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Unitary point of view on the puzzling problem of nonlinear systems
driven by colored noise
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It is shown that the projection approach oN'ers a straightforward way to elucidate the connec-
tions among the current theories on the efI'ects of colored noise. An error indicator with a simple
analytical expression is built up which allows us to evaluate the error associated with each ap-
proximation.

It is well known' that the Fokker-Planck equation for
the time evolution of the probability distribution a(a;t)
can be derived from the more detailed description

the irrelevant ones b with (. It seems natural (in the
former way of dividing X) to assume X„Xb, and LI to
be, respectively, defined by

p(a, b;t) =Xp(a, b;t), v (x),

x =v (x)+ Itt(x)g(t),

&
= ——4+f«),

(2)

f(t ) being white Gaussian noise defined by

(f(t)) =0,

(f(0)f(t)) =2gb'(t) .

In this case the operator L reads

(3)

a
v (x) —

& y(x)+ — g+(g2) . (4)ti a
rlx c)x 8(

We identify the set of variables of interest a with x and

via contraction over the set of irrelevant variables b
[cr(a;t)= fdbp(a, b;t)]. This program is carried out
through a projection method' a basic step of which is the
repartition of the dynamical operator L into a perturba-
tion term, L~, an unperturbed part concerning the vari-
ables of interest a, L„and another unperturbed part con-
cerning the irrelevant variables Lb. It has been pointed
out' that this choice must be made keeping clearly in
mind the physical nature of the problem under investiga-
tion. Faetti, Fronzoni, and Grigolini illustrated this basic
aspect in the case of systems of Hamiltonian nature and
showed how to divide the dynamical operator X so as to
fit the constraint of canonical distribution. This allowed
them to recover the nonlinear Auctuation-dissipation rela-
tions discovered by Lindenberg and Seshadri (see also
Ref. 4 and the more recent and remarkable work by
Ramshaw and Lindenberg ). The very same problem has
been discussed also in the case where Eq. (1) dces not
satisfy the requirement of detailed balance. ' In Ref. 1,
however, this discussion has been limited to the case of a
linear system driven by colored additive noise.

In this Rapid Communication, we extend that discus-
sion to the more general case

1 |l 2 tl
Zb = —g+(g2)

ag ag2
(s)

tl 84'
cr(x;t) = — +

Bt 8X
W(s)ds a(x;t), (6)

where (to order X) )

gr(S ) (g 2) +(X ) +(X )e (I/s —n(x))stl a
Bx Bx

(7)

the exponential exp( —11(x)s) being formally defined by

with

e
—Il(x)s g S II(r) (X )

r-O

II'"'(x) =~"(x)/It (x);

'"'( )= ' "( )v'( ) —v( ) '" "( )
(10)

If we are interested in the steady-state property we can
set the upper limit of time integration on the right-hand
side (rhs) of Eq. (6) equal to infinity. By adapting the
fourth-order calculation recently carried out by Faetti et
al. in the purely additive case to the more general multi-
plicative case of Eq. (1) we then obtain (a detailed
demonstration will be given in a more extended paper)

y(x) .
X

It has been shown how to extend the projection opera-
tor approach so as to properly deal with the problem posed
by a nonvanishing X,. This theoretical investigation has
been more recently supplemented by a detailed compar-
ison with the results of analog and digital simulation. '

By using the projection method of Refs. 6-8 we obtain
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o(x;t) =
8t

v (x)+ g D y(x) y(x)II(")(x)r"+ —', Dr2 y(x) y(x)II("'(x)v (x) a(x;t),
Bx „p (Ix Bx (Ix X

where D—= (g )z. This equation is exact up to order z .
This is a remarkable result which needs to be properly
commented on. The second term on the rhs of Eq. (11) is
nothing but the Laplace transform at zero frequency of
the operator of Eq. (7). This coincides with the predic-
tions of the best Fokker-Planck approximation. ' The
third term on the rhs of Eq. (11) was obtained by extend-
ing to the multiplicative case the method of Ref. 8. From
the contributions to order X( a suitable nonstandard
diffusion term is drawn which has the property of remain-
ing competitive with the best Fokker-Planck approxima-
tion even in the seemingly safe limit D 0. This is ren-
dered evident by replacing that nonstandard diff'usion
term with an "equivalent" one of standard form (accord-
ing to the prescriptions of Ref. 11). The resulting term is
precisely the third term on the rhs of Eq. (11). It is ex-
pected that the contributions to order X) "(n & 2) will

provide analogous terms of the order DT;".
The remarkable result of Eq. (11) means that it is use-

less to use the best Fokker-Planck equation at orders
higher than the first in r, without supplementing it with
suitable corrections stemming from the perturbation
terms of order X(" (with n & 2) [third term on the rhs of
Eq. (i i)].

The assumption that II ' (x) can be neglected has a
twofold effect. First, from Eqs. (9) and (10) we obtain

II (n) (x ) [II (( ) (x ) ] n (i2)

~
(, ) ~(x;t), (i3)

1
—rlI") x

which coincides precisely with the Fox theory. ' '
We thus reach the following remarkable result: Al-

though the Fox theory can be seen as being, so to speak,
an approximation to another approximation ' (i.e., the
best Fokker-Planck approximation ' ), it has the sig-
nificant effect of making negligible the corrections to the
Fokker-Planck structure stemming from the perturbation
terms of the order X("(n & 2). As already noticed by
Faetti, Fronzoni, Grigolini, and Mannella it has also the
remarkable effect of producing an exact equilibrium dis-
tribution at r =~. We shall come back to this interesting
property in the final part of this paper.

Even the decoupling theory, ' in the form recently gen-
eralized by Fox and Roy, ' can be recovered within the
context of the projection method. Let us make the as-
surnption that

II"'(x)=II"'( ) =(P'( ) — '
9 ( )

y'(x, )

y(x, )
(i4)

Furthermore, we are allowed to disregard the last term on
the rhs of Eq. (11). This equation has thus to be replaced
by

(1 8(r(x;t) = —
v (x)+D e(x)a

Bt x X X

I

where x, =(x—(t)). Equation (11) then reduces to Eq.
(13) with II(')(x) replaced by that of Eq. (14) (i.e. , pre-
cisely the decoupling theory of Ref. 16). In addition to
making the corrections to the standard Fokker-Planck
form vanish, the decoupling theory makes the diffusion
coefficient of Eq. (13) always positive. This appealing as-
pect, however, is associated with the approximation of Eq.
(14) and, thereby, with an error, which can be evaluated
within the context of the projection method. In the addi-
tive case (p =ax —Px (a & 0, P & 0) it is straightforward
to show that the relative error on the diffusion coefficient
at x is given by rP(x —x, )D/(a —3PX, ), where x, has
presumably to be intended as being the mean value of x
within a well [within the standard decoupling theory' rel-
ative error would read rP(x —(x ))D/ (a —3P(x ))].
This shows that upon increasing Pr we must have recourse
to noises of decreasing intensity for the decoupling theory
to work. This error is precisely the main reason why the
decoupling theory fails in correctly reproducing anhar-
monic effects like the transition from the one-to-two-mode
distribution, which takes place upon increase of ~. Note
that both the Fox theory and the best Fokker-Planck ap-
proximation, on the contrary, are proven by Eq. (11) to be
exact at the order r.

As a quite remarkable aspect of Eq. (11),we would like
to point out that it suggests that if II ' (x) exactly van-
ishes the resulting Fokker-Planck equation turns out to be
exact. This important property can be shown as follows.
Let us make the change of variables

y =v (x)/[II")(x)y(x)] .

When II(') (x) =0, Eq. (2) is then proven to read

(is)

y+4

(+f(t) . —
(i6)

This is a linear stochastic differential equation, the expli-
cit form of the "exact" contracted Fokker-Planck equa-
tion to be associated with it is well known (see also, the
final part of this paper). By coming back to the original
variable x the exact Fokker-Planck equation reduces to
Eq. (13). Note that in this special case the best Fokker-
Planck equation, ' the decoupling theory, ' ' and the
Fox theory ' coincide.

The class of systems satisfying the condition
II(') (x) =0 is very extended. A simple case of special in-
terest is &p =0. In this case it is easily proven that Eq. (6)
leads to precisely the same result as the Kubo theory of
cumulants ' (another exam le of exact treatment).
When pe0 we find that for II ') (x) to vanish y(x) must
be related to p(x) through

y(x) =C&p(x)/exp A J [I/p(x')]dx'

where A and C are arbitrary constants. An interesting
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case fulfilling this constraint is a=ax —Px, y=x dealt
with by Suzuki. '

In Ref. 1 a different repartition of X (leading to
L, =0) has been suggested which has been proven to lead
to a faster attainment of the correct equilibrium distribu-
tion of the variable x (note that this advantage is now
counterbalanced by the agile way of dealing with X,a0
developed in Ref. 6). This repartition is naturally intro-
duced by adopting the variables x and v=p(x)+gitr(x)
rather than x and g. As discussed in Ref. 19 this choice is
dictated by the rules for the determination of the best
basis set (the so-called Mori basis set' ). We then obtain

L, =O,

8, y'(x)
c) v y(x)v (x) —v

1 cl

c)v c)x

= a D 6
Xb vy(x) + it/ (x)

civ r 8v

(i7)

dv p q(v/x) =1 Xbp q(v/x) =0

which are lost when y(x) & 0, thereby preventing the pro-
jection method from working in this critical region. Since
the v-equilibrium distribution is not independent of x, the
projection operator P also turns out to be dependent on x.
This involves only minor technical difhculties in compar-
ison with the ordinary case of projection operators in-
dependent of the variable of interest' (note that in the
linear and additive case Xb, and therefore P, turns out to
be independent of x, thereby recovering the conditions
behind this ordinary case).

Prior to the application of a rigorous method of adia-
batic elimination of fast variables it is not possible to pre-
dict whether the Ito or the Stratonovich form of diffusion
equation has to be used. In many cases ' neither form

where y(x)—:1/r —II ' (x). According to Refs. 1 and 6
we must use the projection operator P defined by

Pp(x, v;t ) =p,q(v/x) o (x;t )
r

=—p,q(v/x) dv p(x, v;t ),
where p,q(v/x) denotes the x-dependent "thermal bath"
equilibrium distribution. p,q(v/x) is characterized by the
significant properties

is reliable. In this case a calculation at the order Xi with
the projection operator P of Eq. (17) leads us to

8 o(x;t) =
8t

D 8 itr(x ) 8 y(x)
r' cix y(x) c)x y(x)

1 8 q(x) cr(x;t),
r 8X y(x)

(i9)

o (x;t ) = a x+, cr(x;t )
t

' x a I+az
and

(20)

which formally coincides with the Stratonovich diffusion
equation associated with the naive Langevin equation of
Ref. 22. The authors of Ref. 22 note that the diffusion
coefficient of this equation is always positive (y & 0 even
when y & 0). Actually it appears clear from the analysis
of the present paper [see our remarks on the conditions of
Eq. (18')] that Eq. (19) is completely invalidated in the
region y(x) & 0. The equilibrium distribution of Eq. (19)
is easily proven to coincide with the equilibrium distribu-
tion of the Fox theory (as already pointed out by Jung and
Hanggi. The authors of Ref. 22 rely indeed on this
property to recover the same conclusion as that by Faetti
etal. : The Fox theory provides an exact equilibrium
distribution in the limiting case r

This incontrovertible conclusion has been reached by
Faetti et al. by using the same procedure as that adopted
(within a somewhat different context) by Sancho, San
Miguel, Katz, and Gunton. In the additive case y'=0
the same conclusion can be reached by noticing that the
"intensity" of Xi [Eq. (17)] becomes vanishingly small
for I/r 0, thereby making the calculation at the order
Xi virtually exact. Equation (19) (the result of this
second-order calculation), as above remarked, has the
same equilibrium distribution as the Fox theory, rendering
it exact for 1/r 0.

Within the context of the projection method it is possi-
ble to supplement Eq. (19) with the explicit expression of
the first nonvanishing corrections to it. These are too in-
volved to be discussed in this short note. It is illuminating,
however, to compare the results of the two different repar-
titions used in this paper in the linear case p(x) —ax.
The former and the latter way of dividing X in this simple
case lead us to

6 o(x;t) =a(i+a. ) ' i+ ar (ar)'+ 2 +
Bt (i+a.)' (i+a.)'

8 & '&rx+ o(x;t ),
c)x a(1+as) c)x'

(2i)

' 2
1a+—
T

E=' Q+ 1 (2i')

in terms of the perturbation parameter 4ar/(1+ar) . It

respectively.
First of all, let us note that Eqs. (20) and (21) are

characterized by the same equilibrium distribution [we
denote it by cr,q(x)]. Furthermore, the friction term ap-
pearing in Eq. (21) is proven to be nothing but the expan-
sion of the eigenvalue t. ,

I

is thus straightforward to show that at a & 1/r and
a & I/r this eigenvalue turns out to coincide with a and
I /r, respectively.

Then the two results of Eqs. (20) and (21) must be
compared with the exact correlation function

&x(0)x(t)) =C)e "+C2e (22)

while bearing in mind that they imply statistical averaging
over

p.'q '(x, &) =cr.q(x)p.q(&)
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and

respectively [p,„(() and p,q(v) denote the Gaussian equi-
librium distributions of g and t, respectively]. Only
p, q (x,v) is a genuine equilibrium distribution of the
whole operator L. In other words, the former repartition
leads to a preparation equivalent to setting C2 =0,
whereas the latter one implies C~tz+Cg/z=0.

In the spirit of adiabatic elimination of fast variables'
the drift term should be proportional to tr or 1/z according
to whether a & 1/z or 1/z & a. This important theoretical
constraint is only partially fulfilled by the former reparti-
tion (namely in the case a & 1/z), whereas it is completely
satisfied by the second one. However, the former reparti-
tion when a & 1/z leads to an exact result already at the
order L1, while the second one reaches the exact values a
and 1/z after a resummation at infinite order in X~. Note
that the second-order calculation resulting in Eq. (19)
corresponds to replacing the whole term between square

brackets in Eq. (21) with 1.
These results (concerning the simple linear case) sug-

gest that the latter repartition has to be preferred to the
former one in the high-memory limit (where it produces
more accurate dynamical properties), whereas the former
one (though leading to an exact equilibrium distribution
even in the limit z ~) turns out to be more advanta-
geous in the short-~ region where it provides a faster con-
vergence to the correct drift term. The importance of a
description equivalent to the former repartition has also
been stressed recently by Der.

We can conclude by saying that the projection method
of Refs. 6-8 has the capability of establishing clear rela-
tions among the current theories on the nonlinear systems
driven by colored noise, including also the most recent
ones 13141622
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