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Soap-bubble growth
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A simple theory describing the dynamics of two-dimensional arrays of soap bubbles is proposed,
and compared with a recent experiment. The average area of bubbles scales linearly at late
times. Agreement with experiment is satisfactory, although not conclusive.

A recent experiment' provides motivation to investigate
the dynamics of two-dimensional soap-bubble arrays.
The walls of the bubbles are layers of soap that always
meet at vertices in threes, forming angles of 120, as
shown in Fig. 1. Glazier, Gross, and Stavans' create bub-
bles between two closely spaced glass plates, and watch
them grow for periods up to several weeks. They measure
the average area of bubbles as a function of time, and find
that after initial transients and independent of initial con-
ditions, the average area of bubbles increases as t . This
result is particularly striking, since a very simple dimen-
sional argument indicates that the exponent should be 1.
From thermodynamics follows von Neumann's law, that
the area of every bubble increases or decreases as

A =tc(n —6),
where n is the number of sides of a bubble, and x is a
time-independent constant. Three-, four-, and five-sided
bubbles shrink; those with more than seven sides grow.
Two-sided bubbles are never seen. Since every member of
the ensemble grows linearly, it is difficult to see how the
ensemble as a whole could violate this rule at long times.
I will propose here a simple theory that attempts to mimic
the dynamics of these bubbles fairly realistically. The
theory scales linearly at late times. However, its agree-

ment with experiment is sufficiently good that it is unclear
whether new and complicated correlations need to be in-
cluded to make the theory even qualitatively correct, or
whether the remaining discrepancies are simply due to
finite-size effects in the experiment.

One understands only half the dynamics of bubbles
from von Neumann's law. ln addition, one must know
how a given bubble can alter its number of sides. This
may happen in two ways. First, adjacent bubbles may ex-
change sides, as illustrated in Fig. 2(a). This process is
observed experimentally to be so rare that the theory will
neglect it. Second, a bubble may find itself next to a
three-, four-, or five-sided bubble that shrinks down to
zero area, and disappears. When a three-sided bubble
disappears, its three neighbors lose a side. When a four-
sided bubble disappears, two of its neighbors lose a side,
and when a five-sided bubble disappears, two of its neigh-
bors lose a side, and one of them gains a side. The last
case is illustrated in Fig. 2(b). All of this dynamics is
consistent with the geometrical constraint that the aver-
age number of sides of the bubbles is six, which follows
from Euler's theorem, and the fact that every vertex
branches into exactly three sides.

Beenakker has recently proposed a very simple way to
model this system. Let us suppose that we are told the
numbers of bubbles in our system of a given area, but not
told which bubbles have how many sides. Then there is a
unique way to assign numbers of sides to the bubbles
which is consistent with the constraint that the average
number of sides be six, and also minimizes the total sur-
face area of the cells. Beenakker assumes that soap bub-
bles always adopt this energetically favorable config-
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FIG. 1. This sketch shows actual cells from the experiment of
Ref. 1. The experiment begins with more than 7000 cells.

FIG. 2. In (a) is a sketch of how nearby bubbles exchange
sides, and in (b) is a sketch of what happens when a five-sided
bubble shrinks and disappears.
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uration, and is able to obtain simple equations for their
dynamics. One objection to this approach is that the bub-
bles are highly constrained, and it is not clear that they
should easily succeed in obeying energetic demands. One
may observe experimental configurations in which the as-
sumption is badly violated. A second objection is that the
solutions of Beenakker's equations disagree with experi-
ment in a particularly troubling way. At long times he
finds that a disordered array of bubbles condenses into a
nearly perfect hexagonal array, which then becomes disor-
dered again in a peculiar never-ending cycle. No hint of
this behavior is seen experimentally, although the new ex-
periments have, according to Beenakker's graphs, pro-
ceeded long enough for the oscillation to occur.

Let us proceed to write some simple equations for
soap-bubble development, keeping as much realistic detail
as seems feasible. We begin with the distribution function
g(A, n, t), which gives the number of bubbles that have an
area A and number of sides n at time t. Von Neumann's

I

law is expressed by
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g(A, n, r) = — x.(n —6)g(A, n, r) . (2)

Now we must add terms which account for the way that
bubbles change their numbers of sides. When a four-sided
bubble disappears, two of its neighbors lose sides. Which
ones? The ones which join onto the four-sided bubble
with sides of least length. As we are not keeping track of
the lengths of sides for all bubbles, we will instead choose
to eliminate sides from the two neighbors which have the
smallest areas. So when a four-sided bubble shrinks to
zero size, we will pick four bubbles at random from the
available ensemble, find the two of those with the smallest
area, and remove a side from each of them. When a five-
sided bubble disappears, the bubble to gain a side will be
the neighbor with the largest area. Obviously, many spa-
tial correlations are being neglected with this approach.
The equation now looks like this:

ar
'

aA
g(A, n) = — x(n —6)g(A, n)+u(A) g(A, n —I) —[u( A) +d( A)] g(—A, n)+d(A) g(A, n+ I) . (3)

S S S

Here S gives the total number of sides of all bubbles in the
system. The reason for the weighting factor n/S is that if
one chooses a bubble's neighbor at random, an n-sided
bubble has n/S chances of being chosen. The rate at
which n-sided bubbles of a given area lose a side is d(A ),
and the rate at which they gain is u(A). The expression
for d(A) is a bit lengthy and will not be recorded in full
here. The five-sided bubbles contribute
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d(A) =lrg(0, 5)5! + [I —p(A)] +p'(A ) p'(A )
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where p(A) gives the probability that when we choose an
edge in the system at random, the bubble it belongs to has
an area greater than A. Three- and four-sided disappear-
ing bubbles make a similar additive contribution to d(A).
The expression for u (A ) is

u(A) =xg(0, 5)5? [I -p(A)]' IO=
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One may perform a simple scaling analysis and find that
the solutions of this equation must have average area in-
creasing as t ' at late times. Numerical solution bears the
analysis out. Results appear in Figs. 3 and 4. The agree-
ment with experiment is not perfect, but plausible. The
slopes of the theoretical curves in Fig. 3 are one to within
1% by the end of the run. Glazier, Gross, and Stavans '

find a best fit of the experimental data to slopes of 0.6, but
only about 100 bubbles are left in the system at the end of
the experimental run, and edge eff'ects, which eventually
will bring the experiment to a halt and the growth ex-
ponent to zero, may be important. In Fig. 4(a) is shown
the average area of bubbles sharing a given number of
sides as a function of numbers of sides. Experimental
bubbles with more than six sides are larger than theory
would predict. Figure 4(b) shows the fraction of bubbles
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FIG. 3. The average area of bubbles is shown as a function of
time. Theory is shown in the solid lines, and data from Ref. 1 in
the remaining symbols. The time axes are scaled by measure-
ments of the constant x appearing in von Neumann's law. In
(a) the theory begins with an initial distribution containing 90%
six-sided bubbles, 10% an even mixture of fives and sevens. Two
experimental runs with a similar initial condition are displayed
as well. In (b) are shown theoretical and experimental runs be-
ginning with 80% six-sided bubbles. The theory is fairly insensi-
tive to details of the initial area distributions; these were chosen
so as to be close to the conditions of the experiments.
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FIG. 4. In (a) is shown the average area of bubbles as a function of their numbers of sides. The experimental bars are from the
data of Ref. 1. They are centered on the measured average area, and the width of the bar indicates the root-mean-square width of the
measured area distribution. Experimental points lie along a line of greater slope than theory. In (b) is shown the theoretical number
of cells (solid line) as a function of numbers of sides, at t =1.9 for the run of Fig. 3(a). This result is compared with the experiment of
Aboav, Ref. 7 (dotted line). The coefficient defined by Aboav, p =g„fdic(n 6) g(A—,n), equals 1.98 for both theory and experi-
ment; Aboav reports this value rather than the time, which makes it difficult to be quite sure that theory and experiment correspond to
exactly the same thing and may explain part of our discrepancy. Aboav has not reached the scaling limit. He sees p2 increase steadily
to a value of 3 in his experiments, and guesses that it may continue increasing. In the present numerical study, pz increases sharply to
5 at t 3.5, and then decreases approximately to 4 by t =10, where it remains.

with various numbers of sides in comparison with data of Aboav. Further analysis of experimental data would allow
more detailed comparison of theory and experiments, but the analysis is very tedious, and has not yet been carried out.
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5There is an obvious alternate choice, in which the bubbles to

lose and gain sides are chosen entirely at random, with no re-
gard to their areas. This version has the advantage of simpli-
city. It has the following disadvantage: When a system of
bubbles begins as a nearly perfect lattice of six-sided cells, it
passes through a stage in which small islands of small six-
sided bubbles are surrounded by larger bubbles of varying
numbers of sides. In experiments, these islands disappear rap-
idly because the small six-sided bubbles almost always are the
ones to lose sides when some neighbor disappears. The effect
is sufficiently striking, that the authors of Ref. 1 make it the
starting point of a phenomenological theory. If bubbles lose
sides without regard to area, then a population of small six-
sided bubbles persists indefinitely. The curves in Fig. 3 are

not much changed. However, the version of the theory
presented in the main text is almost as simple, and more real-
istic. Further progress would involve detailed computations of
bubble dynamics and correlations, and that is hard.

There are some technical complications due to the fact that I
do not consider two-sided bubbles. For n =3, I eliminate the
factor of d(A) multiplying g(A, n) so as not to create any.
Therefore, all terms multiplied by d(A) are divided not by 5
but by S3, the number of sides not contained in three-sided
bubbles. In the numerical work, my array has no room for
bubbles with more than 12 sides. I perform similar adjust-
ments to keep from creating 13-sided bubbles. The equations
are solved using an implicit method such as that described in
W. H. Press er al. , Numerical Recipes (Cambridge Univ.
Press, England, 1986), p. 626. The equations are first scaled
by the average area, so they do not grow off the edge of the
lattice on long runs, and the time step chosen small enough so
that the average number of sides of the bubbles remains six to
any desired accuracy.

7D. A. Aboav, Metallography 13, 43 (1980).


