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Dynamical fluctuations of droplet microemulsions and vesicles
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The hydrodynamic fluctuations of nearly spherical vesicles and rnicroemulsion droplets are con-
sidered. The incompressibility of the enclosed fluid and surfactant or lipid layer imposes a con-
straint of constant droplet volume and area on the fluctuations. These overdamped modes, driven

by bending energy and damped by viscosity of the surrounding fluids, change the shape of the sur-
face and may scatter neutrons or light. A dynamical structure factor S{q,t) is computed and a
first frequency moment at fixed wave number cu,h„(q) obtained. In the limit of a stift' droplet at
fixed "excess area, " a new mode is obtained —an overdamped oscillation among ellipsoidal shapes
about the minimum-energy (usually prolate) shape. Prospects for observing this fluctuation are
discussed.

I. INTRODUCTION

The fluctuations of vesicles of droplet-phase mi-
croemulsions provide a dynamical probe of the bending
stiffness of lipid bilayers and surfactant interfaces.
Though the two systems are separated by several de-
cades in length scale, they are described by very similar
physics. In both cases, there is a convenient separation
of energy scales which allows us to consider the fluctua-
tions at constant volume and area of a "droplet" (nearly
spherical in most cases) controlled only by the bending
energy' of the surface.

Dynamical measurements of droplet microemulsions
(by spin-echo neutron scattering ) and vesicles (by video
microscopy) ' offer a more stringent test of our under-
standing of the bending energy and associated hydro-
dynamics than static measurements alone; in particular,
values for the bending stiffness and spontaneous curva-
ture can be extracted from the time dependence of the
dynamic structure factor S (q, t) as well as from the wave
number dependence.

Any calculation of fluctuations for these systems must
properly take into account the role of area conservation,
so that predicted fluctuations are consistent with the
"excess area" of the droplet. (The excess area is the area
of the droplet beyond that of the sphere of equivalent
volume. ) The area of the droplet is conserved for vesi-
cles (and for microemulsion droplets on time scales short
compared to collision times), so the excess area is an im-
portant parameter in characterizing the shape and al-
lowed fluctuations of the droplet. The fixed excess-area
constraint must be present in dynamic as well as static
calculations, so that the fluctuation-dissipation (FD)
theorem can be satisfied.

In Sec. II we compute the equilibrium fluctuations of
a single vesicle or droplet with fixed excess area. The
area conservation is implemented approximately by a
Lagrange multiplier (so that the average excess area is
some prescribed value). We discuss the stiff' and floppy
limits for a droplet with a given excess area, and the lim-
its of validity of the Lagrange multiplier approach. In

II. STATIC PROPERTIES OF DROPLETS

The fluctuations of nearly spherical droplets enclosed
by surfactant molecules (droplet microemulsions) or lipid
bilayers vesicles) can be understood in terms of a con-
venient separation of energy scales. The energy needed
to compress the fluids inside or outside the drop, or to
change the area per surfactant molecule is often much
larger than the energy needed to bend the interface.
(For rough estimates in terms of characteristic frequen-
cies, see Appendix A. )

Thus we are led to consider the fluctuations of a drop-
let at constant area and volume, with energy given by
the Helfrich expression
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H =(I lr, + 1lr2), H, =2/r, , (2)

where r& and r2 are the principal curvature radii and r,

Sec. III we extend the work of Schneider, Jenkins, and
Webb (SJW) on the dynamics of droplet fluctuations to
the case of nonzero spontaneous curvature (appropriate
for microemulsions) and make the connection to statics
required by the FD theorem, which was unclear in the
SJW treatment.

In Sec. IV we investigate a new "ellipsoidal mode" of
droplets which occurs in the limit of stiff droplets at
fixed excess area. (The possibility of such a mode was
first discussed by Peterson, who considered the bending
energy of various ellipsoidal shapes. ) The mode motion
consists of overdamped oscillations about the minimum-
energy shape (usually a prolate ellipsoid) at fixed area
and volume. We derive a relaxation rate and amplitude
for the mode.

In Sec. V we compute the dynamic structure factor
S(q, t) for droplet microemulsions and show how the
bending constant and spontaneous curvature may be ex-
tracted from the initial decay rate of S(q, t). In Sec. VI
we discuss present and future vesicle experiments, where
the ellipsoidal mode may be observed.
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is the spontaneous radius of curvature. The excess area
of the droplet, defined as the area of the droplet less that
of the sphere of the same volume, is a conserved quanti-
ty which characterizes the fluctuations of the droplet.

In practice, we describe the shape of the droplet by its
deviation from some convenient sphere (e.g. , the
equivalent-volume sphere). We expand the bending en-
ergy, area, and volume of a surface described by
r(A, ) =ro[1+u (A)]r in powers of the deviation from the
sphere to order u [o(u )] as follows:

r(Q)=ro 1+ g u( Yl (II)
I, m

(3)

bE= —g l
ui [1(1+1)(1—1)(l+2)

I, m

—4wl(l +1)+w [4+21(l + I)]]

V= ro(l+uo) +ro g utm
4~ 3 3 2

l)0
(6)

where B is the solid angle, m =r0/r„and
uo ——uoo/(4~)' . [These formulas follow from Ref. 7,
Eqs. (A7) and (AS), except that we do not choose
ro=&r)n ]

We may easily incorporate the constraint of constant
volume to o(u ) by choosing uo to satisfy V=4~ro/3
+o (u ) (as in Ref. 8); this gives

(1+uo) =1— g l
u(m3= 3
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2
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bE = —g ui -'(1+2)(l —1)[l(1+1)—4w +2w'],
I ) 1

(9)

with r0 the equivalent-volume sphere radius.
In such a description, the constraint of constant excess

area is intractable. Equation (8) implies that there is a
constraint on the sum of the amplitudes of the u1

which is dificult to eliminate, as we do not know before-
hand where the excess area will be stored; no one mode
or small subset of modes is known to serve as an area
reservoir for the rest. Hence we employ a Lagrange
multiplier for area, which ensures that the mean excess
area of the fluctuating droplet is equal to some
prescribed value.

The energy is now E'=E —y 3, with y the Lagrange
multiplier; equipartition gives the mean-square fluctua-
tions as

( u&
l

') = [ (1+2)(l —1)
K

X [l (I +1)—4w +2w' —y]] ' . (10)

—16rr~w (1 —w)uo,

A =4vrro(1+uo) +ro g ui [1+1(I+1)/2], (5)
1)0

The mean excess area is then

~=hA/A= kT'i' 2l+I
8~x, ~ l(t +1) 4w+2w —y-

with the dimensionless Lagrange multiplier y =y~20/K.
The upper cutoff l „=r /a, a being a microscopic
length (otherwise the sum is logarithmically divergent).

We now illustrate the action of the Lagrange multi-
plier y with two limiting cases of stiffness at fixed excess
area. In the limit of a floppy membrane, the fluctuation
amplitudes would become unbounded if y were zero,
thus constantly exceeding the available excess area; the
multiplier must penalize these excursions. As K~O, the
bending energy becomes irrelevant for the fluctuation
amplitudes, and each mode contributes equally to the ex-
cess area.

In the opposite limit of a stiff membrane, the fluctua-
tions would vanish if y were zero; some mode must be
forced to accept the excess area. It is clear that in this
zero-temperature limit, the lowest mode of the droplet
(I =2) will develop a large amplitude. The droplet will
become an ellipsoid, the shape of lowest energy con-
sistent with the required excess area. Within our expan-
sion, this is manifested in a diverging amplitude for the
l =2 modes.

In this limit, the lowest mode serves as an area reser-
voir for the higher modes, and the apparent tension
takes the value which stabilizes the zero-temperature
shape (y =6m/r for the case of 0, =0). The Lagrange
multiplier description of area conservation continues to
work for the fluctuations of the higher modes, with the
lowest mode treated separately. The description in
terms of y suffers only when the lowest mode has a large
share of the excess area, but not enough to be considered
a reservoir for the other modes.

III. HYDRODYNAMICS OF THE DROPLET

The dynamical fluctuations of the droplet are assumed
to take place at an ultralow Reynolds number, where
both the convective and inertial terms in the Navier-
Stokes (NS) equations can be neglected. In this limit (see
Appendix A for a rough estimate of the validity of this
approximation), the deterministic time evolution of the
shape of the droplet is described by "creeping flow".

The content of the deterministic dynamics, first
worked out by Schneider, Jenkins, and Webb (SJW),
can be summarized as follows. Given a shape of the sur-
face enclosing the droplet, bending forces on the surface
can be computed. (We have extended SJW to the case of
nonzero spontaneous curvature, which gives rise to new
terms in the force; for details, refer to Appendix B.)
Since the inertial terms in the NS equations have been
dropped, forces must balance on the surface, hence the
viscous stresses on the surface are known. From this
and the no-slip boundary conditions on the incompressi-
ble flow of the fluids inside and outside of the drop, the
flow fields can be calculated. From the normal com-
ponent of the fluid velocities, the time rate of change of
the droplet shape is determined.

The dynamical calculation is performed in a spherical
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(u(~(t)u( (0)) =5((5 (
I

u( I )exp( —o(( t) . (12)

The long-time average of the fluctuating dynamics
gives the same mean-square amplitudes of the fluctua-
tions as the static calculation if the random forces are
chosen correctly and the same free energy is used; this is
the content of the FD theorem. This means that we
must choose the y appearing in the dynamics to be the
same as the y which gave the correct mean excess area
in the static calculation. Our description of the dynami-
cal fluctuations of the droplet will be no worse than our
equilibrium description.

The results of our generalization of the SJW calcula-
tion of the relaxational frequencies are (with H, &0; see
Appendix B)

1(1+1)—(y+4w —2w')

gr Z (I)

(21+ 1 )(21 +21 —1)
1(I + 1)(1+2)(l—1)

(13)

(14)

It is interesting to look at the two limits of ~~0 and
x~oa which we considered in the equilibrium discus-
sion. In the floppy limit, the relaxation rate of the
modes becomes independent of the stiffness,

max1

co(—,N = g (21+1) .
Nz (I )

In the stiff limit, the relaxation rate of the lowest
(I =2) mode vanishes; the numerator of Eq. (13) is the

(15)

geometry, using the Lamb solution' for obtaining the
fluid velocity fields from the surface stresses. This
represents the lowest order in a systematic expansion in
deviations from the sphere; since the velocities are all
o (u), the shape can be taken to be spherical.

The incompressibility of the fluid is enforced (within
this approximation for the flow fields) by using a spatial-
ly varying pressure field, which cancels any compression-
al stresses set up by the fluid flow. The local incompres-
sibility of the surface is enforced to lowest order in the
displacements with a spatially varying "surface pres-
sure" y(Q). This surface pressure is a Lagrange multi-
plier for local conservation of surface area just as the
pressure is a Lagrange multiplier for local conservation
of fluid volume.

Within the deterministic calculation of surface
motion, the pressure p(r) and surface pressure y(Q)
have physical meaning as that which would be measured
during the motion. The spatially varying parts of p and

y are purely functions of the distorted shape, since in
the static limit global constraints on area and volume are
sufficient.

The structure of the deterministic equations guaran-
tees that all deviations from the sphere will relax in
some finite time. The area conservation has not been
(and cannot easily be) implemented to o(u( ), so that
the long-time limit of the dynamics is a sphere, and not
the lowest-energy ellipsoidal shape. However, our intent
is to use the deterministic dynamics together with the
fluctuation-dissipation theorem to obtain autocorrelation
functions, i.e.,

IV. ELLIPSOIDAL SHAPE MODES

In the limit of stiff membranes and fixed excess area, a
new mode of the system, which cannot be defined in
terms of deviations from a sphere, becomes well defined.
As we have seen, all I =2 distortions of the sphere have
the same energy to o(u ); in particular, all ellipsoids,
whether oblate or prolate or nonaxisymmetric, have the
same bending energy to o (u ) at fixed volume and excess
area. Terms of o (u ) break this symmetry, as first
pointed out by Deuling and Helfrich. " If we expand to
o(u ), and specialize to I =2 distortions only, we find
(see Appendix C)

bE = —(rC(w)[ ao+3( —,
' )' (a (a z+a ~az)

+3ao
I
ai —6ao

I az
I ]

where

(16)

]/2

u(0)= pa Yz (0), C(w)= —— (1+Sw/3) .
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The number of parameters in the family of shapes
available to us can be counted as follows. The general
I = 2 distortion has ten parameters; requiring r (0) to be
real gives five constraints, choosing coordinates along
the principal axes of the shape gives three constraints,
and fixing the excess area gives one final constraint (the
mean radius can be adjusted to fix the volume). Only
one degree of freedom remains. It can be thought of as
the "prolateness" of the ellipsoid; varying it takes us
from prolate through nonaxisymmetric ellipsoids to an
oblate ellipsoid.

We show in Appendix C that shapes corresponding to
prolate ellipsoids have lower energy for C(w) &0, and
oblate ellipsoids are favored for C(w) &0. Small, over-
damped oscillations about the prolate shape are a new

denominator of Eq. (10). The physical reason for oiz~O
is that the restoring force from the fictitious energy
E'=E —y 3 vanishes, so that the mean amplitude of the
mode will be large enough to account for almost all of
the excess area.

In principle, the various spherical-harmonic modes of
the droplet could be dephased by thermally occurring
random rotations of the droplet. We shall show that
this effect can be neglected if ~&kT. We may estimate
the effect of rotational diffusion by assuming the droplet
rotates as a solid sphere, giving a drag coefficient
(r = y((ai) of y(( ——8~rlr o. Using the fluctuation-
dissipation theorem to give the strength of the random
torques acting on the droplet, we find the ensemble-
averaged rotation operator is (O(t) ) =exp[ —(kT/
y(()L t]. That is, distortions u( of the droplet are angu-
larly dephased at a rate toe(l)=kTI(l +1)/(8vri)ro). For
large l this is clearly smaller than the bending-driven re-
laxation of Eq. (13); we compare the two rates for the
I =2 mode to find, for x of a few times kT (and
w =y=O for simplicity),

kT 55
~0™bend

8vrv 24
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an equilibrium shape given by

(eq)
( g/2) /" a a(eq) +& (17)

a relaxation rate of

(1+5w/3!(2b, /5)'
343 gr'

and a mean-square amplitude of

( i) kT
12(2~6)'~')rC(w)

(18)

The mode can be visualized as follows. Push in on the
long axis (z) of a prolate ellipsoid (American football)
and pull out a (arbitrary; say, x ) short axis. A nonax-
isymmetric shape is obtained; if the process is continued,
the pushed and pulled axes become of equal length, giv-
ing an oblate shape with symmetry axis y.

Note that the mode frequency depends on the excess
area and vanishes in the limit of zero excess area,
becoming in some sense a Goldstone mode; this is
reasonable in light of the energy difference involved.
Such a Goldstone mode was first discussed by Peterson,
who considered the bending energy in precisely this lim-
it. As 6~0, the mode becomes in a sense trivial—
oblate, prolate, and spherical are indistinguishable, and
the mode becomes invisible.

The expression for the mean-square amplitude of the
mode is based on the expansion of the prolate minimum
in the bending energy; this procedure breaks down in the
zero-excess-area limit. Then we expect the ellipsoid to
be found with equal probability in any ellipsoidal
configuration.

A simple criterion for observing the ellipsoidal mode
can be obtained by comparing the previously calculated
relaxation rate for the l =2 mode with the ellipsoidal
mode decay rate; if the l =2 mode within the extended
SJW calculation does not decay within a characteristic
time for the ellipsoidal mode, the ellipsoidal mode can be
observed.

ellipsoidal mode. The decay rate and mean-square am-
plitude of this mode can be calculated approximately by
expanding the o(u ) expression for the bending energy
about the prolate minimum in the bending energy and
again using the Lamb hydrodynamic solution. (Again,
we ignore the difference in shape as far as the flow fields
are concerned. ) The results of this calculation (con-
tained in Appendix C) are, with

u =a&(Y,~+ Yz z)+ao Yzo ao+2az ——2~6, ,
2 2

(
~
u,

~
) = (1+2)(l —1) l(l + I)—6+4w

K

+ h ((I))+
4~K

with the mixing entropy per drop given by

h (P) = ——[Pin(I)+(1 —()I))ln(1 —P)] .
1

(20)

(21)

Using these results and formulas [Eqs. (5) and (6)] for the
area and volume, one can show that the equivalence of
the mean volume and excess area of the static and dy-
namic models implies

y =6+2w —8w — h (P),3kT
8WK

(22)

with the last term usually negligible. Thus the
intermediate-time fluctuation amplitudes for the dynami-
cal model are as in Eq. (20) and the decay rates for a
typical microemulsion droplet are

K (1 +3)(l —2)+4w + ( 3kT/8rrtr )h (P )

Z (1)
(23)

0
scales comparable to the droplet size (around 100 A) and
time scales appropriate for observing bending modes
(to-lrlgr, or r-10 sec). If the concentration of the
minority phase is kept low, the time for diffusing drop-
lets to collide can be made much longer than the time
for droplet fluctuations to occur. '

Under these conditions, the dynamic experiments are
sensitive to fluctuations of a droplet typical of the equi-
librium ensemble, but at fixed amount of internal phase
and surfactant, and hence at fixed volume and excess
area. The values (and variances) of the typical volume
and excess area of such a droplet snatched from the
equilibrium ensemble are, of course, equilibrium proper-
ties. Thus stiffness and excess area cannot be varied in-
dependently, because the excess area is determined in
equilibrium by stiffness, spontaneous curvature, and
volume fractions. For example, a stiffer surfactant inter-
face will inhibit fluctuations away from spherical drop-
lets and give a smaller excess area.

Safran has calculated the equilibrium fluctuations of
droplet-phase microemulsions, which we take as input to
our calculations of the intermediate-time fluctuations of
these systems. In the global equilibrium, droplets may
collide and exchange surfactant and fluid; only the total
amounts of fluid and surfactant are conserved. The fluc-
tuation amplitudes, characterizing the fluctuations in
shape and size of a typical droplet, are given by

V. DROPLET-PHASE MICROEMULSIONS

In droplet-phase microemulsions, neutron spin-echo
experiments can be performed which probe length

We now compute the structure factor S(q, t) from
scattering off' of the thin shell of material (surfactant) at
the interface, which will most clearly show the fluctua-
tions of interest. ' The result (see Ref. 14) is

S(q, t)= (Pq(t)P ~(0) ) eeexP( Dq t) 4ir[jo(q—r)] + Q Fi(qr)(uio(t)u)o(0) ) (24)

The weighting factor Fl(qr) is defined by

Fi(z) =(21+ 1)[(l+2)j&(z) —zjI+, (z)] (25)
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with ji( ) the spherical Bessel function of order 1.

The sum-of-exponentials form of Eq. (24) is experimentally difficult to unfold; a convenient parameter is the initial
slope of the decay (equal to the first frequency cumulant), written co„.h,. „(q) and defined by

as(q, r)
chef ( q

1=0
=Dq + g co&Fi(qr)(

~
u~

~

) 4ir[jo(qr)) + g F&(qr)(
~

ui
~

)

—=Dq'+, (& (q )) (jo'(q ))+(& (q ))
'gr . kT

(26)

Note that specifying the wave number does not in gen-
eral select one or a few spherical harmonics to dominate
the sum, even though there is a correspondence
(q —2rrl/r) between the index 1 and the length scale

q '. There is a special circumstance, however, where
the sum is dominated by only two terms. For qr =i,
the structure factor of the undistorted spherical shell
vanishes, and the wave number is small enough that the
l =2 mode has the largest weighting factor and also a
large amplitude. Thus, in a narrow range of q around
qr =~, co,h„(q) will approximately equal the 1 =2 decay
rate coi 2, moving away from qr =n, ~,h„(q) will quick-
ly drop to the center-of-mass diffusion rate Dq .

The function S(q, t) should be averaged over the equi-
libriurn ensemble of sizes, the mean and variance of
which are given in Ref. 7. Details of the peak at qr =n
will be sensitive to the equilibrium polydispersity in the
system, since a single choice of wave number cannot set
qr =~ for all of the various-sized drops in the system.
The main effect near the peak is to replace the vanishing

j o(qr =m. ) with (or ) /r Using .the theoretical po-
lydispersity, the numerical value for Xz(ir), and the fact
that the 1=2 term dominates X~(qr, w) for qr-~, we
have

a~ m/2
cg,h„(qr =sr) =D (ir/r) +

gr ~ 3/2 —m

(27)

with a=0. 53 (from the numerator sum) and p=0. l5
(from the 1 =2 term in the denominator sum). The ratio
of slow-decaying (center-of-mass diffusion mode) to fast-
decaying (1 =2 mode) signals in S(q, t) is then roughly

(~,h.„(q) )„-Dq'+ cxqr

qr 4vrv/[kT(qr) )+P( w)

(30)

where a=0.2 and P(w) =0.48 for w = —,
'. With

D/r =kTI(6nqr ) and x/kT —5 or so, we have a
range 4 & qr & 8 or so where the second term in Eq. (30)
dominates and gives an apparent co,h„(q)-q, which is
experimentally observed.

In principle, the entire line shape of co,h„(q) could be
fit by adjusting only stiffness and spontaneous curvature,
thus giving well-characterized values for these funda-
mental interfacial parameters (efforts are under way to
do this). Several words of caution are in order. First,
the extreme sensitivity of the peak to small changes in
the polydispersity suggests that polydispersity be taken
as an independent parameter even though it is in princi-
ple a known function of ir, r, , and volume fractions. (Of
course, large deviations of the fitted polydispersity from
the predicted value should be viewed with suspicion. )

Second, when the thickness of the surfactant layer is
comparable to the radius of the droplet, the approxima-
tions made in the bending energy and the hydrodynam-
ics break down. Third, the experimental time resolution
determines a cutoff to rates which should be included in
the sum for co,h, „,' the "initial slope" of the data will not
reAect more quickly decaying amplitudes.

ing the limits of stability of droplet microemulsions),
but are weak functions of m for intermediate values.
Equation (29) works well for z =qr & 5 or so.

The averaging over polydispersity with a fixed vari-
ance in radius means smearing over a progressively wid-
er range of q at large wave number, effectively destroy-
ing all sharp or oscillatory structure in q. The result of
the averaging is

S,.„„IS„„(qr=~)= ~/2
3/2 —w

(0. 15)
(28)

VI. LIPID-BILAYER VESICLES

X~(z) —X,z +%icos(2z),

Xi) (z, w) —D ( ( w)+D2( w )cos(2z)
(29)

with coe%cients 2V~ =0.2, cVq=0. 13. D& and D2 are
functions of w which diverge as w ~0, w ~—', (represent-

At large qr, the structure of the sum is not trivial; in
particular, one cannot argue from dimensional analysis
that the characteristic frequency is al(gr ) because this
would multiply a function of qr, the behavior of which is
not obvious. Asymptotic analysis of the sums in the
numerator and denominator can be made (see Appendix
D); they behave as

Lipid-bilayer vesicles typically have much larger sizes
and longer time scales compared to droplet microemul-
sions. Nonetheless, they are described by much of the
same physics. In addition, because the excess area can
in principle be varied by the preparation technique (in-
stead of being fixed at its global equilibrium value as in
microemulsions), a greater variety of situations can be
studied. Finally, the observation technique —video
microscopy —can in principle provide a more direct
measurement of the decay rates of individual fluctuation
modes.

A few remarks are in order as to the role of the excess
area in current experiments on vesicles. First, there is
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probably some tendency to select for study vesicles
which have by chance been produced with zero "ap-
parent surface tension. " Vesicles which are very floppy
but have small excess area would not have large fluctua-
tions, but would appear to be nearly "inflated" rigid
spheres, and would be avoided. Vesicles which are stiff
and ellipsoidal would also be avoided, because data from
such vesicles has been difficult to analyze with previous
theories. Second, the excess are is not directly measur-
able by the video microscopy experiments, because (1)
only a cross section of the three-dimensional object is
obtained and (2) the optical and time resolutions are not
sufficient to see the short-length-scale fluctuations which
can carry a significant part of the excess area. Thus the
excess area might be well treated as a fitting parameter.

Of course, it is only in vesicles (not in droplet mi-
croemulsions) that the fluctuations of the ellipsoidal
mode could possibly be observed, since the criterion for
seeing them depends on being able to adjust the excess
area independently of the stiffness. This would be an in-

teresting phenomenon to search for.
Present experimental techniques could be extended to

give information about the time autocorrelation of the
vesicle modes, which of course gives a much stronger
test of our understanding. Current experiments probe
the autocorrelation times in a crude way by noting the
dependence on observation time of the apparent mean-
square fluctuation in the various modes of the vesicle.

Up to now, most of the vesicle observations ' have
yielded only mean-square amplitudes of mode fluctua-
tions (by time averaging); observations of, for example,
Englehardt et al. have been fit to the static predictions
of SJW, with systematic discrepancies in the lower
modes. These can be explained by two tendencies in the
SJW formula. First, there is an arithmetic error in the
SJW formula for (

~
u~

~
) [which should be Eq. (10)

with to =0 and y =0], which is most severe for the
lowest modes. Second, as is evident from Eq. (10), the
effect of y is greatest for the lowest modes.

co /~ —10 for microemulsion drops, while we have
cu /co&- 10 and co /co&- 10 for vesicles. Hence in
vesicles, we shall write co —(o IpL )' . ]

Sound in fluids propagates down to molecular length
scales. Hence we compare for microemulsion drops

~, /co —( c /L )I(o. It}L) —10

co Ice, -(o /t)L)I(ir/qL') —10

and for vesicles we obtain

~o, /~ —(c/L)/(o /pL')' —10

co Ice, -(o./pL')'i I(~/tIL ) —10

To check the assertion that the convective and inertial
terms in the dynamics can be neglected, we compute the
Reynolds number and the ratio of inertial to viscous
terms in the Navier-Stokes equations. The Reynolds
number is R =pvL /g; with characteristic velocity
U -Lco, -~/gL, we have R -~p/g L —10 for mi-
croemulsions and 10 for vesicles. The ratio of inertial
(r}gl~}t) to viscous (tIV g/p) terms is roughly
cu /co„-~p/q L which is of order R.

APPENDIX B: BENDING FORCE
FOR NONZERO SPONTANEOUS CURVATURE

To obtain the force on the surface due to bending, in
the presence of spontaneous curvature, we follow Jen-
kins' in varying the bending energy with respect to the
surface position. Using his methods, we derive

5 H dS = —2 Hn. 6r dS,

where H is the Gaussian curvature and 6' the surface
normal ~ Hence we have for the variation of
&'=&b,.d

—f yd~,

5E'=5 f dS (H H, ) ——y—
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= f dS 5r [V'y+6'[IcV H +H(y ~H, /2)—
+2~H, H ]]

APPENDIX A: TIME SCALE ESTIMATES dS6r F . (B2)

There is often a separation of characteristic frequency
scales for sound, capillary waves, and bending modes.
For a rough estimate, assume surface tension o. of a few
kT/a (a is some microscopic length, say, 10 A), bend-
ing stiffness ~ of a few kT, and sound speed c —10
cm/sec. The characteristic length scale L is about 100
A for microemulsion drops and about 10p for vesicles.

We note that capillary waves propagate in vesicles and
are overdamped in microemulsion droplets, while bend-
ing modes are overdamped in both cases. [We compare
the assumed overdamped frequency to the viscous
diffusion rate co —q /pL, with viscosity g/p —10

2
7l

cm /sec and p-1; the overdamped rates are co -o./gL
and co -~/qL . We find m /co„-10 and

Now H =4H+o (u ), which we use to replace H;
(H Ho ) is o (u )—, and so we may replace H
=2HHo —Ho. Using these replacements we get

—F= Vy +& [ IrV H +H ( y xH, /2+ xH, H o )—
—x.H, H /20] .

We can define a shifted Lagrange multiplier as

y =y —~Hs /2+aHSHo

(B3)

(B4)

(and absorb the last term in the force into the pressure
with p'=p aH, Ho/2). This g—ive.s exactly the force ex-
pression in SJW with H, =0,
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F—=Vy'+&(ErV'H+Hy') . (B5) A =4Erro(1+uo) +ro g t uE~
~

[1+l(l+1)/2] . (C5)

In the SJW calculation of mode frequencies, the pres-
sure p(r) and the apparent surface tension y(Q) are
determined by constraints of constant droplet volume
and surface area, leaving only yo (the angle-independent
part of y) undetermined. Hence we may immediately
write

1(l +1) y'—ro/~

rjr o' Z ( I )
(B6)

with yo given by Eq. (B4) and yo determined by the re-
quirement that the mean excess area in the dynamical
model of the droplet is specified (by the kinetics of vesi-
cle production or the global microemulsion equilibrium).

APPENDIX C: ELLIPSOIDAL
MODE CALCULATIONS

1. Ellipsoids and bending energy

We extend the expansion of the bending energy to
o (u ); after some algebra, we obtain

E = —f dA[4(1 —w) +4(1—w)gL u —8w(1 —w)u
2

+2(1—w)g (roV'u)'+('(L u) +4w u

4/wuL u —+2(1—w)(r Vo'u) L u

—4w(1 —w)u (roV'u) ], (C 1)

with w =rolr, and g=(1+u)
Expanding g and integrating by parts, we obtain

E=—f dA[4(l —w)' —8w(1 —w)u+8(1 —w)u
2

+4[(1—w) —2]uu+4w u +4u

+4(1+w)uu —8wu u

—(1 —w)Q (L ) u]

V =—' r dA= rp(1+up)3 3

+rog ~u,
~

+ ,'ro f u'dA. —(C3)

Fixing V=4nrp/3 leads to

up =— g ~
uE

~

— f u'dQ+o(u ) .
4~ 12~

The area to o (u ) is

where u =L u/2. [This agrees with the o(u ) expan-
sion of Ref. 2.]

We want to consider the energy of various ellipsoids,
i.e., I =2 deformations of the sphere, with fixed volume
and excess area. To o (u ), the volume is

Using Eq. (C4) and defining the relative excess area
6, =—( A —4nr o ) /(4mro )

. gives

(C6)

udge — +o u
6~ 2

(C7)

Using Eqs. (C6) and (C7) in Eq. (C2) and specializing to
I =2, we finally obtain

E = —8k(1+5w/3) f u dA, (C8)

with u restricted to the l = 2 subspace.
To simplify the arithmetic, we shall write u (fl) not as

a general I =2 expansion, but as a real-valued ellipsoid
with principal axes oriented along (x,y, z) and fixed ex-
cess area,

u =a2( Y22+ Y2 2 )+ao Y2o

ap+2a 2
——2~6 .

(C9)

(C10)

(One degree of freedom remains. )

The radial displacement r(A)=ro[l+u (0)] can be
related to the solution of (x/A) +(y/&)'+(z/C) =1
for A, B,C nearly equal, to show that Eq. (C9) describes
an oriented ellipsoid as advertised. If we write
A =1++,8 =1+p, C= 1+y, we obtain

ao ——(4Er/5)' (2y —a —P)/3,

a~ =(2Er/15)' (cE P) . — (Cl 1)

This calculation implies that prolate ellipsoids are
stable for w & ——', , this is not the value of Deuling and
Helfrich, " who obtained coR o & —

—,", (co ——2/r, ), but
agrees with a direct calculation in prolate and oblate
coordinates.

This energy has two extrema at a p
——~A /2, three

roots at ap ——0, ap ——3vrA/2, and two endpoint extrema
at ao ——2mb, For C &0. (usual case, because w &0 for
microemulsions and w =0 for bilayers) there are three
minima: ao = —(Erb, /2)'~, a z

—+(3irb, /4)'~2, and
a o

——( 2' b, )', a 2
——0.

All three of the minimum-energy shapes are identical
prolate ellipsoids. Using Eqs. (Cl 1) and V =4mABC/
3=4Er/3 so that a+p+y=0, we find the set
[a,P, y] = [ —1, —1,2] X(5nk/4)'~ which describes an
ellipsoid with one long and two short axes, i.e., a prolate
ellipsoid (albeit oriented with the long axis along x, y, or
z ). To avoid singularities in perturbing about this
lowest-energy shape, we will expand about a p

= —(nb, /2) ', a 2
——( 3'

h�
/4) ' when we consider over-

damped shape oscillations in the next section.

Substituting Eq. (C9) into Eq. (C8) and using the con-
straint Eq. (C10) gives

E = —vC(w)[ao —6aoa2]= —kC(w)[4ao —6irbao],
(C12)

C(w)= —— (1+5w/3) .8 5

7 77
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2. Dynamics of the ellipsoidal mode

As we perturb the ellipsoidal shape within the l =2
subspace away from the prolate minimum at constant
area and volume, we obtain nonaxisymmetric shapes.
We consider the case of small oscillations to extract a re-
laxation rate and a mean-square amplitude.

The dynamics calculation is similar to that of SJW,
with a few modifications. We derive the restoring force
from Eq. (C12). The Lagrange multiplier y is deter-
mined by the condition 6=0. We need not consider the
pressure as a constraint force because the constant-
volume condition is built into our virtual displacements.
We get around the need for computing Aows in prolate
spheroidal coordinates in a rough way, by mapping the
normal component of bending force at (8,$) onto a
spherical surface; we compute velocities in spherical
geometry, and map back to the ellipsoid.

Formally, we are expanding in both 5' and devia-
tions from the minimum-energy surface; we will find the
force, pressure, and IIuid velocities are o (b. '~ 6u), and so
corrections due to nonspherical geometry will be higher
order. Following SJW with these modifications, we
derive (setting rp = 1 until the end)

(1+5w/3)(2h/5)'
343 pro

(C17)

DE =const+6(2vrb, )' KC(w)Ep+o (ep), (C18)

(~p) =2

12(2~6, )' KC(w)
(C19)

For this to make sense, we need

(ep) «ap
or

kT «3C(w)(27rb, )'~ (C20)

APPENDIX D: I.ARGE-qr BEHAVIOR
OF SUMS IN co,h„

The sums in the numerator and denominator of Eq.
(26) are proportional to sums generically of the form

If the expansion about the prolate minimum makes
sense, we can apply equipartition; Eb,„d of Eq. (C12),
with the constraint [Eq. (C10)] imposed, and
ap ———(orb, /2)' +op gives

0= —",pz
' II +F„(n rom la),

0= ——',Pp ~2" —6y z
—2F„(tangential ),

F, =Fb,„d +F —2y2,

(i)
V2 O'= — P2

7p

(C13)

Sz (z) = g R (I )j~ (z),
1 () lo)

(Dl)

1. Denominator sums

with R (l) a rational function of 1, of leading degree
d(R) for large l.

6
v2 n= . (Fb,„d +Fr ) .

35'
(C14)

The forces Fb,„d and Fz derive from varying
Eb,„d —y(a p+2a 2 ); if we decompose v2 & into velocities
for ao and a2, we get

(The last term in F„derives from the local incompressi-
bility constraint as in SJW.)

Eliminate y2 in favor of Fb,„d, and Fz, pz' in favor of
v2, to get

j&(z)-z 'cos[z —(!+1)rr/2] (D2)

in all terms in the sum. Using the half-angle formula,
we quickly reach

1
Sg (z)—

2z2
R (1)+cos(2z) g ( —1)'+'R (1)

l () lo) I () lo)

If d(R) & —2, the sum Sz (z) converges just because
j~(z) & 1 and g R (1) converge; hence for large z we can
approximate

a2 =—

ap —— [—KC( w)(3a p
—6a z ) —2yap ]

6 2 2

35p
6

[ —KC(w)( —12apaz) 41 a2]
35p

(C15)
(D3)

Using the functional relations for the j~(z), the factor
Ft(z) can be recast as

The equilibrium value of y is fixed by requiring
ao ——a2 ——0 at the prolate configuration. This gives

2

FI(z)+ [(I +2)jI,(z) —(I +1)j,+,(z)]21+ 1
(D4)

y,q= ——,'KC (w)(2~6, )'

Now we expand ao, a2, and y about their equilibrium
values; determine 6y by requiring 6=0 to linear order
in 6a o and 6a 2,

' and relate 6a o and 6a 2 by 6=0, reduc-
ing to a single degree of freedom. This gives a single re-
laxation equation

Xo (z) -D, (w)+D&(w)cos(2z), (D5)

where D
&

and D2 are constants which depend on the pa-
rameter w = ro lr, .

2. Numerator sums

This equation and the asymptotic form for j&(z) quickly
give us the result

ao ———

with a relaxation rate

[KC(w)(2mb. )' ]—", (ap —ap'"'),
35p

(C16)
If d (R) & —1, the sum SR(z) converges only because

j&(z) for l »z vanishes sufficiently fast; this behavior is
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a
BZ

d —1
SR (z)

more subtle. To extract large-z behavior of such sums,
we use a difFerential equation for SR(z). Using the func-
tional relations for jt(z), it can be shown that

Si( 2z)
SR 1(z)=, SR]1)=21+1(z)=1 .

2z
(DS)

As Si(2z)-tr/2+ cos(2z)/2z for large z, we guess that

SR(z)-ciz" '+[cz+c3cos(2z)]z +o(z ), (D9)

—[dR (l)+Q(l)]jt (z)
1 a
2B,(, )

I

Q(l)jt (z)+R (loj), (z)j, ,(z),1 ~ 2

1 () lo)
(D6)

which can be verified by induction on Eq. (D6).
The sum in the numerator of Eq. (26) can be written,

using the functional relations, as the sum of such terms
as in Eq. (Dl), with some powers of z and t)/t)z applied;
the final result for large z is

where d =d (R ), Q ( l ) is of leading degree d —1, and
defined by

X]v(z)-N]z +Nzcos(2z)+o (z ') . (D10)

R (1 -+ 1)—R (l) = —[dR (l) +Q (l)] .
1

l
(D7)

In special cases, the right-hand side can be evaluated ex-
actly and the differential equation solved; for example,

The coefficients in Eqs. (D5) and (D10) can be extract-
ed from numerica1 evaluations of the sums; such evalua-
tions suggest that the asymptotic formulas work well for
z ~5 or so. Rough numerical results for the sums (for
typical values of tt]) appear in the main text.
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