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Quantum mechanics for multivalued Hamiltonians
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When the Lagrangian is not quadratic in the velocities, the situation may arise that the expres-
sion for the velocities in terms of the momenta is multivalued. As a consequence, the classical
motion is unpredictable since at any time one can jump from one branch of the Hamiltonian to
another. Yet, the quantum theory turns out to be perfectly smooth, with wave functions which
are regular functions of time. We show that the path integral automatically picks up a unique
combination of the branch Hamiltonians, which is a natural generalization of the Brouwer degree
of the Legendre map.

Although one often restricts oneself in practice to La-
grangians quadratic in the velocities which yield Hamil-
tonians quadratic in the mornenta, there is no reason of
principle that prevents one from analyzing the quantum
mechanics of more complicated systems. There may be
of course severe factor ordering problems in the Harnil-
tonian but provided those are solved, the general formal-
ism of quantum mechanics can deal with any Harniltoni-
an. But these remarks, however true, presuppose that at
least a unique Hamiltonian exists and this is not always
the case.

Indeed, if one starts from a Lagrangian which is a po-
lynomial in the velocities of degree higher than two, the
momenta are polynomials in the velocities of degree
higher than one. Consequently, to express the velocities
in terms of the momenta, one needs to solve a system of
nonlinear algebraic equations. For generic choices of
the coefficients in the Lagrangian, those equations will
have more than one real root, at least for a range of
values of the momenta. This situation is found, for ex-
ample, in extensions of Einstein s theory of gravitation
which involve topological invariants continued to higher
dimensions. '

If the expression for the velocities in terms of the mo-
menta is multivalued, the Hamiltonian becomes also
multivalued in the p's. This implies that one cannot pre-
dict the classical motion of the system if the initial q's

and p's are given. The reason is that at any moment in
time one does not know which "branch" of the Hamil-
tonian to use, thus one may propagate for a while with
one choice of the Hamiltonian, then switch to another
and so on. Since the switching may be done after arbi-
trarily small time intervals, one may visualize the classi-
cal motion as a succession of zigzags which happen in an
unpredictable manner. It should be emphasized here
that, as it will be seen in a simple example below, this
difficulty is not tied to an insistence in using a Hamil-
tonian formalism but it also follows directly from the
Lagrangian equations of motion themselves.

At first sight, the above description of the problem
would seem discouraging enough as to make one believe
that the systems in question are to be thought of as un-

physical. However, there are instances in which the
quantum mechanics of a system that seems pathological
classically is quite allright. Roughly speaking, when one
sums over all histories, singular properties of the ex-
tremal history have a tendency to be smoothed up.

With this perspective in mind, we have examined the
quantum mechanics of a system for which q is a mul-
tivalued function of the p's, and we have found the re-
markable property that the quantum-mechanical ampli-
tude is perfectly well defined and unique. Through the
path integral, a unique effective Hamiltonian emerges.
For the range of momenta which made the original clas-
sical Hamiltonian single valued, the effective Hamiltoni-
an coincides with it. When the momenta are such that
the original Hamiltonian is multivalued, possessing
several branches, the effective Hamiltonian is a linear
combination of the various branch Hamiltonians with
coefficients which differ from each other at most by their
relative sign. The choice of signs is of a topological na-
ture and is closely related to the Brouwer degree of the
map from the q's to the p's.

Once the effective Hamiltonian is known it may be
used, turning the analysis upside down, to define what
the classical theory meant in the first place. This means
that the original Lagrangian becomes only a heuristic
starting point and is replaced, for the troublesome range
of the q's, by another one. One may say that in the clas-
sical limit, the sum over all the zigzag extremal histories
of the original Hamiltonian is replaced by the contribu-
tion of the single, smooth, extremal history of the
effective Hamiltonian.

In order to make the discussion as transparent as pos-
sible, we will analyze explicitly the simplest possible ex-
arnple and will indicate at the end how the conclusions
are generalized.

That simplest possible example is a system with a sin-
gle degree of freedom described by an action which is
quartic in the velocity,

S:=f L dt = f ( —,'q —
—,'aq )dt .

The variational equation which derives from (1) reads
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with

d
dt

p(q)=o, (2)

BLp(q)—: =q —aq
Bq

(3)

H(q ) =p (q )q —I- (q ), (4)

one Ands that there are three difterent Hamiltonians in

and clearly implies p (q ) =po.
In order to solve completely the equation of motion,

one needs to express q as a function of the integration
constant po from (3). This, however, can only be done
uniquely if o. &0, in which case the analysis presents no
new qualitative feature compared to quadratic Lagrang-
ians.

Novel properties arise when a~0. In that instance,
the number JVf '(p) of inverse images q which are
mapped on a given p by the Legendre map f from q to p
defined by (3) is then no longer equal to one. Rather,
JVf '(p) can take the values one, two, or three, accord-
ing to whether p lies outside the closed interval [p, ,pz],
is equal to one of the critical values p, or p2, or is within
the open interval (p„p2) (see Fig. 1). The three inverse
images of a point p E (p, ,p2 ) will be denoted in the se-
quel by qr qtrt t and qttt respectively (with qt & qtt & qttt).

It results from the existence of many inverse images
that if the initial value po of the momentum lies in the
range (pt tpz), the velocity q can take, at any instant, any
of the the three values qo, qo', or qo" which solve (3).
The equations of motion allow for an arbitrary number
of jumps from one of the inverse velocities to any other,
since these jumps leave p unchanged and thus do not
violate (2). The behavior of the system described by the
Lagrangian (1) appears therefore to be unpredictable for
a range of initial data of nonvanishing extent.

That same problem can also be seen in the Hamiltoni-
an formulation of the variational principle. Even though
there is a single Hamiltonian function H(q ) in terms of
the velocity,

phase space for momenta in the range (p, ,pz). These
Hamiltonians correspond to the three roots of (3) and
will be denoted Ht(p), H„(p), and Httt(p). The time
evolution can be generated by either Ht(p), Htt(p), or
Httt(p) and again, one can switch at any time from one
of these functions to another.

The absence of a well-defined Hamiltonian formula-
tion would seem to put the quantum theory in as bad a
position as the classical one, since there is no indication
at this point as to how to propagate the wave functions.

It turns out, however, that through the sum over
paths, one can associate a perfectly smooth quantum
theory to the action (1). This results from the single
valuedness of the Hamiltonian as a function of the veloc-

ity, which can be used to postulate an expression for the
transition amplitude (qz, t2 q&, t, ) which possesses the
following desirable properties.

(i) (q~, t& q, , t& ) can be viewed as the matrix element
of a unitary evolution operator which becomes the iden-

tity as t2 ~t
&

~

(ii) The new correspondence rules should reduce to the
old ones when the Hamiltonian is single valued as a
function of the momenta.

In order to arrive at the appropriate expression for the
transition amplitude, one first notes that the original

variational principle based on (1) can be replaced by an
equivalent first-order one, in which one varies indepen-
dently both the coordinate q and the velocity (which we
denote from now on by u in order to emphasize that it is
treated as an independent variable), ~

t2

SH[q(t), u (t)]=f [p(u)q H(u)]dt .— (5)

The extremals of (5) are in one-to-one correspondence
with the extremals of (1), except at the critical values

p =p ] and p =p2, where 8 L /Bu Bu vanishes and where
(5) possesses additional solutions. But, as it will be seen,
these points are given zero weight in the path integral.

Now if the Legendre map p =f (u) = u —au was

everywhere invertible, it would be straightforward to
check that the sum over paths

jt p

= f f g)q(t)X)u(t) P exp —SH[q(t), u(t)]$2L

BuBu

p

The Legendre map f from q to p for the Lagrangian
one, with ~ ~o.

would reproduce the standard Hamiltonian path in-

tegral, which is in direct relation with the evolution

operator. This would simply follow from performing the
change of integration variables u ~p in (6), whose Jaco-
bian cancels the local measure 0 L /Bu Bu.

In our case, however, the Hamiltonian sum over paths
is not available. Nevertheless, the expression {6) still

possesses a definite meaning since it is directly written in

terms of well-defined functions of the velocity. For this
reason, (6) will be adopted here as the defining expres-
sion of the transition amplitude from which the quantum
theory should be derived.
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q t p t exp —S' q t,p t (7)

where S' [q (t),p(t)] is obtained by summing first the in-

By construction, the expression (6) fulfills the second
condition (ii) above. It remains to be proved that (i)
holds as well, i.e., that an operator interpretation of (6)
can be given. This will be shown by rewriting (6) as a
phase-space path integral.

To achieve this goal, one cannot blindly perform the
change of variables u ~p by brute force, since the
Legendre map is not invertible. While a given path
q(t), u (t) in position-velocity space defines a single path
q(t), p (t) in phase space, a phase-space path corresponds
in general to an infinity of paths q(t), u (t), in which the
velocity arbitrarily jumps from one root of (3) to anoth-
er.

The idea, then, is to break the sum (6) as

tegrand of (6) over all paths in coordinate-velocity space
which correspond to the same phase-space path,

exp —S' [q (t),p (t)]

exp —Stt [q (t), u (t) ]
f '(p(f))

The transformation from (6) to (7) can be precisely im-
plemented through the slicing of the time interval
[t, , tz]. On each slice, one can divide the u integration
line in three diff'erent regions, [ —ao, q & ], [q&, qz],
[q2, + oo ], on each of which the map p =p (u) can be in-
verted, and one performs separately the change of vari-
ables from u to p on each of these regions. One finds,
after some elementary transformations, that the u in-
tegral at a given time, for a time-slicing parameter e, be-
comes

BI
du exp i p u q;+& —q —E'H u = dpexp i p q, +]—q; —eH' p +0 e

Bu Bu 00

+H III (p )e(p p 1
)—(10)

in terms of the Heaviside step function O.
The eff'ective Hamiltonian (10) is a single-valued func-

tion of p. It is continuous at the critical values p] and

p2 because H&& ——Hi «Hrii there.
The rule (10) can be extended to any continuous func-

tion g (u) of the velocity and gives a single-valued func-
tion g' (p) of the momentum,

g' (p) =g, (p)e(p —p) —g (p)e(p, —p)e(p —p, )

+g (p)e(p —p ) .

It is actually the only prescription for yielding a continu-
ous g' (p) which is linear in the three different branches
gi, gii, giii, with coefficients which are independent from
g (i.e. , universal). These coefficients turn out to possess a
topological significance, since they are equal to +1 ac-
cording to whether the Legendre map preserves (I, III)
or reverses (II) the orientation. If one takes for g(u) the
constant function 1, g' (p) reduces to the Brouwer de-
gree of the Legendre map,

g' (p) = g sgndf~ =degf,

usaf

(p)

(12)

and is, of course, equal to l.
Because of (9), the path integral (6) can be written as

in (7), with an effective action equal to

S' [q (t),p(t)] = f (pq H' )dt . —(13)
1

Here q;+i and q; are the values of q at time t, +, and t, ,
respectively (tz t, =No, —t, +, t, =e), while —H' (p) is
given by

H' (p) =H, (p)e(p —p) —H„(p)e(p —p)e(p —p, )

The effective action not only is a local functional of q
and p, but also takes the standard canonical form. As
such, it enables one to revert to more traditional formu-
lations of the quantum theory.

The path integral can indeed be viewed now as the
matrix element of the evolution operator

U(t2, t, ) =exp[ —t'(tz —t~ )H' /A'] (14)

between appropriate coordinate eigenstates. What plays
the role of the Hamiltonian operator in the Schrodinger
equation is thus the topological combination H' (p) of
the various branch Hamiltonians.

The fact that the path integral leads to a satisfactory
quantum theory of the usual type sheds a new light on
the meaning of the "classical" variational principle asso-
ciated with the original action (1). Indeed, one can ask
oneself what is the "classical limit" of the quantum
theory just constructed, i.e., which path, if any, dom-
inates the path integral in the limit of large actions.

Because the action functional (5) possesses an infinity
of stationary points, the condition of constructive in-
terference does not single out a unique path in
coordinate-velocity space which can be thought of as the
classical history of the system. It is not that the system
possesses a classical limit which is unpredictable, it is
simply that this classical limit is ill-defined in the sense
that no single path dominates the sum as A~O.

By contrast, the phase-space path integral (7), ob-
tained by summing first expiS over all paths q (t), u (t)
which correspond to the same phase-space path
q(t), p(t) is dominated, in the limit of large actions, by a
single path. That single path replaces the infinity of ex-
tremals of the original action and solves the determinis-
tic equations associated with the effective Hamiltonian
Heff
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The analysis of the simple model displayed here ex-
tends straightforwardly to more general cases with many
degrees of freedom, provided that the Brouwer degree of
the Legendre map from q' to p;

—=BL /0q' is everywhere
finite and equal to a nonvanishing constant D&0.

The transition amplitude can again be written as

1 BL= f f 2)q(t)2)u (t) Q det
Bu'Bu '

X exp —S [q ( t ), u (t ) j

(15)

= f f Dq(t)2)p(t) exp —f (pq H—' )dt

(16a)

Here H' is given by

H' (p, q)= — g (sgndf~)H(u, q) (16b)

usaf

(pj

in agreement with (10). The e(fective Hamiltonian (16b)
is continuous and reduces to the original Hamiltonian
when this one is single valued. The quantum theory
defined by the path integral (16a) possesses not only a
clear operator interpretation, but also a smooth, deter-
ministic, classical limit, whose dynamical equations are
the Hamiltonian equations implied by the effective Ham-
iltonian (16b).

A region in p space with k inverse images is covered by
the integral (15) k+ times positively and k times nega-
tively, with k =k + +k and D =k + —k . By repeat-
ing the steps which led from (6) to (7)—(13), one finds
that the integral (15) can be replaced by

& q 2, rz
l q i, ri &
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Insisting that the velocity should be a continuous function of
time would generically contradict the equations of motion if
one adds a potential term to the Lagrangian, and thus, is not
desirable. [This would occur, for instance, if one adds
—I q dt to (1)].

3The elementary procedure of varying coordinates and veloci-
ties independently in the variational principle has a long his-
tory and is explained in many references. See, for instance,
C. Lanczos, The Variationa/ Principles of Mechanics, 4th ed.
(University of Toronto, Toronto, 1970); also appendix of M.
Henneaux, Ann. Phys. (N.Y.) 140, 45 (1982).

4Note that (6) obeys the appropriate folding rule for transition
ampli tudes.

s J. W. Milnor, Topology from the Differentiable Viewpoint (Uni-
versity Press of Virginia, Charlottesville, 1965).

The Brouwer degree is equal to unity for Lagrangians which
are polynomials of odd degree in the velocity, while it van-

ishes for polynomials of even degree. These are thus exclud-
ed from the present treatment [Eqs. (15) and (16b) below are
ill defined for D =0].


