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A field-theoretic renormalization-group method is used to investigate crossover behavior in
nonequilibrium multicritical phenomena of one-component reaction-diA™usion systems. A system
composed of 2n —1 reactions, lX~l'X (l ~ l'), 1X~l "X (l & l") (with I =1,2, . . . , n —1), and
nX~n'X (n ~ n'), is discussed. An expression for crossover exponents is derived and mean-field
values of them are obtained as a function of n. For the process of n=3, the crossover exponent is
determined to first order in e=d, —d (d, =3) and logarithmic corrections to scaling at d =d, are
calculated.

I. INTRODUCTION

In a recent paper' (hereafter referred to as I), we in-
vestigated nonequilibrium critical phenomena of one-
component reaction-diffusion systems on the basis of a
field-theoretic renormalization-group method and
clarified the breakdown of the fluctuation-dissipation
theorem and the existence of two different susceptibility
exponents. There, a superposition of three reactions of
type

mX~m'X (m )m'),

mX~m "X (m (m"),
nX~n'X (n ~ n')

(1.2)

(1.3)

was discussed. The lowest-order system, rn = 1 and
n =2, corresponds to Schlogl's first model ' and is
equivalent to the Reggeon field theory and directed per-
colation. Using the Fock-space formalism, we found
that the action describing higher-order processes shows
higher-order critical behavior belonging to different
universality classes from that of Schlogl's first model. In
the comment on the paper by Elderfield and Wilby,
where the same subject was treated erroneously, Janssen
pointed out that microscopically higher-order reaction
systems do not necessarily exhibit higher-order critical
phenomena. Multicritical behavior appears when not
microscopic but global lower-order reactions on a mac-
roscopic scale vanish. For example, we can expect the
existence of multicritical (tricritical) phenomena in a sys-
tem with both first- and second-order reactions, '"

X~O, (1.4)

where k is a rate constant, but generally the multicritical
point is not located at k2 ——k2 ——0. Then microscopi-
cally higher-order systems, e.g. , X~0, X~3X, and
3X~X, may belong to the same universality class as
Schlogl's first model. In order to observe multicritical
behavior, we have to consider combinations of both
lower- and higher-order reactions, where crossover be-
havior plays a significant role. As is seen in I and
thermal critical phenonmena, field-theoretic renormal-
ization-group techniques based upon different regulariza-
tion schemes give different critical points and provide no
information on nonuniversal quantities in terms of mi-
croscopic variables. However, they are powerful tools to
study universal properties like crossover behavior. The
purpose of this paper is to investigate crossover behavior
around multicritical points and to complete our work on
nonequilibrium critical phenomena in one-component
reaction-diffusion systems.

In Sec. II we construct a general field-theoretic for-
malism. An expression for crossover exponents is de-
rived and their mean-field values are given. Section III
is devoted to explicit calculations by an e-expansion
scheme for the process (1.4) —(1.8). We compute the
crossover exponent to first order in e=d, —d and loga-
rithmic corrections to scaling at d =d, .

II. GENERAL FORMALISM

&~n

mX~ nX, (2. 1)

Most generally, one-component reaction-diffusion sys-
tems are expressed as the superposition of reactions of
type

X~2X,
k2

2X~X,
a+

2

2X~3X,

(1.5)

(1.6)

where m particles are transformed into n particles with a
rate constant k „. The Fock-space formalism gives an
action describing the process (2.1),

I = f dt fdr '&f&(N DA4&) —g g IC—
m t

(2.2)

k3

3X~2X, (1.8)
E (

——g(„Ct —~Ct)k~„ln!, (2.3)
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where 4 and 4 are fields representing creation and an-
nihilation of particles and D is a diffusion coefficient.
Since engineering dimensions of fields + and N are posi-
tive, higher-order reaction terms with large l or m are
less relevant than lower-order terms. Near d =4, for in-
stance, only linear and third-order terms (I +m =2,3) are
relevant and the process belongs to the universality class
of Schlogl's first model. When some of the coefficients
of relevant terms become zero, as in the N theory of
thermal tricritical phenomena, the action shows mul-
ticritical behavior where most relevant terms with
nonzero coefficients control the process. Note that some
coefficients have a definite sign. When m (I, for exam-
ple, K l is always positive and cannot be zero except at
k „=0for all n.

In the present work we limit ourselves to reaction-
diffusion systems composed of 2n —1 reactions,

kl

IX~I'X ( I )I'),
k+

I

IX~I "X (I (I") (with I = 1, 2, . . . , n —1)

k„
nX~n'X (n )n') .

(2.4)

(2.5)

(2.6)

Equations (2.4) and (2.5) represent 1th-order annihilation
and creation and Eq. (2.6) stands for nth-order annihila-
tion. The system (2.4) —(2.6) corresponds to the process
of m=1 in I. As mentioned before, K12)0. As far as
first-order reactions exist, therefore, the process with
m ) 1 in I cannot be realized. The relevant action is
given by

n —1

L = f dt f dr q((4 Dbq()+ g D—s((q(+')

[D]=t 'A ', (2.12)

[u]=A ", d„=2— d .
n

(2.13)

The condition d„(d, )=0 determines the upper critical
dimension,

d, =2n /(n —1) . (2.14)

Power counting tells us that n +3 primitive divergences
appear in vertex functions I » (1=1,2, . . . , n ) and I 2&,

where rz ~ is a vertex function with N truncated + legs

and N truncated + legs. Hence, we need n+ 3 renor-
malizations,

(2.15)

~0=Z~1i2~,

slo ——Zsl sl

Do ——ZDD,
d„

uo ——Z„uA ",

(2.16)

(2.17)

(2.18)

(2.19)

Np
2

(2.20)

where Z is a renormalization constant and a subscript
zero denotes a bare quantity. The renormalization-
group equation is derived from the requirement that
bare vertex functions are independent of A and reads

a a "—' a a
A +P„+g a.(x( +gD" au

+Du(q(4" —q( q() (2.7)

au=~a~, (2.21)

sl =$2 = ' ' ' =sn —1=0 (2.8)

where 4 =4/a, 4' =4a, Dsl ———Kl1a '

Du = —K„,a ' "=KUa, and a = ( —K„,/K, ~
)' ". We

study the multicritical behavior around

axl
KlXl =A

0

gD =A aD

0

(2.22)

(2.23)

The physical meaning of sl ——0 is the vanishment of glo-
bal Ith-order reactions due to balance between creation
and annihilation. As discussed in the Introduction, this
does not necessarily mean the absence of microscopic
lth-order reactions.

We now follow the usual field-theoretic renormaliza-
tion-group scheme. " Some of the following overlap the
corresponding parts of I. Engineering dimensions in
terms of time t and an inverse length scale A are written
as

p =A (lnZ~ )
a

aw
(2.24)

@=A (inZq, )
a (2.25)

Xl —Sl +f( (Sl + 1»S( +2» ' . . » Sn 1» u ) (2.26)

where a subscript zero means differentiation under con-
stant bare parameters. Scaling fields xl are generally ex-
pressed as

[4]=A, d~= n —1 d,

[q(]=A, dq, ———d,d~ 1

I —1[sl]=A ', d, l
——2 — d,

(2.9)

(2. 10)

(2.11)

P„(u*)=0 . (2.27)

At u = u *, the renormalization-group equation (2.20)
leads to

A zero point of the p function gives a fixed point u ' of a
coupling constant
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), D; [k,~))=&'"" +'" '"I *- (x, A ),x,A

(2.28)

Gv, tv (V(, ) ) P)v, )v
—(N+N) (2.29)

where Kt =Kt(u*), g*=g(u*), P, *=P(u*), and
p*=p(u*). In the Fourier space, a Green function

G& &, that is, a correlation function of particles, is relat-
ed to I & & as

where a subscript zero denotes a mean-field value.

III. CALCULATIONS FOR n =3

In this section we perform explicit calculations for
n=3 based upon the usual e-expansion technique. The
upper critical dimension is 3,

The engineering dimension of G~ ~ is

g ~ ) Nd~+tVd~, —(N+,V —1)d
d. =3

(2 30) and the relevant action becomes

(3.1)

From Eqs. (2.28) —(2.30) together with the dimensional
analysis, we find that G~, ~ has a scaling form

L = f dt f dr[4(4 Db, +—+Ds )I))+DU()p+')

+Du(%%-' —0 '0 )], (3.2)
V X —b~ —63

~)v )v x ) ~)v )v(x2x ) ~x3x ) r ~ xn —)x )

jkx, , a)x) ] ),
v= 1 /(d„—)~( ),
z =0/v=2+/*,

y~ ~ /v=( N+N—1)(d +z) —(Nd~+Nd~ )

—(Np *+Np*)/2,

(2.31)

(2.32)

(2.33)

(2.34)

(2.35)

Pt ——(d, t
—t~t*)/(d„—~;) (with 1=2,3, . . . , n —1) .

where s and U denote s& and s2. When V=0, the action
(3.2) reduces to that [Eq. (4.1)] treated in Sec. IV of I.
Thus most of the results are the same as those in I. In
this paper we present only new results associated with
the presence of the term Du('k4 ).

In this case I », I ] 2, I
& 3, and I 2 &

are primitively
divergent. Figures 1 and 2 show relevant diagrams to
two-loop order for I » and I

& 2. Those for I 2 &
and

r f 3 are plotted in Figs. 2 and 3 of I. All divergent con-
tributions from these diagrams are described by integrals
listed in the Appendix of I. The results for I

~ &
and I

& 2

are
3

As discussed in I, there are two different (probably in-
dependent at n & 2) susceptibility exponents: the static
exponent y, describing spatial fluctuations at steady
states and the dynamic exponent y& characterizing time
evolution of the process. Among n +3 renormalization
constants, Z„yields a fixed point u* and the remaining
n + 2 constants determine critical exponents. In gen-
eral, therefore, the system has n + 2 independent critical
exponents: v, z, y„yz, and n —2 crossover exponents
$t (with l=2, 3, . . . , n —1). Constants Z+, Z+, Z, ), and

ZD give rise to v, z, y„and yd via p. , p, )~&, and g.
Crossover exponents P, are obtained from Z, t through
K). Calculating engineering dimensions at d =d„we get
mean-field values of critical exponents, because
tr&' ——g'=p*=p*=0 at d, . The results for v, z, y„and
yd were presented in I and that for pt is

7+3 uo
+Dok 1+

9e 4~

3

4w —3v'3 u o
+Do so

6 4

E. J

uo
1, ,(k, co) =ice 1+

4~

2

2
Up (3.3)

P&o
——(n —l )/(n —1) (with l =2, 3, . . . , n —1), (2.36)

Ii E~l
E. J

FIG. 1. Relevant diagrams to two-loop order for I I i. FIG. 2. Relevant diagrams to two-loop order for I 1 2.
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=(14&3/9)u',

v,, = (16' 88—&3/9)u
I i q(0, 0) =2Dovo 1—

4~

(3.8)
(3.4)

(3.9)

By using the minimal subtraction method, we have The p function gives

u* =[3/(108~—41&3)]e .Z = I+(7&3/9)u e

Z, = 1+(8~—44&3/9)u 'e

(3.5) (3.10)

(3.6) Substituting Eqs. (3.8) —(3.10) into Eq. (2.35), we get

P =$2 ———,
' —[(6n —9&3)/(108vr —41M 3)]@+0(e~) .The scaling field x is written as

x =s+[(4vr 3&—3)/6~@]u v A

X[1—(14&3/9)u e '] .

(3.1 1)

Since d, =3, logarithmic corrections to scaling arise
under experimental conditions. Here we derive them
from the renormalization-group equation (2.20). The
general solution of Eq. (2.20) is expressed as

(3.7)

Here a factor 4~ is absorbed in u. Renormalization
functions are given by

(3.12)I ~ ~ = A~ ~(A)I ~ ~(u(A), x, (A), x~(A), . . . , x„,(A), D(A); t k, co I ),

where u(A), xi(A), D(A), and Az &(A) are solutions of Then the solution of Eq. (3.13) is

the following equations:
u(A) =u(1)[L(A)] (3.18)

(3.1 3) L (A) = 1+C„[u (1)] lnA,

C„=727r 82&3/3 —.

(3.19)

(3.20)(3.14)

Equations (3.8) and (3.14) lead to
(3.15)A = gD, —

aw
x(A) =x(1)[L(A)]

C =7v 3/[3(108m —41&3)] .

(3.21)
x,x Np+Np

cV, N (3.16)
(3.22)

At d =d, (@=0), the p function becomes
Similar relations are obtained from other renormaliza-
tion functions. It follows thatP„=(24m —82V3/9)u (3.17)

I — =L " I *- (uL ',xL ",vL ",DL; I kryo I ), (3.23)

C, =(72m —44&3)/[3(108vr —41&3)],

CD =2&3/[3(108~—41&3 ) ],
C~ ~ = (38m —16&3)N+ ( —38~+ 19&3 )N

(3.24)

(3.25)

(3.26)

Substitution of Eq. (3.23) into Eq. (2.29) yields

Gp ~ L' G~ ~(uL——'/, xL ",vL ",DL; Ik, cv) ) . (3.27)

Applying the dimensional analysis, we arrive at the scaling form of G~ ~ with logarithmic corrections:
Q. O

rx, PAL N, .v rx, lv x &~ (uL —1/3 x '4L'4 x u [k DL 0 x ~x DL 0 +
D] ) (3 28)

L =1—(C„/2)u ln
~

x
~

(3.29)

where vo= —,', go= 1, Po= —,', and y~ z ———(5 —3N —4N )/2 are mean-field critical exponents.
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