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A numerical calculation of the entropy of the two-dimensional Ising model is described, for
nonzero external field. The calculation makes use of the Monte Carlo method to simulate a kind of
microcanonical ensemble.

I. METHOD OF CALCULATION

The purpose of this paper is to describe a numerical
calculation of the entropy of the two-dimensional Ising
model, for nonzero external field. For zero external field
the model can be solved analytically, the Onsager solu-
tion. The calculation for nonzero field involves the use of
the Monte Carlo method. What is novel about this calcu-
lation is that the probability distribution sampled by the
Monte Carlo method is not the Boltzrnann distribution.

The two-dimensional Ising model consists of a spin
s(x), which can take the values +1 or —1, at each point
x of a two-dimensional lattice. In the computer simula-
tion the lattice size is finite with periodic boundary condi-
tions. The energy of the Ising spins is

E(s)= —g s(x)s (x +e, ),

where e~ and e2 are the unit lattice vectors; the magneti-
zation is

M(s)= gs(x) .

where p(E, M) is the density of states in the (E,M) plane.
The entropy is an intrinsic property of the Ising spins, in-
dependent of temperature or external field. It is an im-
portant quantity because it relates the microscopic interac-
tion to thermodynamics. In particular, the form of
S (E,M) determines the phase structure of the system; for
the Ising model it must create the low-temperature phase
transition between spin-up and spin-down ordered states.

The basic idea of my calculation of S(E,M) is to in-
tegrate the thermodynamic relations'

P=(BS/BE), and h = —(BS/BM),„; (4)

here P is the inverse temperature, h/P is the external
field, and the subscript eq indicates that the derivatives
are evaluated at the equilibrium values of E and M,
denoted E and M. To obtain S(E,M) by integrating Eq.
(4), P and h must be computed for a sufficiently dense set
of points in the (E,M) plane. Then Eq. (4) can be used
to estimate S(E,M), up to an additive constant, by nu-
rnerical integration.

The problem is to compute the entropy S (E,M), defined
by

S (E,M) = Inp(E, M),

In a conventional Monte Carlo simulation of the Ising
model, the Boltzmann distribution is sampled, i.e., the
distribution

—PE(s) hM(s) yZ

where Z is the partition function. This is the distribution
of states in the canonical ensemble, i.e., for thermal equi-
librium with an infinite heat bath in the presence of an
external field H =h /P. For input (P, h ) a set of
configurations is generated with this distribution, and E
and M are estimated by their averages in this set. Howev-
er, this simulation cannot be used to compute S(E,M)
from Eq. (4), because of effects of the first-order phase
transition. As (/3, h) varies through the transition, E and
M change discontinuously when the system changes
phase. Intermediate points between the two phases are
inaccessible, because they are not stable for any (P, h).
Therefore the derivatives BS/BE and BS/BM cannot be
determined in the intermediate region. Furthermore, a
phenomenon resembling hysteresis occurs: the point
(P, h) at which the phase change occurs depends on the
starting configuration, because the two phases are both
metastable in a neighborhood of the transition. The hys-
teresis adds another element of ambiguity to the calcula-
tion of the derivatives. Since I must know the derivatives
throughout the (E,M) plane to compute S(E,M), a con-
ventional Monte Carlo simulation does not provide the
necessary information.

It has been found in recent studies of other models that
the information can be obtained by sampling a distribu-
tion other than the Boltzmann distribution. Consider
for example a system Q with a first-order transition as a
function of P, with no external field. Then the entropy is
a function S (E), and the inverse temperature is
13=(dS/dE), q. If the Boltzmann distribution exp( PE)—
is sampled then E changes discontinuously, with hys-
teresis, for 13 near the transition temperature. However, if
a Gaussian distribution P(E)=exp[ —a(E, E) ] is sam-—
pled, then as E, varies the system changes continuously
from one phase to the other, without hysteresis. The
Gaussian distribution can be interpreted ' as the distribu-
tion of states in the microcanonical ensemble of an analog
system that consists of the system of interest Q in thermal
equilibrium with an auxiliary system, called the demon
system. If the demon variables interact with the variables
of Q by an ergodic dynamics that conserves the combined
energy, then the distribution of Q states is Pd(E, E), —
where Pd(Ed ) is the density of states of the demon system
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at demon energy Ed. The Gaussian distribution corre-
sponds to a hypothetical demon system with Gaussian
density of states. The inverse temperature in the micro-
canonical ensemble is ' '

P = [d lnP (E)IdE],z
——2a (E E, )—.

Thus this microcanonical ensemble is simulated by sam-
pling P(E), measuring E and P as E, varies. The experi-
ence of the use of this approach in an example with classi-
cal spins and examples of lattice gauge theories, ex-
amples with first-order phase transitions, is that the sys-
tem changes continuously as E, varies, without hysteresis.
Interestingly, near the phase transition E is not a single-
valued function of P.

The idea of using a microcanonical ensemble can be
generalized to the case of an external field, for the Ising
model calculation considered here. The difference is that
here the demon system interacts with the Ising spins such
that the total magnetization is conserved, rather than the
total energy. ' The precise definition of the analog system
is as follows. Let the internal interactions of the Ising
variables be in thermal equilibrium with an infinite heat
bath at temperature P; in addition let the Ising spins be in
equilibrium with a set of demon Ising spins sd. The
demon spins have no interaction among themselves, nor
with the heat bath. Then the probability distribution of
the Ising spin states is of the form

P (s) =Ke ~ "'P~(M(s) ),
where K is a normalization constant. The magnetization
distribution P~(M) is derived from the assumption that
the Ising spins interact with the demon spins by an ergod-
ic dynamics with constant combined magnetization. In
the computer simulation the number of demon spins is

equal to the number of lattice sites N, although this is not
necessary. The combined magnetization is

M„=M (s) +M(sd ),
and the statement that the dynamics is ergodic means that
all states with magnetization M, are equally likely. The
distribution of Ising spins P~(M) is obtained by summing
over the possible demon spin states. The number of such
states is the binomial coefficient (N, n + ), where n+ is the
number of demon spins with s~ = + 1. Thus P~(M) is the
binomial distribution

PM(M (s) ) = N!
[(N Md )I2]([(N +M—d )I2](

where Md =M, —M (s). As M, varies between —2N and
2N, the peak position of P~(M) varies between Nand-
N; thus M, acts like an external field. However, the form
of the distribution is different than the Boltzmann distri-
bution. Therefore, for reasons that will be explained in
Sec. III, the Ising system changes continuously as M,
varies, without hysteresis, even across the phase boundary
separating spin-up and spin-down ordered states.

I call P(s) a microcanonical distribution, but it should
be remembered that the internal Ising interactions are in
equilibrium with an infinite heat bath. ' The term "mi-
crocanonical" refers to the fact that the total magnetiza-

tion is constant in the analog system.
To summarize, the calculation is to sample the distribu-

tion of states P (s) by the Monte Carlo method, computing
the mean values E and M. These results yield measure-
ments of the partial derivatives of S(E,M) at (E,M), by
Eq. (4). The derivative (BS/BE),

&
is equal to P, the input

value in P (s). A formula for the other derivative
(BS/BM),~, which is denoted —h, can be derived from the
theory of the microcanonical ensemble: The partition
function is'

Z= y e-~"'P
states

= f f e ' 'e ~ P~(M)dEdM (10)

For the canonical ensemble the magnetization distribution
P~(M) is e . Because S, E, and M are extensive quanti-
ties, the integrand is sharply peaked at the maximum of
the function

F&~ (E,M) =S(E,M) PE+ InP—~(M), (12)

i.e. , (E,M) is at the maximum of this function. Therefore
the definition of the external field in the microcanonical
ensemble is

a = —(asyaM)„=(ainP, yaM), „,
in a notation in which M takes a continuum of values. '

For the Ising model, in which the possible values of M are
even integers, a suitable definition of h is

h = —[S(E,M +2) S(E,M —2) ]—I4
= —' In[P~(M+2)/P~(M —2)] . (14)

The thermodynamic relations in Eqs. (4) and (14) are
exact in the limit of an infinite lattice. For a finite lattice
there are corrections of order 1/N compared to the
lowest-order terms. That is, the mean values (E,M) do
differ slightly from the values (E',M') that maximize
Fp~ (E,M); the difference is of order 1, compared to E
and M which are of order N. In the computer simulation
the lattice size is 20&20, giving N =400 spins. This ap-
pears to be su%ciently large that the calculation of
S(E,M) is not very sensitive to the finite-size correction.
Evidence for this statement will be described in Sec. IV.

Finally, it should be noted that a Monte Carlo calcula-
tion of the entropy of the Ising model has also been de-
scribed by Binder. " However, in Binder's calculation the
Boltzmann distribution is sampled, and the entropy calcu-
lation is quite different than that described here.

II. RF.CULTS

The results are based on Monte Carlo calculations in
which the distribution P(s) defined in Eqs. (7) and (9) is

Fiji (E,M) =S(E,M) pE+hM—,

i.e., at the minimum of the free energy; thus (E,M) is at
the maximum of this function. For the canonical ensem-
ble this constitutes a proof of Eq. (4). For the micro-
canonical ensemble the relevant function is instead
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sampled by the Metropolis method. The calculations are
for a 20)&20 lattice, with periodic boundary conditions;
the number of Ising spins is N =400. There are two pa-
rameters in P(s), namely /3 and M, . For each (/3, M, ) a
Monte Carlo calculation was done, consisting of 5000
sweeps of the lattice, measuring the average energy F. and
magnetization M, and computing the external field h from
Eq. (14). The parameter values were first for M, fixed at
M, =0, with /3 varying by

P//3, =0.0 to l. 5 step 0.1, (Isa)

then for P//3, fixed at 0.6, 0.8, 0.9, 1.0, 1.1, 1.2, and 1.4,
with M, varying by

M, = —1.2N to 1.2N step 0. 1N . (15b)

Figure 1 shows the resulting averages (E,M). At these
points in the (E,M) plane the two partial derivatives of
S(E,M) are known. These points are sufficiently dense to
yield an accurate estimate of S(E,M) by numerical in-
tegration.

The numerical integration was done in two steps. The
entropy can only be determined up to an additive con-
stant, so S(E,M) was arbitrarily set equal to 0 at
(E,M) =(0,0). In the first step, the string of results in Eq.
(15a) was used. For these calculations with M, =0 the
mean magnetization is M =0; note that unlike the canoni-
cal ensemble, states with M=O are stable in the micro-
canonical ensemble even at temperatures below the critical
point. Thus these results were used to determine S(E,O)

by integrating the first relation in Eq. (4). In the second
step, the strings of results with fixed P in Eq. (15b) were
used. For each string the entropy at M =0 is the starting
point for integrating along the string away from M =0.

There is a consistency check on the accuracy, from the
fact that all these strings end in the corner E~—2N and

~

M
~

N; the different strings gave consistent results for
S(E,M) in the corner. By this process S(E,M) was es-
timated throughout the space covered by the points in
Fig. 1.

The entropy S(E,M) is maximum at (E,M)=(0, 0),
which corresponds to a random spin state; it decreases
monotonically as (E,M) varies away from this point.
Rather than display the entropy itself, it is more interest-
ing to display the function Fpi, (E,M) defined in Eq. (11),
with h =-0 and /3 near /3„ the critical point. The critical
point is known from the Onsager solution for an infinite
lattice,

/3, = —,'In(&2+ 1) . (16)

The function F~(E,M) is a more sensitive function of E
and M than the entropy. As explained at Eq. (11), the
states in the canonical ensemble Auctuate about the max-
imum of Fpq(E, M). For /3&/3, the equilibrium states for
h =0+ and h =0—are spin-up or spin-down ordered
states. Thus the position of the maximum of Fpi, (E,M)
jumps from nonzero M & 0 to nonzero M & 0 as h moves
from 0+ to 0 —.However, for /3&/3, the equilibrium
states have M =0 at h =0, and the position of the max-
imum of F(3$(E,M) varies continuously with h. Therefore
the function Fp~ (E,M) depends sensitively on (E,M) for P
near/3, and h =0.

Figure 2 shows a contour plot of F~(E,M) for /3=/3, .
This function has two equal local maxima, at
F/2N = —0.75 and M/N =+0.8. The existence of the
two maxima implies that the system remains aware of the
two symmetry-breaking states even at the critical tempera-
ture. In the canonical ensemble with /3=P, and h =0,
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FIG. 1. Mean magnetization per spin M/N and mean Ising
interaction energy per lattice link E/2X from the Monte Carlo
calculations with parameters in Eqs. (15a) and (15b).

FICx. 2. Contour plot of Fpq(E, M) for P=P, and h =0. The
contour levels are 0.20, 0.21, 0.22, 0.225, 0.23, and 0.2345.
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the system should fluctuate most of the time about these
two maxima. Figure 3 demonstrates that this is indeed
the case; Fig. 3 is a scatter plot of states produced by a
Monte Carlo simulation using the Boltzmann distribution
with P=P, and h =0. Here 2000 sweeps were done, and
after each sweep the value of (E,M) was plotted on the
graph. For the 20&20 lattice the system changes from
one symmetry-breaking phase to the other several times in
the course of 2000 sweeps. However, the transitions
occur quickly, in a few sweeps. During most of the simu-
lation the system fluctuates in one phase or the other.
The point (E,M) about which the system fiuctuates in ei-
ther of these metastable states is at the maximum of
Fp, o(E,M) seen on the contour plot in Fig. 2.

It is easy to see how the equilibrium state changes as P
and h vary away from the values P, and 0. The equilibri-
um state is at the maximum of Fgh(E, M). If P increases
above p„ the two maxima in Fig. 2 grow, and move to
lower E and higher

~

M
~

. If h is then turned on, one
maximum rises relative to the other. On the other hand,
if p decreases below p„ the maxima move toward M =0
and toward higher E. At some point the two maxima
coalesce on the M =0 axis. If h is turned on in this sym-
metric phase, the maximum just moves continuously
away from M =0.

Figure 4 shows a contour plot of F~(E,M) for
P =0.9P, . Here there is a single maximum at
E/2N = —0.52 and M/N =0, as expected above the crit-
ical temperature, in the symmetric phase. Figure 5 shows
a scatter plot for 2000 sweeps of the Boltzmann distribu-
tion with P=0.9P, and h =0. Again the configurations
are centered at the maximum of F~(E,M), but they un-
dergo large fluctuations because the maximum is very flat.

Finally a brief discussion of the uncertainty of the con-
tours in. Figs. 2 and 4 is needed. The uncertainty due to
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FIG. 4. Contour plot of Fpl, (E,M) for p=0 9p, and h. =0.
The contour levels are 0.16, 0.165, 0.17, 0.175, and 0.1795.

statistical error in the Monte Carlo calculations is small
compared to that due to the numerical integration, which
is simply the trapezoidal rule interpolating between points
on Fig. l. I estimate that the uncertainty in the value of
S(E,M) at any point (E,M) is at most +0.001, and rela-
tive uncertainties of nearby points are even smaller. Then
the uncertainty in the contour position is at most +0.002
in either E/2N or M/X for any small segment of a con-
tour.
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FICz. 3. Scatter plot of M/N and E/2N from a Monte Carlo
simulation with P=P, and h =0.

FIG. 5. Scatter plot of M/N and E/2N from a Monte Carlo
simulation with @=0.9f3, and h =0.
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III. DISCUSSION

The equilibrium state for inverse temperature P and
external field H=h/P occurs at the maximum of the
free-energy function Fph(E, M). As f3 and h vary, the po-
sition of the maximum varies; if f3&I3, and h crosses the
phase boundary at h =0, then the position of the absolute
maximum jumps from one symmetry-breaking phase to
the other.

Figure 2 demonstrates that the function Fpp(E, M) has
two local maxima for P&P, , for the 20)&20 lattice. This
result explains why the equilibrium state changes discon-
tinuously, with hysteresis, when the Boltzmann distribu-
tion is sampled: for h

~

sufficiently small there are two
local maxima of F3~ (E,M), both creating metastable
states. Thus if the system is initially in the spin-down or-
dered phase, and then h increases to a value slightly
greater than 0, the system remains in the spin-down phase
for many Monte Carlo sweeps, even though h &0. If h

increases further the local maximum of the spin-down
phase diminishes; when h is sufficiently large this ceases to
be a local maximum, and the system jumps to the spin-up
phase. In contrast, the microcanonical equilibrium state
is at the maximum of Fp~ (E,M), which has only a single
local maximum for any (f3,M, ); therefore the system
changes continuously, without hysteresis, as (P,M, )

varies.
The fact that F~(E,M) has two local maxima for

P & P, implies that for a 20&& 20 lattice the entropy
violates a convexity condition. To describe the violation
of this convexity condition, let p(M) be the density of
states as a function of magnetization for fixed P &P, ; i.e.,
the distribution'

p(M)= f e ' ' 'e ~ dE/Z

Boltzmann distribution (plotted as points joined by line
segments), and the microcanonical distribution P(s) (plot-
ted as crosses), for P=1.413, , i.e., at a temperature far
below the critical point. In the canonical ensemble the
system jumps from spin up to spin down or vice versa,
with hysteresis, as h varies. In the microcanonical ensem-
ble the system changes continuously from one phase to
the other, but M is not a single-valued function of h. It is
significant that the limit of metastability in the canonical
ensemble is the same as the range of the multivalued
crossover region in the microcanonical ensemble. Now,
integrating —h as a function of M yields the reduced en-
tropy S„(M), up to an additive constant. Arbitrarily nor-
malizing S„(0)=0, I obtain the result shown in Fig. 7; the
two maxima of S„(M) are at +Mo, where Mo/N =0.98.

The double maximum of S„(M) violates the usual con-
vexity condition. The susceptibility 7 is defined by

g=dM/dH = —P[(d S„/dM')„]-' (21)

To have g & 0, the function S„(M) must be convex, with
d S„/dM & 0. But the double maximum of S„(M)
means that d 5„/dM ~ 0 over some range of M between
the peaks. This region cannot be measured in the canoni-
cal ensemble, since M jumps from one peak to the other
as h varies. But S„(M) is an intrinsic property of the sys-
tem, independent of the external field; and its dependence
on M between the peaks is particularly interesting.

In an infinite system S„(M) does not have two peaks.
Rather, S„(M) is constant at the value S„(+MD) for M in
the range ( —Mo, Mo), because of domain formation. The

S„(M)=e " (17)

where S„(M) will be called the reduced entropy. The
average magnetization for external field H =h /P is'

r hMM dM r hMdM (18)

Since S„(M) and M are extensive quantities, the magneti-
zation is sharply peaked at the maximum of the function

F (Mh)=S„(M)+hM . (19)

If S„(M) has two equal local maxima at +Mo, then the
position of the absolute maximum of Fh(M) jumps from
—Mo to +Mo discontinuously as h varies from 0—to
0+. This is precisely what happens for P&P, . The fact
that S„(M) has two local maxima for 13&f3, follows from
the existence of two local maxima of Fp, o(E,M) in Fig. 2.
But to see the two peaks directly, S,(M) itself can be com-
puted: Since the equilibrium state is at the maximum of
Fh (M),

-0. 'I

O 2x
)l

-0.2 -x

I

().2 0.4

(dS /dM) q: h (20)

the microcanonical measurements of h and M for fixed P
yield this derivative, which can be integrated to compute
S„(M), up to an additive constant.

Figure 6 shows M versus h computed by sampling the

FIG. 6. Mean magnetization per spin M/N vs external field h

from simulation of the canonical ensemble (points connected by
line segments) and microcanonical ensemble (crosses), for
P=1.4P, .
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FICs. 7. Reduced entropy per spin S„/X vs magnetization per
spin M/X for P= 1.4P, . The entropy S„(M) is normalized to be

Oat M =0. FIG. 8. Typical configuration generated in the simulation of
the microcanonical ensemble for P=/3, and M, =0. The crosses
(+) are plotted at lattice sites where the Ising spin is s = + 1.

FM (M) =S„(M)+ InP~ (M ), (22)

which moves throughout the domain ( —Mo, MO) as M,
varies. In particular, for M, =0 the mean magnetization
is M =0. Figure 8 shows a typical configuration for
M, =0 at /3=P, , for a 40X40 lattice. The spins are fairly
well separated into spin-up and spin-down domains, but

energy of a configuration consisting of spin-up phase in a
fraction f of the lattice and spin-down phase in the other
fraction 1 f, is the —sum of the volume energies of the
two domains, plus the surface energy of the boundary be-
tween the domains. But in an infinite lattice the surface
energy is negligible. Therefore states with difT'erent

domain fractions f are equally likely. Since any magneti-
zation between —Mo and Mo can be achieved by the
correct choice of f, S, (M) is constant.

In the 20&20 lattice the surface energy of the bound-
ary between spin-up and spin-down domains is not negli-
gible compared to the volume energy. Therefore these
states of intermediate M are pushed to higher energy rela-
tive to the pure phases, leaving behind an entropy
deficiency in the intermediate range of M. The region of
entropy deficiency creates the double maximum of S,(M),
and is ultimately the cause of the first-order phase transi-
tion. An interesting question is whether this statement
applies to every system with a first-order phase transition:
that a small, i.e., not macroscopically large, sample has an
entropy deficiency in the region of configuration space in-

termediate between the pure phases.
The striking difference between the microcanonical and

canonical ensembles is that for p&/3, there are stable
equilibrium states intermediate between pure spin-up or
spin-down states in the microcanonical case. The reason
is that the equilibrium state of the microcanonical ensem-
ble is at the maximum of

with an irregular domain boundary. If P decreases the
domain boundary lengthens, until eventually the domains
break up. If /3 increases the domain boundary shortens,
and the spins separate into two compact ordered domains.

IV. COMMENT ON FINITE LATTICE SIZE

The thermodynamic relations in Eqs. (4) and (14) are
the basis of the calculation of S(E,M) These relati. ons
are only exact in the infinite volume limit. For a finite
lattice, the mean value (E,M) does differ slightly from the
value (E',M') that maximizes the function F~~, (E,M).
The diff'erence is only of order 1 where E and M are of or-
der N, so for a 20&&?0 lattice it is small. But the question
arises whether the calculation of S(E,M) is sensitive to
this small error.

There are three pieces of qualitative evidence that in-
dicate that S(E,M) is not very sensitive to the finite-size
error. First, the free-energy function F(E, M) comput-
ed from the microcanonical data, shown in Figs. 2 and 4,
predicts correctly the result of the canonical ensemble
simulation, shown in Figs. 3 and 5. Second, the curves
of M versus h obtained from microcanonical and canoni-
cal ensembles with the same P are virtually identical for
/3&/3, For P&P, they differ only in the hysteresis re-
gion; and even in the hysteresis there is similarity in that
the limit of metastability in the canonical ensemble is the
same as the range of the microcanonical crossover, as
shown in Fig. 6. Third, there is a self-consistency check
on the calculation of the derivatives of S(E,M): Equa-
tion (4) implies that
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the numerical results obey this relation, to within the ac-
curacy of the calculation.

It is not obvious how to determine the finite-size error
precisely. It is not sufficient to compare results for
different lattice sizes, because the entropy itself changes
with lattice size.

However, a further, more quantitative test of the accu-
racy of the microcanonical method may be obtained by
calculating the magnetization distribution

p(M)= ge ~ "5(M,M(s))
Is I

in two different ways. On the one hand, p(M) can be
calculated directly, by sampling the Boltzmann distribu-
tion exp[ —/3E(s)] by the Monte Carlo method and plot-
ting a histogram of the magnetizations of the states in
the sample. Figures 9 and 10 show histograms' for
P=P, and P=O. 9P„where P, is the critical temperature
of the infinite two-dimensional Ising model, Eq. (16).
The number of Monte Carlo sweeps, which is the num-
ber of points in each histogram, is 6000.

On the other hand, p(M) can also be calculated by the
microcanonical method. The distribution of states sam-
pled in the microcanonical calculation is

600-

480-

360-

240-

CL
120-

%.0 ' 0;2 ' 0.'0 ' 0;6 ' 0;8 ' 1.'0

FIG. 9. The magnetization distribution p(M) for P=P, on a
20)&20 lattice with periodic boundary conditions; M/N is the
magnetization per spin. The histogram consists of 6000 sam-
ples from the Boltzmann distribution. The curve was derived
by integrating the external field vs M measured in microcanon-
ical calculations.

400-

p~(~) Sd [M —M(s)]
e 'e (24) 320-

where Sd(Md ) is the entropy of the system of demon
spins and M, is the combined magnetization of the Ising
spins and the demon spins. Thus the distribution of M
in the microcanonical sample is

sd(M, —M) S„IM)+Sd(M, —M)
(25)

S„'(M ) =Sd(M, —M ) = —h (M ), (26)

where the second equation defines the external field h.
This formula is the basis of the microcanonical calcula-
tion: For each M, a Monte Carlo calculation yields a
measurement of M and h (M); as M, varies, S„'(M) is
determined for all M. Then p(M) can be estimated by
integrating h (M),

where S„(M)=Inp(M). This distribution is sharply
peaked at the maximum of the function
S„(M)+Sd(M, —M); therefore, the mean magnetization
M obeys approximately the relation

240-
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FICr. 10. The magnetization distribution p(M) for P=0.9P, ;

the curves have the same meaning as in Fig. 9.

0.27-

0.2)-
p(M) =It exp —f h (M')dM'

0
(27)

0. 15-
where K is a suitable normalization constant. However,
the relation (26) is only exact in the limit of an infinite
lattice; this is the origin of the finite-size error in the mi-
crocanonical method. For a 20 & 20 lattice, with
X =400 spins, the error is expected to be small; the pur-
pose of this calculation is to verify that it is small.

Figure 11 shows the external field h as a function of
the mean magnetization per spin M/Ã, measured in mi-
crocanonical Monte Carlo calculations, for P=I3, and
0.9P, . ' The curves in Figs. 9 and 10 show the resulting
p(M) obtained from Eq. (27), normalized such that the
integral is 6000, the same as that of the histograms. For
P=0.9P, there is no significant difference between the

0.09-

0.03-

-0.03-
0~~~A'8 ~8 '

I .'0

FIG. 11. External field h vs mean magnetization per spin
M /N measured in microcanonical calculations, for P =P,
(points plotted as crosses X) and 0.9p, (points plotted as cir-
cles o). Values between the measurements are estimated by
linear interpolation.
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results of the tvvo calculations of p(M). For P=P, there
is a discernible difference between the two distributions,
with the most probable value of M slightly larger in the
canonical ensemble than predicted by the microcanoni-
cal result. However, the error is quite small, and the
large change in p(M) from P=0.9P, to P, is correctly
predicted by the microcanonical calculations. For P far
from P, the finite-size error is even smaller than in Figs.
9 or 10, because the error is largest at the critical point
where there is long-range correlation between Auctua-
tions of the spins.

Section II describes a calculation of the entropy func-
tion S(E,M). The distribution p{M) is related to
S(E,M) by Eq. (17). The finite-size errors in the esti-

mates of S (E,M) and S„{M)should be of the same order
of magnitude. Figures 9 and 10 indicate that the error is
small for a lattice size as small as 20&20. This does not
imply that S(E,M) is the same for a 20&&20 lattice as
for an infinite lattice, but only that the microcanonical
method of estimating S(E,M) is accurate for a lattice as
small as 20&20.
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For simplicity I have used a notation in which the energy E
and magnetization M can take a continuum of values. For
the Ising model, for which F and M are integer valued, the
interpretation of this notation is as follows: derivatives v ith
respect to E or M mean finite diA'erences, and integrals over
E or M mean sums.

~D. P. Landau and K. Binder, Phys. Rev. B 17, 2328 (1978).
U. Heller and N. Seiberg, Phys. Rev. D 27, 2980 (1983).

4J. Kogut, J. Polonyi, H. W. Wyld, J. Shigemitsu, and D. K.
Sinclair, Nucl. Phys. B 251, 311 (1985).

5J. H. Hetherington, J. Low Temp. Phys. 66, 145 (1987).

~J. H. Hetherington and D. R. Stump, Phys. Rev. D 35, 1972
(1987).

7D. R. Stump and J. H. Hetherington, Phys. Lett. B 188, 359
(1987).

~D. R. Stump, Phys. Rev. D 36, 520 (1987).
9K. Huang, Statistical Mechanics (Wiley, New York, 1963}.
' A fully microcanonical approach is also possible, in which

both energy and magnetization are conserved.
' 'K. Binder, Z. Phys. B 45, 61 (1981).
' It is sufBcient to consider only states with magnetization

M &0, because the Ising model is invariant under the trans-
format&on s (x)~—s (x).


