also ~„„,&=(1.5+0.6m) msec
and ~,.„,= (0.44+0.09m ) msec, with some leveling off at
large m. Finally, ~„,d=6. 7 msec. There is a small memory
compiler option which cuts these times in half, but it can
only be used for X &5000.

Takens (in Ref. 17) says the error bar on v will scale as
1/QD„, where D~ is the number of distances less than ro

Properly we should write B =(2R /ro), where d is the "capa-
city" of the set. Though capacity and correlation dimension
are not precisely the same thing, our approximations do not

distinguish between them.
~4What we really assume is that points are distributed uniform-

ly among those boxes which cover the attractor; this
presumes not only that the distribution of points is uniform
over the attractor, but that the intersection of the attractor
with boxes is uniform —in fact, there are often a lot of
"clipped edges. " For details of this effect in another context,
see W. E. Caswell and J. A. Yorke, in Dimensions and Entro-
pies in Chaotic Systems, Vol. 32 of Springer Series in Syner-
getics, edited by Cx. Mayer-Kess (Springer-Verlag, Berlin,
1986), p. 123.

The source code, further documentation, and executable files
which run on an IBM PC (or compatible) are available from
the author.

In our Grassberger-Procaccia routine. we use 8N+4xr,
&

bytes, where x is the "expansion factor" which is multiplied
by the floating point input before discretizing into integers.
In our Taken s maximum likelihood routine, we use 14N
bytes since the floating point input is stored in double pre-
cision.

~ ' M. Henon, Commun. Math. Phys. 50, 69 (1976). The map-
ping is x;+ ~

——y, +1—ax, y, &

——bx;. Following Henon, we
use a =—1 ~ 4, b =0.3.

~~For low-dimensional attractor data, we find that the search
time increases so slowly with m that O(N) distances can al-
teays be computed faster with the box-assisted algorithm
than with the standard algorithm. But even in these cases,
v e find that the "prism-assisted" variant provides still fur-
ther improvement ~


