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Simple model for the polarization reversal current in a ferroelectric liquid crystal
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The spontaneous ferroelectric polarization in the chiral smectic-C phase can be measured by
monitoring the dynamic response to a changing electric field. A model for the system is presented
and analyzed for the two cases of square-wave and sinusoidal voltage applied to a "bookshelf
geometry" sample, where the smectic layers are oriented relative to the glass plates as books are to
a shelf. The model gives a good description for the observed polarization reversal current and

yields the rotational viscosity and one eAective elastic constant in addition to the spontaneous po-
larization. Relations between these parameters and the width of the observed hysteresis loop are
derived as well as relations for the contribution of the ferroelectric polarization to the permittivity.
The model is applied in evaluating data from measurements on the substance MBRA-8 [2-
hydroxy-4(2-methyl-butyloxy)-benzylidene-4-p-n-octyl-aniline].

I. INTRODUCTION

Ferroelectric liquid crystals in thin cells have a big po-
tential electro-optic applicability, and it is presently of
great interest to further increase our structural
knowledge of the properties of such systems. In the
present work we have studied thin planar cells with
chiral smectic-C liquid crystal in the bookshelf
geometry, ' and investigated the polarization reversal
current in these samples. We have made a model that
describes the experimental behavior of the polarization
reversal and calculated the shape of the current bump
for the case of applied square-wave voltage, using a
small number of parameters that are adequate for the ex-
perimental evaluation of the curves. Knowledge of the
expected shape makes the experimental evaluation
easier, especially in nonideal situations, and it also il-

luminates the physics of the process. A particular
feature of the model is that it can account for the time
delay between the field reversal and the current peak.

In the first described surface-stabilized ferroelectric
liquid-crystal (SSFLC) cells, director and polarization
fields were described to be uniform in space, giving rise
to the existence of the two polarization states up and
down. It seems that in the measuring cells used in this
work, the field-free state is rather of an optically twisted
conformation with polar boundary conditions, and our
model is chosen accordingly. Evidence for this type of
conformation is given in Sec. XIII. It is generally
difficult to experimentally determine the exact director
configuration in very thin SSFLC cells. One must there-
fore often use indirect indications such as electrical
response or symmetry considerations in order to estab-
lish a model for the director and polarization profiles.
As it turns out, however, our model does not depend on
assumptions of the exact boundary conditions of the cell.
Rather an effective elastic term is introduced in the
model, giving the model a much broader field of applica-
bility than one requiring the boundary conditions as in-

put parameters.

To test the applicability of the model, measurements
on the substance MBRA-8 [2-hydroxy-4(2-methyl-
butyloxy)-benzylidene-4-p-n-odyl-aniline] have been
reevaluated. We discuss below the limits of the model
and investigate also its consequences in the case of a
sinusoidal driving voltage. We thus obtain an expression
for the width of the ferroelectric hysteresis loop in some
limits.

One method to measure the ferroelectric polarization
is to apply a square-wave voltage and measure the polar-
ization reversal current through the cell. The observed
current between the capacitor plates is, however, not
identical to the polarization reversal current. We will, in
general, get four contributions to the observed current.

The first part is the dielectric charging and discharg-
ing of the capacitor formed by the electrodes on the
boundary plates of the cell. This contribution gives an
exponentially decaying current after each voltage rever-
sal, where the time constant can be lowered by decreas-
ing the resistance of the electrodes.

The second part (often hidden inside the first) comes
from the electroclinic effect. This effect gives a linear
increase or decrease in the tilt angle in response to the
applied electric field. Since the response is linear and
only one viscosity coefficient should be involved, this
should also give an exponentially decaying current if it
can be separated in time from the polarization reversal.
It should be of small amplitude and with a time constant
that only depends on temperature and on liquid-crystal
material parameters. The electroclinic part may be ex-
pected to play a rol in the immediate vicinity of the
smectic-C-to-smectic-3 transition and might complicate
the evaluation there.

The third part is the polarization reversal current, giv-
ing a typical "bump" in the current. The area of this
bump is proportional to the magnitude of the polariza-
tion.

The fourth part is of electrolytic origin. Dissolved
charged impurities move from one electrode to the other
and may also participate in electrode reactions. In some

36 4380 1987 The American Physical Society



36 SIMPLE MODEL FOR THE POLARIZATION REVERSAL. . . 4381

cases this can give current shapes similar to the polariza-
tion reversal current. By use of pure material, and by
proper choice of time scale and switching voltage, this
contribution can mostly be reduced to a simple shift in

the base line. A polarization reversal current bump can
easily be distinguished from an electrolytic current bump
by checking the optical repsonse and the behavior with
raising temperature.

A benefit of using a square-wave voltage compared to
other driving voltage shapes is that we in most cases can
get a time separation of the four above-mentioned con-
tributions, which not only facilitates the extraction of a
correct polarization value together with information on
viscosity and elasticity, but also yields some test factors
relating to the condition of the specimen (e.g. , resistivi-
ty).

II. MODEL ASSUMPTIONS

A leading principle has been to find a model that per-
mits analytic solutions, since this permits easy use of the
solution as an evaluation tool for experimental measure-
ments. In order to keep the mathematics simple with a
low number of free parameters, we have chosen to de-
scribe a clearcut experimental case. We will later also
discuss how to handle other more complicated cases.

We assume that we can let one single angle
represent the direction of the spontaneous polarization
in the whole sample. That does not mean that there are
no deformations in boundary layers or near defects; we
only assume that their contributions to the current are
negligible. We restrict our description to the low-
voltage range, where elastic deformation can be expected
to dominate over creation and motion of disclinations
and over inelastic changes at the electrodes. We are
thus well below the limit for bistable switching. We also
ignore flexoelectric effects and the effects of variation in
the dielectric constant during the polarization reversal.
If there should be a difference between the two dielectric
constants parallel to the smectic layers, this could
change the shape of the current bump, but would not
change the area beneath it. This anisotropy seems to be
small in most cases, and it seems dificult to differentiate
between effects from this source and effects from inho-
mogeneous orientation without independent knowledge
of the size of the anisotropy. Assume further that the
normal of the smectic layers lies in the plane of the elec-
trodes and that the polarization makes an angle P with
the normal to the electrodes (see Fig. 1).

We assume a viscous torque working against the reori-
entation of the polarization in an electric field and we as-
sume it to be simply proportional to the time derivative
of P. As will be discussed more later, we must introduce
an elastic torque, which is nonzero for the gati values 0
and ~, in order to explain the observed finite polariza-
tion reversal times. In our monostable cells we have
symmetric response with respect to the sign of the ap-
plied voltage. This indicates that the elastic equilibrium
angle for ttt in rr/2, which maybe can seem surprising to
some people. But this choice is the only one allowed by
symmetry (except for added multiples of rr), and we will
below give arguments for it. Our elastic torque must be

equilibrium direction for the
spontaneous polarization
with electric field present

X

spontaneous
polarization

electric field

r Tss x g r ~ !r;~~egypt

FIG. 1. Geometry of the planar cell with definition of angles
and coordinates. The smectic planes are parallel to the plane
of the paper.

chosen accordingly. The simple choice that we have
made is that the elastic torque is proportional to cosP.
This expression for the elastic torque has been chosen,
out of many possibilities, for its mathematical simplicity,
and could be considered as the first term in a more gen-
eral series expansion, or an approximation of the effects
of elastic terms from deformations near or at the boun-
daries. There is a number of different boundary condi-
tions that could give such a behavior as this elastic term
indicates. The conceptually simplest case is to have
boundary conditions that force the polarization to point
parallel to the glass plates, see Fig. 2(a). Another quite
different situation with symmetric response is the case of
strongly polar boundary conditions ttt=0 and ~, respec-
tively, as illustrated in Fig. 2(b). The conformation in
our cells is probably somewhat in between, as discussed
in Sec. XIII. (If we would study cells with other bound-
ary conditions, without symmetric response, we should
in most cases expect a very similar behavior to our spe-
cial cells as soon as the electrical forces dominate over
the weak elastic forces, even if we should have move-
ments of disclinations or inelastically changing boundary
conditions. For this general case, it can be interesting to
be able to measure the shape of the elastic potential and
in Sec. XIV we have indicated how. )

Besides boundary conditions, another possible source
to the elastic term may be deformed smectic layers. The
same kind of symmetry arguments should be applicable
for this possibility.
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FIG. 2. Two cases giving elastic equilibrium angle ~/2: (a)
Uniform orientation of the polarization between the electrodes,
boundary conditions Pt =$2 ——m /2 and (b) strongly polar
boundary conditions, boundary conditions pi=0, $2 rr. In-—
this case P will represent the average direction of the polariza-
tion. For zero electric field we get P=vr/2. Compare this
figure with Fig. 8.
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III. SOLUTION TO THE DIFFERENTIAL
EQUATION

The left-hand side of Eq. (1) can be rewritten as

Nsin( P——$0),
where

X = [(PE) +K ]' and singo=K/cV .

(2)

Equation (1) is identical to the equation for an over-
damped pendulum with the equilibrium angle Po,

a. sin(P —$0)= —P, (4)

with

K =N/y .

The electric current due to the polarization reversal is
equal to the time derivative of the polarization charge
times the electrode area 3,

I = A (P cosP) = —APP sing .
dt

By use of Eq. (4), we get the alternative expression

I = AP~ sing sin(P —Po) . (7)

The benefit of this simple model is that there is an ana-
lytic solution to the differential equation (4). We assume
that P, E, and K are positive, and look for solutions
where P is starting in the second quadrant and ending
up in the first. A particularly simple solution is obtained
if we define to as the time when P takes the value
Po+w/2. Then by separation of variables and integra-
tion we obtain

~(to —t) =ln tan[(P —Po)/2] .

This can be inverted to give the solution to our
difterential equation,

sin(P —P )0=1/c osh[~(t —to)] .

IV. CHARACTERISTIC FREQUENCY

There are several interesting things with this solution.
First we observe that there is a characteristic time 1/~

A simple torque balance (for a unit volume) then gives

P—E sinP+K cosP=y$

where P is the ferroelectric polarization, E is the applied
electric field, K is an effective elastic constant, and y is a
rotational viscosity. The elastic constant K should be
dependent on the thickness d of the sample. If the elas-
ticity has its origin in elastic boundary conditions or in
boundary layers of constant thickness (independent of d),
K should be proportional to d ', but if elasticity stems
from boundary layers that take a fix proportion of the
sample thickness, K instead should be proportional to
d . A study of K as function of the sample thickness
could thus tell us something about the nature of the
boundary condition.

that together with P~ completely describes the dynamic
behavior. When the voltage decreases to zero, ~ will ap-
proach the finite value

~p ——K/y . (10)

This frequency can be determined by measuring K and y
at finite voltages. It should depend both on the material
used and (via K) on the sample thickness. We will see
later that this parameter also will show up in the dielec-
tric response of the sample.

V. SINGULAR BEHAVIOR
WITHOUT ELASTIC RESTORING FORCE

Next we note the singular behavior for the case K =0.
Then also Po is zero, and we will get an unstable equilib-
rium position for P equal to ~ An .initial value ~—5
will give a polarization reversal time that increases loga-
rithmically with 1/6. In reality we always have finite re-
versal times, and in order to get a theory that also works
in practice, we must thus include the strongest factor
that disturbs the perfect alignment P=~, even if that
factor is much smaller than electric torques. We have
considered the elastic forces from the boundaries to be
this strongest factor. Another possible candidate would
be destabilizing Aexoelectric effects, causing field-

dependent boundary conditions. We postpone the dis-
cussion about this possibility to another occasion. In a

paper on the problem of switching bistable ferroelectric
cells, Schiller has proposed fluctuations as a source of
misalignment causing finite reversal times. We doubt
that it in reality is possible to get such a perfect orienta-
tion that the fluctuations dominate over the static defor-
mations caused by imperfections in the boundary condi-
tions. Evidently, the divergent dependence on 6 makes
the polarization reversal method very sensitive to the
configuration of the liquid crystal, and suitable for the
study of boundary conditions.

One way of getting around the divergency problem
without introducing an elastic force would be to insert
some arbitrarily chosen nonzero initial angle Po to get
the solution. This method is not good, since it does not
tell us how to choose Po, and besides that, the method
will only work for the first half-period of applied voltage.

VI. METHOD FOR THE EVALUATION
OF MEASURED POLARIZATION REVERSAL CURVES

Knowledge of the analytical shape of the ideal polar-
ization reversal curve gives us alternative ways to evalu-
ate polarization, as well as viscosity and elastic parame-
ters for experimental samples. To begin with we can
measure the height of the current reversal peak (I „), .

the time between the voltage reversal and the current
peak (r, ), and the time for the current to decay from the
peak value to half the peak value (~+). Sometimes we
also can measure the time for the current to increase
from half the peak value to the peak value (~ ). Figure
3 illustrates these quantities. According to our model,
the expressions for them are

I,„=APlr cos (Po/2),
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ar, = ln tan[(P; —(ho) /2]
—ln tan(vr/4 —Po/4),

Kr = ln tan( vr/4 Po—/4)

—ln tan[sr/4 P—o/4 —arccos[sin (Po/-)]/4I

(13)

=lntan[m/4 —$0/4+arccos[sin ((to/2)]/4)
—ln tan(~/4 —Po/4), (14)

where P, is the initial value of (t, at the time when the
wave is of low frequency, we may assume the angle P to
have reached its equilibrium value in the preceeding
half-period, hence

will be higher than half the peak value immediately on
voltage reversal, and it is then impossible to measure ~
In that case we form the experimental quantity ~, /~+.
According to our model this should only depend on Po,
and thus the experimental value can be used to get an es-
timate of (to. With this estimate, ~ can be calculated
from the measurement of ~+. Even this evaluation
scheme breaks down if $0 is greater than 60'. In this
case there is no current maximum, instead the current
will decrease monotonically with time.

When $0 and ~ have been evaluated, the polarization
is calculated from the value of I,„,using Eq. (11). The
quotient between K and PE is also easily extracted from
the value of $0,

IC/PE =tang() .
(t =~—4o. (15)

The most favorable situation for evaluation of experi-
ments is when the sum (r +r+) is measurable. Then
we directly estimate ~ from the relation

Finally, y can be estimated from the relation

yw 1

PE cosP„
(20)

ir(r +w+ ) =In(3+ &8)= 1.762 75 . (16)

This relation follows from (13) and (14) and holds in-
dependently of the value of $0. The sum (r +r+) can
be measured with much smaller experimental error than
the individual values ~ and ~+, since the measurement
of this sum does not require the determination of the ex-
act position of the current peak. The position of the
current peak should be more sensitive to nonuniformities
in the sample than the full half-width (r +r+). With
the estimate of ~, we can calculate ~~, from the mea-
sured value of r, . If P, and $0 are related according to
Eq. (15), the expression (12) can be inverted to give the
value of P„,

P (P2 2P+2)l/2

The relevant functions of (to are tabulated in Table I and
some calculated current wave forms for different values
of (to are shown in Fig. 4.

One of the advantages with the evaluation method
presented here is that it permits estimates of the polar-
ization even in cases where it is not possible to recover
the nice full reversal current curve. The evaluation
scheme is quite simple and fast. Moreover, we can ex-
tract additional important physical information out of
the measurement, viz. , numerical values for the rotation-
al viscosity and for one effective elastic constant. How-
ever, since the theory behind the evaluation method
simplifies matters compared with the real situation, we
should compare the predicted and the observed behavior
and also discuss the limits of the method.

where

p= exp(~r, ) . (18)

If $0 is greater than approximately 30', the current

VII. COMPARISON WITH EXPERIMENTS

To check the model we have reevaluated a set of al-
ready published measurements on the substance

~max

T t r r

100 500 1000 t (ps)
FIG. 3. A typical measured polarization reversal curve. First comes the fast exponential charging of the capacitor and then the

polarization peak on top of an almost constant contribution from ionic conductance. The primary measurable quantities are indi-
cated.
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TABLE I. Parameters of the current bump as functions of Po.

0

(degrees)

0.000 01
0.0001
0.001
0.01
0.1

1

2
5

10
15
20
25
30
35
40
45
50
55
60

K7s

15.561
13.259
10.956
8.6535
6.3517
4.0569
3.3721
2.4799
1.8228
1.4482
1.1861
0.982 83
0.814 15
0.666 67
0.531 80
0.403 20
0.275 45
0.143 15
0

7, /7+

17.576
14.963
12.433
9.8179
7.2036
4.5841
3.7949
2.7572
1.9869
1.5485
1.2449
1.0132
0.824 92
0.664 42
0.521 71
0.389 65
0.262 42
0.134 55
0

K7+

0.881 37
0.881 37
0.881 38
0.881 41
0.881 74
0.884 99
0.888 60
0.899 43
0.91741
0.935 22
0.952 80
0.970 06
0.986 94
1.0034
1.0193
1.0348
1.0496
1.0639
1.0776

I,„/APK

1.0000
1.0000
1.0000
1.0000
1.0000
0.999 92
0.999 70
0.998 10
0.992 40
0.982 96
0.969 85
0.953 15
0.933 01
0.909 58
0.883 02
0.853 55
0.821 39
0.786 79
0.75

K /PE

1.75 &&
10-'

1.75&&10 '
1.75 X 10-'
1.75 &&

10-'
1.75 ~ 10-'
0.017 455
0.034 921
0.087 489
0.176 327
0.267 949
0.363 970
0.466 308
0.577 350
0.700 207
0.839 100
1

1 ~ 191 75
1.428 15
1.732 05

y K/PE

1.0000
1.0000
1.0000
1.0000
1.0000
1.0002
1.0006
1.0038
1.0154
1.0353
1.0642
1.1034
1.1547
1.2208
1.3054
1.4142
1.5557
1.7434
2

MBRA-8, made for varying voltages at the constant
temperature 33.0 'C. For this substance, well-shaped
current peaks are normally obtained, and there is good
separation between the various current contributions.
This makes it possible to compare the present evaluation
method and the method of numerical integration used in
the previous work. The reevaluation was enabled by the
fact that previous voltage and current curves had been
measured using a memory oscilloscope with an 8-bit
analog-to-digital converter and then stored into a com-
puter memory. In Fig. 5 one of the previous experimen-

tal curves is shown together with the new theoretical
curve from the model.

The result of the reevaluation for various voltages is
shown in Table II. For the lowest voltages applied, the
current signal was too low to give good resolution of
data, and these values are included here only to give a
trend indication. Moreover, it was not possible to obtain
any reliable value of 7 for the two lowest voltages, so
here Po had to be estimated from the knowledge of
7,, /7+, which increases the uncertainties. The following
can be concluded from this reevaluation.

I/APK
1- g, =0.01

0.5-

0 5 10
FIG. 4. Calculated current vs time for different values of the equilibrium angle P~ i0.01', 1', 10', 30', and 60') for square-wave

switching. Both variables are multiplied by constants to make them dimensionless.
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I

(pA)

g 00 500 P PPP t (ps)
FIG. 5. Polarization reversal current curve for MBRA-8. One experimental curve (dots) and one theoretical from the model

(solid).

There is very good agreement between the values of
the polarization obtained using the model and using nu-
merical integration. The variation in the new polariza-
tion values is less than or similar to the variation in the
values from numerical integration. Finally, using our
model we get a good estimate of the value of the polar-
ization even at low voltages, where the switching is in-
complete and the numerical integration gives too low
values.

The behavior of MBRA-8 seems so far to be quite
representative for most ferroelectric substances although
the magnitudes of the material parameters naturally
varies widely.

VIII. THE DEPENDENCY ON INITIAL CONDITIONS

The most rapid but also crudest way of estimating the
rotational viscosity y is to use dimensional analysis
without considering the switching mechanism. If ~ is
some parameter characterizing the time required for
switching, the following approximate relation can be de-
rived,

w=y/PE . (21)

In dimensional analysis the correct numerical factor is
lost, but the relation can anyway be interpreted to imply
that the switching time should be proportional to E

TABLE II. Parameters obtained for MBRA-8 at 33.0'C, varying voltages, electrode area 0.155
2cm, and thickness 2 pm. Values in parentheses are only included to give trend indications.

From present model
From numerical

integration
Applied
voltage

(V)

0.94
1.25
2.19
3.28
4.06
5.05
5.83
6.77
7.70
8.48
8.95
9.58

4o
(degrees)

(57)
(2s)
21.5
10.8
8.9
6.4
5.6
5.8
5. 1

5.0
4.8
4.7

K
{Nm )

{24)
(6.8)
14.9
9.4

10.6
9.2
9.5

1 1.8
1 1.7
12.7
12.8
13.4

y'
(Nsm )

(0.028)
(0.009)
0.0172
0.0127
0.0152
0.0149
0.0157
0.0174
0.0177
0.0183
0.0182
0.0183

Kp

(~ )

(857)
(755)
866
740
697
617
605
678
661
694
703
732

pb

(pC m ')

(33.3)
(23.s)
34.5
30.0
33.3
32.6
33 ~ 3
34.7
34.2
34.5
34.4
34.1

I'
(pC m )-

11.7
19.9
26.0
29.5
32.0
33.4
33.9
35 ~ 5
35.1

34.9
34.9
33.6

Average of extreme
values excluding
the first four:
Max. deviation

1 1.3

2. 1

0.0166

0.0017

669 33.6 33.8

1.8

'Multiplication of the viscosity values by a factor of 1000 gives corresponding values in cP.
b —2pCm should be the correct Si unit for the spontaneous polarization. To get values expressed in
the more commonly used unit nC/cm', divide the tabulated values by 10.
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of different polarization directions will give a current
curve that is essentially a weighted mean of different
current wave forms, where each direction of polarization
contributes according to its part of the volume of the
sample. This should give a broader peak than for a very
well aligned sample, even if elastic forces may reduce the
effect. (If the switching starts at one place, elasticity
tends to propagate this behavior to the whole sample. )

The broader peak yields values of the viscosity y and
also of the elastic constant K that are too high. Also
there may be some boundary layers near the electrodes
and around line and point defects, where the molecules
do not participate at all in the switching of the polariza-
tion. The effective thickness of these layers should be in-
versely proportional to the strength of the applied elec-
tric field. The corresponding volumes should be propor-
tional to 1/E, 1/E, or 1/E for planar surfaces, line
defects, and point defects, respectively. Clearly, the con-
tribution from planar surfaces will dominate if we
choose the voltage high enough. If we want to study
this effect, we should measure the polarization for
different voltages, and plot it as a function of 1/V. Ex-
trapolation to 1/V =0 could then be used to cancel the
effects of the boundary layers. From Table II, we see,
however, that if surface layers give a 1/V dependence of
the polarization values, the effect in this case is smaller
than the experimental errors.

When we leave the low-voltage range, the anisotropy
of the dielectric constant will become important. We
will get another term from the dielectric torque into our
differential equation, and we will also get an extra con-
tribution to the current from the change in capacitance
during switching. We cannot, however, substitute the
elastic term in our equation with the dielectric anisotro-
py, since the elastic force is most important in the low-
voltage limit, and the dielectric contribution is most im-
portant in the high-voltage range. The dielectric term
will not help against the singular behavior mentioned in
Sec. V. The complete picture should of course contain
both terms, but in the high-voltage range also other
effects could enter.

XI. EXCITATION BY SINUSOIDAL VOLTAGE

actual value of the electric field inserted. In this limit
there is thus no hysteresis. To first order in y, we will
get

and

K yKP EE
[(pE)2+K211/2 [(pE)2+K 2]2

(22)

2Eoco +0(y ) (26)

if we choose to have the electric field strength on the x
axis for the hysteresis loop. If instead PEo is much
bigger than K, the width instead becomes

' I /3
yK~Eo

2
P2 (27)

See Fig. 7 for an illustration of these quantities.
Secondly, we look at the limit of a sufficiently small

applied field [now we use the complex notation
E =Eoexp(idiot)) with a corresponding small deformation
of P. Using Eqs. (I) and (4), we can then easily calculate
the contribution from the movement of the permanent
dipoles to the current. If we compare the current with

K PE +O( ') (23)
[(PE)2+K2~1/2 [(pE)2+K 2~2

The order function 0 (y ) is here used to indicate that
omitted terms are comparable to y or less. For an ap-
plied electric field of

E =Eosin(cot ),
we will then get the current

AP K
coEocos(cot )

N

yap K co Eosin(cot)cos (cot)
+ +0 (y') . (2&)

N

The width of the hysteresis loop depends on the rela-
tion between PEo and K. For small values of PE, Eq.
(23) gives the width

It is intersting to apply our model to other wave
forms, and we will now discuss the case of sinusoidal
shape. (The case of triangular shape is easy to solve nu-
merically, but difficult to solve analytically, and is hence
not so suitable for discussion. ) Here we must be more
cautious in using the theory on real cells, since we can
expect surface irregularities and wall motions to play a
more important role for sinusoidal than for square-wave
voltages, since the voltage is then increased much more
slowly. It is also more difficult to handle the contribu-
tions of electrolytic origin. (The same applies for the tri-
angular voltage. ) To get tractable equations we can go
to the three different limits where we assume that one of
the three different terms in the differential equation is
small compared to the others.

First we can look at the static limit, where the viscosi-
ty plays a negligible part. There, to zeroth order in y, P
becomes equal to Po, defined by Eq. (3) above, with the

I
',

(q (
""('j

FIG. 7. Interpretation of the widths given by Eqs. (26) and
(27). For small applied field, we get an elliptic figure in an
E-D diagram. The width of this ellipse along the E axis is
given by Eq. (26). If we increase the amplitude of the field, we
get a saturated hysteresis loop, with width given by Eq. (27).
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the current through an ordinary plate capacitor, we get
an effective (absolute) contribution that adds to the usual
dielectric constant for the liquid crystal without spon-
taneous polarization but in the same geometrical
configuration,

p 2 Ko+. l Q)

~(:hiral 2 2
KO+ Cc)

(28)

where ~p is still defined by Eq. (10). In this context Kp is
the cutoff' frequency for excitation by low-amplitude
voltage. Below this frequency, the amplitude of the
response is dominated by elasticity, and the cell behaves
like a capacitor, while for frequencies higher than ~o the
viscosity limits the amplitude, and the electric response
is similar to a resistor. The width of the hysteresis loop
becomes very similar to expression (26),

2Eptp(ap+tp ).
It is not possible to extract the amplitude of the polar-

ization from small-field measurements alone; we can only
extract the proportions between P, y, and K. In the
small-field limit, the assumption of a constant P through
the sample may be too rough, and a more careful calcu-
lation requires a detailed knowledge about the P values
at various points in the cell.

The third limit to study is the case of a small elastic
constant, which is the same as the high-frequency limit
of the case when the applied field is not small. We can
then assume that the only effect of the elastic term is to
keep the average value of P equal to tt /2. The
differential equation then has the analytic solution

PEpcos(tot )
(30)P =2 arctan exp

and the current becomes

AP
Epsin(cpt )

~Ep cos(tpt )cosh2
y

(31)

XII. THE STATIC PERMITTIVITY

The sinusoidal case gives us the frequency dependence
of e,h;„„asexpressed by Eq. (28). In the zero-frequency
limit this yields

2 (32)

Except for the quadratic dependence on the spontaneous
polarization, this displays how e,h;„~ increases with in-

If we increase the voltage from the small-amplitude lirn-

it, the current response curve will no longer be strictly
sinusoidal; it will instead get a more triangular shape.
Thus we will generate the third harmonics, at thrice the
applied frequency. This could eventually be used for the
detection of the chiral smectic-C phase. In that way we
can get an electric response free of contributions from
the ordinary capacitance and resistance of the cell; how-
ever, the ionic current might also generate some third
harmonics.

creasing "weakness" ( I /K) of the medium. With
P =3.4~10 Cm and K=10 Nm from Table II
we obtain a permittivity value of about 10 ' . F/m or a
relative dielectric constant of about 11 ~ We are not
aware of any dielectric measurements on MBRA-8, but
an orientational contribution from the spontaneous po-
larization of this order of magnitude seems very reason-
able. The permittivity should be dependent on cell
geometry (via K).

XIII. POSSIBLE BOUNDARY CONDITIONS
OF OUR CELLS

In the cells used for our polarization measurements, it
is dificult to specify in the experimental situation what
the boundary conditions really are. We can, however,
give three arguments that point in the direction of polar
boundary conditions.

First, in the measuring cells we use a thin protective
layer of orthogonally evaporated SiO on the electrodes
(to avoid electric breakdown). We thus have no prefer-
ential direction defined in the boundary plane. We then
have both "layer normal symmetry" and "in-layer sym-
metry" of the boundary conditions, as defined in Ref. 1.
That means that we can exchange the boundary plates
either by rotation 180' around the smectic normal or by
rotation 180 about an axis parallel to the smeetie layers,
without aff'ecting the boundary conditions. If the bound-
ary conditions are nondegenerate, the only possible
boundary condition is with the polarization orthogonal
to the boundaries, pointing either into or out from the
liquid crystal in the same way on both plates (polar
boundary conditions). We should thus roughly have the
situation sketched in Fig. 2(b).

Secondly, the electrical measurements reveal a
response that is symmetric with respect to the polarity
of the applied electric field. This together with the ab-
sence of voltage thresholds is consistent with polar
boundary conditions. With polar boundary conditions
an arbitrarily small field should cause elastic deforma-
tion.

Finally, in the absence of the electric field, our cells
mostly do not give extinction between crossed polarizers.
This behavior can be expected from polar boundary con-
ditions (and from most other nonuniform conforma-
tions). On the other hand, uniform orientation through
the cell from the lower boundary to the upper boundary
should always give some good extinction position. If we
do not find any such position, several alternative ex-
planations of the behavior can be ruled out.

If, however, the elasticity of the sample can affect the
boundary conditions, the picture could be slightly
modified. The conformation of the liquid crystal cannot
be symmetric with respect to 180' rotation around the
smectic normal if there are polar boundary conditions,
so this symmetry of the boundary condition will be spon-
taneously broken. The elastic energy of the sample will
decrease if the difT'erence in angle between the two
boundary conditions is diminished from 180 to a lower
value, so that the polarization will display oblique angles
at the boundaries. (This could go very well along with a
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tilting of the smectic layers. ) The self-energy of the
spontaneous polarization could cause the elastic defor-
mation to be confined to thin boundary layers, '' and
this could enhance the effect of elasticity. If we now try
to sum up all the arguments, we should in our cells have
the situation displayed in Fig. 8; unfortunately, we can-
not give any numerical comparison between the strength
of the boundary conditions and the bulk elasticity of the
liquid crystal.

If the conclusion about polar boundary conditions is
correct, cells with this surface treatment are not useful
for bistable switching by electric fields, at least as long as
we do not include inelastic changes at the electrodes by
the electric field. This agrees with our experimental ex-
perience: To get good bistability other surface treat-
ments should be used.

FIG. 8. The most probable conformation of our cells in the
absence of applied electric field. The arrows point in the direc-
tion of the spontaneous polarization. The deformations are
probably confined to two boundary layers, and the elastic
forces will to some degree force the boundary conditions to be
oblique and not perfectly polar.

XIV. MEASURING THE SHAPE
OF THE POTENTIAL

The choice of the shape of the elastic potential seems
to be a source of confusion to several people to whom
we have presented this model, and a quadratic term in
cosP has often been suggested. In a quadratic term, the
dielectric response could be included for square-wave
switching. The main reasons for not using a quadratic
potential is that it would not reproduce the experimental
behavior in our samples, and it does not remove the
singular behavior that we have discussed in Sec. V.
However, it would be useful to have a method to mea-
sure the shape of the elastic potential, since this would
make the evaluation of different surface treatments
easier. Here we want to show that such a measurement
is possible. Suppose that we know the strength of the
polarization and the thickness of our sample, and let us
assume as earlier that we can use one single value of P to
represent the direction of the spontaneous polarization.
Let the elastic force be the function K(P), and assume
that the viscosity also is a function y(P). We then get
the differential equation

constant. From this we know the value of P as a func-
tion of time, since

g (t) = AP cos$(t) . (35)
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and it should not be difficult to find the right integration

By measuring the current I as a function of time, the
charge on the capacitor plates is easily calculated as
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