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Continuous-time dynamics of asymmetrically diluted neural networks
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We study the continuous-time dynamics of a strongly diluted Hopfield model with asymmetric
synaptic connections. The model is exactly soluble for static as well as dynamic properties. The
time evolution of the autocorrelation, the susceptibility, and the overlap function of two
configurations are given in explicit form.

I. INTRODUCTION

A model of content-addressable, associative memory
has been proposed by Hopfield' and Little in an attempt
to explain properties of the human brain in terms of the
dynamics of a network of two-state neurons. If the
synaptic couplings J;j between neuron i and neuron j are
symmetric (J; =JI;), the static (long-time) properties of
the network can be studied as a problem in equilibrium
statistical mechanics. The assumption of symmetric
synapses is, however, not supported by neurophysiolo-
gy. For J;~&Jj; the equilibrium approach is no longer
possible and the behavior of the network can only be ob-
tained from its dynamics. In fact, even the attractors of
the network dynamics are, in general, time dependent
(e.g. , cycles), so that static properties may only exist as
averaged long-time limits of dynamical quantities.
Another unrealistic feature of the Hopfield-Little model
is its assumption of a completely connected network (i.e.,
every neuron is connected with every other neuron by a
synaptic bond). In the human brain, the average con-
nectivity is fairly low.

In the present work we consider an asymmetric, dilut-
ed neural network in the limit of strong dilution, where
each neuron is no longer connected with a finite fraction
of the other neurons in a macroscopic network. The
model becomes soluble if the average coordination num-
ber I( of a neuron and the number p of learned patterns
are both large, such that the ratio a =p /K remains
finite. This model has recently been analyzed by Derrida
et al. for a discrete-time dynamics. One of the main re-
sults of Ref. 5 is the existence of a critical line T, (a),
such that for temperatures T & T, (a) the network can
retrieve p stored patterns, whereas for T & T, (a) it can-
not. Here we recover and generalize the results of Ref. 5
to either a continuous-time Glauber dynamics or to re-
laxational dynamics of soft spins. We calculate various
time-dependent correlation and response functions exact-
ly. These provide information on the averaged dynamic
properties of the attractors, which are reached by the
network in the limit of long times. Some insight into the
structure of the attractors can be obtained by studying
the time evolution of two different configurations which

start out in the vicinity of one stored pattern. %'e find
that the overlap of the two configurations becomes iden-
tical to the time-persistent part of the spin autocorrela-
tion, irrespective of its initial value. This shows that
there is only one characteristic distance between
configurations on the attractor. We furthermore investi-
gate the possibility of a spin-glass transition, as signaled
by the spontaneous appearance of a time-persistent part
of the spin autocorrelation or a divergence of the relaxa-
tion time of the spin autocorrelation. No such transition
can take place for finite T and a.

II. THE MODEL AND ITS REDUCTION
TO A SINGLE-SPIN PROBLEM

In the following we consider a Hopfield-Little model
of neural networks. ' The N neurons are represented by
Ising spins s, =+1 which interact via synaptic couplings
J; c,". The J, depend on p stored, uncorrelated patterns
P=+ I according to Hebb's learning rule'

v=1

Each g; takes its values + I with equal probabilities.
The factors c;j represent asymmetric synaptic dilution.
They are assumed to be statistically independent random
variables for each pair (i,j ) with distribution

N

p(Ic;, I)= + p(;, )

ij =1
(i&j)

= + [c5(c;,—I)+( I —c)5(c,, )] . (2)
i j =1
(i&j )

For convenience we choose a soft spin version of the
model for studying its dynamics. In the Appendix we
show, however, that our results may also be achieved
from Glauber dynamics using a method proposed re-
cently by Sommers.

The model is defined by the equations of motion for
spin variables s;:
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I sets the microscopic spin-fiip time scale and
Ui(s, (t)) restricts the fluctuations of spin length, so that
for A,~ op the Ising limit is reached. We have added an
additional white noise term

(f;(t)f, (t') ) =(2/Pr)5;, 5(t —t')

representing external disturbances of the neurons. Here
T= I/P will be called "temperature, " even though it
does not correspond to the thermodynamic variable.
For symmetric synaptic bonds this noise leads to a
canonical equilibrium distribution which governs the
static properties of the network. For asymmetric
synapses the stationary distribution is not known a priori
and static quantitities have to be calculated from the
long-time dynamics.

All response and correlation functions can be obtained
from a generating functional

Z[i, l
~ I c.., g;I ]=fD(s,s)e (4)

which is constructed from the equation of motion of spin
variables in the standard way. ' The weight in the func-
tional integral (4) is determined by

N

L = —jdt g c,,J,,s, (t)s, (t)+Lo (&)
i,j =1
(i ~j)

and

L = g f dt s, (t) r-'a, ,s( t)+U„(s, ) — s, (t)
i =1

l, (—t)s, (t) —l, (t)s, (t) (6)

The s integrations extend over the imaginary axis.
Averaging Z over the distribution of the c;~ we get the
generating functional for the asymmetrically diluted sys-
tern,

(Z), = fD(s, s)e ' Q 1 —c+c exp Ji jdt s;(t)s~(t)
l,j

(i~j )

(7)

Let us point out here two distinct ways to achieve a non-
trivial limit for a macroscopic network (N~ ao). Either
we choose c =O(1) and J = 1/N ("weak dilution" ) (Refs.
10 and 11), or we choose c =K/N~O for N~ oo and
J = 1/K ("strong dilution" ). Most of our discussion con-
cerns the latter case, for which we can expand (7) in
powers of c,

L = —(1/N) g f dt g g;gj"s;(t)s~(t)
ij =1 v=1
(i&j )

N—(a/2N) g f dt jdt's;(t)s, (t)s;(t')sj(t') .

with

(Z), = fD(s, s)e (8)

To handle the remaining average over the patterns we
introduce the overlaps m =N 'g, is;g," by

11= D m, rn exp —A dt mv m, —— s;
v=1 l

P
1 —exp dts; t sj t-

v=1

+O(K /N ) . (9)

For a flnite number of patterns all nonlinearities in (9)
are of importance. The problem resembles that of a di-
luted ferromagnet or diluted spin glass, and its treatment
requires the introduction of an infinity of order parame-
ters. ' Note, however, that (9) does not correspond to a
diluted equilibrium system. Here we want to treat the
limit of large p and K. We choose p =aK [a=0(1)]
and expand in powers of 1/K. Then we let K go to
infinity (after N~ ao). In this way, only terms up to
O(J;J ) need to be taken into account in (7) and J;~ may
be replaced by its average (Jj ),=a/K. L takes on the
form

X &(t —t')s;(t') (12)

The quantities C(t —t') and m have to be determined
self-consistently from (12),

(1 1)
and proceed analogously to the treatment of the sym-
metric network. In the self-consistent solution we find
m"=O(1/&N ) for most patterns, except for a finite
number m ', m, . . . , rn', which are of order 1. Thus the
contributions from random overlaps vanish as p/N for a
macroscopic network.

In a further step we reduce (8) and (9) to a single-spin
problem by decoupling the quartic term in (8). All in-
tegrations over the auxiliary fields may be performed by
the saddle-point method and we are left with

S

L = —g f dt g m g;s;(t)+ —,'as;(t)
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m "=N-' g g;(s, &,—, (13)

N

C(t t'—)=N ' g (s, (t)s, (t') &~ . (14)

The last term in (12) corresponds to additional noise
generated by static dilution. For a fixed realization y (t)
of this internal noise, the single-spin problem can be
stated in the form

B,p (s, t) = —w (s, t)p (s, t)+w ( —s, t)p ( —s, t) .

The flip rate

(17)

choose the limit of Glauber dynamics for an Ising spin
s =+1 because various time-dependent correlation func-
tions can be calculated exactly in this case. The dynam-
ics of Glauber is defined by the equation of motion for
the probability p(s, t) of finding the spin in state s at
time t,

S

L, = —f dt g (m g )+&ay(t) s(t) . (15) w(s, t)= —,'1 [1—s tan[/3h(t)]]

The random field y (t) has a Gaussian distribution with
zero mean and variance

(y(t)y(t')&, =C(t —t') . (16)
Equations (12) and (15) show that the eff'ects of strong
asymmetric dilution on the neural network are the fol-
lowing.

(i) The random dilution creates additional noise, but
does not modify the spin response function. This is due
to the fact that the synaptic dilution factors c, and c;
are completely uncorrelated in our model. For other
models, however, which contain correlations of the
synapses between neutrons i and j (like, e.g. , the symme-
trically diluted network' ) there are modifications of the
response functions which may lead to an anomalous be-
havior of the spin susceptibilities for long times.

(ii) Static noise due to random overlaps is suppressed,
because the total number of stored patterns is not exten-
sive in the limit N~ oo. For the case of weak dilution
[c =0 ( 1 ) ], contributions from random overlaps cannot
be neglected. They modify the internal noise as well as
the response and may also lead to anomalous long-time
behavior of the susceptibility.

At this point we would like to comment on a recent
paper by Feigelman and Ioffe. " They obtain the results
of Eqs. (12)—(16) as an approximate solution to the
Hopfield model with unidirectional bonds, i.e.,

c;j =1—cj; and c = —,'. However, in this case, correlations
of the c;~ give rise to a modification of the response, as in
the symmetric model. Hence the above solution cannot
be exact, as it is in our model with strong dilution and
uncorrelated c;~.

III. SELF-CONSISTENT SINGLE-SPIN
DYNAMICS

In the thermodynamic limit we are left with the prob-
lem of a single spin in a time-dependent field. We

(y(t) y(t') &, &
——C(t —t')

= ( (s(t)s (t') », (19)

Here ( &, denotes the trace over s with p(s, t) and ( &~

and ( &~ denote the averages over g and y (t), respective-
ly. - We remark that this self-consistent single-spin dy-
namics of the Glauber type will be obtained directly,
without the detour of introducing soft spins in the Ap-
pendix.

The magnetization

p(t)= g sp(s, t)
s =+1

(20)

obeys the equation of motion

I 'B,p(t) = p(t)+tan—h[/3h (t)],
which is solved by

—I (t —to)p(t) =p(to)e

+I f dt'e "" ' 'tanh[/3h (t')] .

(21)

(22)

In the following we shall always consider the limit
to~ —oo such that the initial value p(to) has been for-
gotten. To obtain the macroscopic overlap rn

(v= 1, . . . , s ), we average Eq. (12) over the internal
noise y (t),

is determined by the local field, which —for a single
spin —is just the time-dependent field h (t).

In the strongly diluted network the time-dependent
field h ( t) =g.m+ &ay (t) has to be calculated self
consistently. Its systematic part h (t)=g' m is related to
the overlap with pattern g,

m"=(g (s(t) », „ (18)

and its fluctuations are the time-delayed spin autocorre-
lations

(23)

T, (a)= f + —e ~ r cosh [&ay/T, ]~1—a+0(a ) as a~0 .
—- &2~

S

m"=(g'/i(t) & = g f +" —e i' tanh P g m'g" +&ay
v=1

Since p, (t) only depends on one time t, the Gaussian functional integration is reduced to a single Gaussian integral
with variance (y(t)y(t) & =C(t =0)=1. Equation (23) generalizes the results of Ref. 5 to an arbitrary but finite

number of patterns. Of particular interest are retrieval states m =m 5.1
which exist for T ( T, (a) with
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The transition is continuous and disappears beyond a, =2/~, as has been discussed in Ref. 5.
The time-delayed autocorrelation

(s(t )s(t +t )&q = g sp(s, t ) g s p(s, t+t
~

s, t ) (25)
s =+1 s'=+1

is defined in terms of p (s, t), and the conditional probability p (s', t'+ t
~

s, t') of finding state s' at time t'+ t given state

s at time t . The conditional probability obeys the same equation of motion as p (s, t), which implies an equation for

the time-delayed autocorrelation

1 '8, C(t—', t+t')= C(t'—, t+t')+p(t')tanh[ph(t+t')] . (26)

This is solved in explicit form by

C(t', t -+t') =e(t) e '+. I I dt, j dt2 tanh[Ph (t& )]tanh[Ph(t, )]e ' e
+ ' +6( —t)(t —t ) .

oc

(27)

The averaged autocorrelation

C(t)=((s(t')s(i+i') », „-,

('g(ti )i)(ti ) & =c(ti —t2 }=c(t i —t2 ) —q

(z'&=q . (30)

has to be calculated self-consistently with the internal
noise related to

C (t t') = (—y (t)y(t') &y .

The existence of retrieval states (m &0) implies a
time-persistent part of the spin autocorrelation

q = lim C(t) .

It is then convenient to decompose the noise

y (t) =i)(t)+z into a static (z) and a dynamic component
(il) (Ref. 6) with

To calculate the time-persistent part of the autocorrela-
tion, we note that for infinite time separation t, the aver-
age of

factorizes, since the correlation time of q and the exter-
nal noise are finite. We can then apply the same argu-
ment as used above for the magnetization to reduce the
functional integral over i)(t) to a single Gaussian integral
with variance ( tj(t)i)(t) &

= 1 —q. The resulting self-
consistent equation for q reads

q =F(q, m)
2

"—" -""-h -+--1-qn+ -q-- &z (31)

Close to T„P(M) is a Gaussian with mean m and vari-
ance aq =am /(1 —a) for a&1. At zero temperature,
Eq. (31) has two solutions: q =1 and q =qo(a) & 1. The
first solution, q =1, is unstable for all o. . The second
solution qo(a) is easily calculated for small a,

limqo(a) = 1—
cr ~0

8 —1/ue
~2

(33)

and for a~a„qo(a) =m . Since qo(a) & 1, the spin au-
tocorrelation is time dependent and hence a time-
dependent noise exists even at T =0. For a particular
realization of synaptic bonds we expect that many at-
tractors are time dependent with time scales which de-
pend sensitively on the particular realization. Apparent-

One might also want to consider higher-order moments
( (p(t) »"„, or, in general, the probability density

(32)

&cosh y (34)

This can never happen, because BF(0,0)/Bq is monotoni-
cally increasing with 1/T and as T~0 we find
dI' /3q =2/~ & 1. All higher-order moments are not
determined self-consistently and hence are slaved to m
and q.

ly averaging destroys all periodicity. The averaged dy-
namics is stochastic and the averaged correlation func-
tion decays in time to a value q~ & 1.

Another interesting question is the possibility of a
spin-glass state, more precisely a stationary state with
zero overlap I =0 and a nonzero time-persistent corre-
lation q&0. For such a transition to occur, one must
have

BF( 0 0) 1 I+ dy —T y l2

Bq
' — V'2ir
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The time decay of the averaged autocorrelation is
characterized by an efFective relaxation rate

l,~'= f dt C(r), (35)
0

which can be obtained from Eq. (27),

rg' ——r '+ d7 g, r 1 —e (36)

with

r, )= «anh[ph(r, )]tanh[ph(r&)] &„,, —& «anh[p~(ri)l &&«anh[p~(r»] &.& (37)

We look for a possible divergence of the «»xation time l,n', which implies an algebraic decay of C(t). In that case,

the main contribution to g, (r) is due to contractions of the Gaussian fields h (r, ) and h (rz) which involve the same

time (either t i or t2) except for one cumulant, i.e., g, (t) =KC(t) with

K=op2f e ' ~ f e " cosh Ip[m+&aqz+&a(1 q)q—]I&2~
(3g)

Substituting this result into Eq. (36) yields

(1—K)I,&'=const . (39)

We first consider temperatures T )T„such that
m =q =0. Comparison with Eq. (34) shows that the
condition for criticality of I,z is the same as the condi-
tion for a spin-glass transition to occur. Hence I",z can-
not diverge: it remains finite at T, (a) and also in the
limit T~0 for a ~ a, . In the retrieval phase, T & T, (a),
the constant K can be easily calculated for T=0 and
q+I,

—rn /a( 1+q)2 eK=—
(1 q2)l/2

(40)

Bp(t, )/Bh(r, )=e(r, r, )Ie—
X cosh [ph (t2 ) ]

and average over the internal noise to obtain

G (r) = (r)p(r ) I&&(r, ) &

=e(t, —t2)I e ' ' G(co=0) .

(41)

(42)

Here,

G(co=0) = f e ~ p cosh (pv'ay )—- &2m.

is the static susceptibility. The imaginary part of G(co)
is a simple Lorentzian at all temperatures, as one would
expect, since the static disorder only generates internal
noise, but does not modify the response.

IV. TIME EVOLUTION OF TWO INITIAL
CONFIGURATIONS

In the limit a~O, K = —,', whereas for a~ex„K~2/m
and it remains 2/m. for a, &cx & 1. Hence we expect I,&

to be finite everywhere in the whole phase diagram.
The time-dependent response function can also be cal-

culated exactly. We differentiate Eq. (22)

q = lim —g(s;(t)s;(r) &, „,t~ oc

determined in Ref. 5 for a discrete time dynamics (see
Eq. 27 of Ref. 5). Is, (t)) and Is;(t)I denote the time
evolution of two configurations which start out with
macroscopic overlaps with one of the stored patterns,
i.e.,

mo = g g; (s;(to) & =mo5„
i =1

and
X

m o'= —g g,"&,(r, ) & =m, 5.,
i=1

To study this quantity in our continuous time model we
duplicate the spin variables s;~ (y =1,2). The equations
of motion for s;, and s, z are given by (3), but the external
noise sources f;, and f;2 are uncorrelated Repeatin. g all
the steps discussed in Sec. 2 we end up with a problem
of two Ising spins in time-dependent local fields
h~ =m~gi+&ayr(t) which are correlated by

(y (t)yp(r') & =C p(r —r') .

The overlap of the two configurations with pattern Ig,'j
is the same, i.e. , mr =m [Eq. (23)], provided we take the
limit to~ —oo, such that the initial overlap is lost. The
diagonal elements of C & are the usual spin autocorrela-
tion function [Eq. (27)], whereas the off-diagonal ele-
ments are magnetization correlations by definition,

(44)

Note that C (t, t)=1 but Ci2(t, t)&1, in general. From
the two spin Crlauber dynamics we find

2Ciq(0) = (pi(t)tanh[ph2(t)] &„,

+ (p2(t)tanh[ph, (t)] &z, . (45)

To get a self-consistent solution we also need the delayed
autocorrelation C (t'i, 2t +t') which we get from the gen-
eralization of Eq. (26) to a two-spin problem,

It is remarkable that the equation for q coincides with
the equation for the overlap functicm

I" B,C &(r', r +r') = C&(r', r +r')—
+p (r')t h[apnhp(r +r')] . (46)
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Averaging over the local fields requires the calculation of

g &(t —t')—:( tanh[P[m +&ay (t)] ) tanh [P[m +&ay~(t ')]
) )„, . (47)

g, z(t) =q+KCiz( t), (4&)

where the constant K is given by Eq. (38). The linear
equation is solved by an exponential ansatz
C&z(t)= Ase " ' with (I+5)=K. Hence a nonzero As
first appears for 5=0, when K =1. This is identical
with the criterion for a divergence of the relaxation time
of the autocorrelation [Eq. (39)]. Hence such a transi-
tion cannot occur and C&2

——0 for all T and a & 1.

V. CONCLUSIONS AND OUTLOOK

Note that this average only depends on C (t, t) (which
equals one for Ising spins) and C&z(t —t'), so that (46)
becomes a self-consistent equation for C&z(t t') a—fter
averaging. It is then straightforward to show that Eqs.
(45) and (46) have a time-independent solution C&z(t) =q,
which is the same as the time-persistent part of the auto-
correlation. Hence in the subspace of points belonging
to one attractor the initial condition is lost in a finite
time and there is only one characteristic distance
d = —,'(1 —q) in this subspace.

Are there other solutions, C,z(t)&q? To investigate
such a possibility we decompose C &(t)=q+C &(t) and
the noise accordingly, y (t) =z+rl (t), with

( r) ( t ( )r)p( r z ) ) = C p ( t )
—t z ) .

The diagonal components C (t) decays in time and is
the solution of Eqs. (27) —(31). The off'-diagonal com-
ponent C&z(t) has yet to be determined from Eq. (46),
which is a homogeneous equation for C&z(t). Hence one
might expect a phase transition to a low-temperature
phase with a spontaneous nonzero value of
C,z(t)=C, z(t) —q. We now show that a continuous
transition cannot occur in the model under considera-
tion. We assume C&z(t) to be small and expand g&z(t)
up to linear order

the particular realization. Additional information on the
structure of the attractors is obtained by studying the
time-evolution of two different configurations starting in
the vicinity of one stored pattern. We find that the over-
lap of the two configurations equals the time-persistent
part of the autocorrelation. As a consequence there is
only one characteristic distance between configurations
on the attractor.

All three criteria for the appearance of (1) a time-
persistent part of the autocorrelation, (2) a divergence of
the relaxation time of the autocorrelation, and (3) a dis-
tance between two configurations which is different from
the long-time limit of the autocorrelation, coincide
whenever they apply. In the paramagnetic phase
(m =0) all three criteria can be used to determine the
spin-glass transition, whereas in the retrieval phase
(m &0) only the latter two are applicable.

One interesting open problem is the size and shape of
the basins of attraction. So far no analytical means exist
to attack this problem, which requires the solution of an
initial value problem. Another open question is, how
much of our results depend on the particle choice of dy-
namics (Glauber)? Certainly the basins of attraction will
depend on the particular dynamics, but in addition, even
the attractors might do so. Finally it would be interest-
ing to generalize the calculations to a model with either
a small amount of correlated bonds and/or weaker dilu-
tion. In both cases one can still reduce the many-spin
problem to the problem of the dynamics of a single spin.
However, the self-consistent equations are more compli-
cated and the absence of a Auctuation-dissipation
theorem makes it dificult to extract the static properties.
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We have shown that many dynamical properties of an
asymmetrically diluted neural network can be obtained
analytically in the limit of strong dilution [c =0 (1/N)],
and many stored patterns (p =alVc) for a continuous
time dynamics. The problem can be reduced to a self-
consistent Glauber dynamics of a single Ising spin in a
time-dependent field. The static disorder generates inter-
nal time-dependent noise, which does not inAuence the
response function. For low temperatures we still find
stable retrieval states. The effective relaxation rate of
the autocorrelation remains finite for all values of T and
o: and a transition into a spin-glass phase does not occur.
However, even at T =0 the long-time limit of the spin
autocorrelation function is not equal to one in the re-
trieval phase, due to the presence of the internal noise.
This indicates a complicated structure of attractors. In
fact, we expect many of the attractors to become time
dependent with time scales which depend sensitively on

APPENDIX

Results were obtained in the main text on the basis of
a soft spin dynamics for a neural network. A recent
functional-integral formulation of Glauber dynamics
offers the possibility of performing all calculations for Is-
ing spins directly. We want to show how to rederive our
results by this method.

Following Ref. 8, we consider a single-spin Aip dy-
namics for the probability P [o, t j =P(o „o.z, . . . , o ~, t)
of a network of X Ising spins o.

, =+1,
N

d, P [o, t J
= —g (2 —g, )

—[1—o; tanh(/3h, ) ]P [ o, t )
i=1

(Al)

g; denotes the spin flip operator (g;cr; = —o;g; ), and the
local field h; is given by
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(A2)

where b;(t) denotes an additional external field. In Ref.
8 a functional integral for dynamic spin correlations and
response functions is derived, which we use in the form

Z [l,b]= fD(h, h )D(s, s)D(yy)e (A3)

N

Lp —— dt s;s; —g; +h; h; —g; —ls;

+q, [r 'a-+, ++, s—( I

—tanh( f3h; )] } (A5)

with

L = — dt c~J~h; t sj t +Lp .
j,i =1
(i&j)

Lp is local in the site index i and has the form

(A4)

The first term in L can be treated in exactly the same
way as the corresponding term of the soft spin model.
After the reduction to a single-spin problem is per-
formed, we integrate over h, h, s, and s. Analogously to
Eq. (15), we obtain, for the case of Glauber dynamics,

S

L +Lo ——f dt l(t)tp(t)+@[I c) q)+y —I l(1 —g ) —tanh P b+Vtzy(t)+ g rn
v=1

The Gaussian distribution of the random field y (t) is determined by

(y (t)y(t') ) =C(t t') . —

(A6)

(A7)

Here C(t —t') denotes the correlation function (o(t)cr(t') ) of a single Ising spin with a self-consistent Glauber dy-
namics defined by Eqs. (A6) and (A7).

Spin correlations and response functions may be obtained from Z [l,b] by difFerentiating with respect to 1 or b; e.g. ,

p(t) = ( cr(t) ) = [5Z[l, b]I51(t) }(

C(t t') = t—, o (t)o(t') ) = I5z. Z[l, b]I51(t)51(t') } i

G (t t') = I 5( o (t) )—I5b(t') }, ,= I5'Z[l, b]I51(t)5b(t') },

(A8)

The self-consistent Glauber dynamics [(A6) and (A7)] is identical to the one we used in the main text as a limiting
form of the soft spin dynamics. It is now straightforward to show that (A8) leads to (23), (27), and (43). For the pur-
pose of illustration let us consider C(t —t'). From (A8) we get

(A9)

For I =0 the equation of motion for cp becomes linear
and (A9) is easily evaluated, using

(q(t)&(t )) =e(t' —t)r exp[I (t —t')]
and e(t =0)=0.

C(t t') = (y(t)g(t—') )
+6(t' t)e " ' ( I —q'(t)—)

Insert&ng

+B(t t')e "I'—"(1 @'(t') ) . —

in (A10) we recover Eq. (27).

y(t)=I f dt'e " ' 't anh[/3 h(t')]

(A10)
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