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A perturbation scheme based not on the ideal gas but on a system of purely repulsive cores is
applied to a typical fully interacting fermion gas. This is "neutron matter" interacting via (a) the
repulsive "Bethe homework-problem" potential, (b) a hard-core —plus —square-well potential, and
(c) the Baker-Hind-Kahane modification of the latter, suitable for describing a more accurate two-
nucleon potential. Pade extrapolation techniques and generalizations thereof are employed to
represent both the density dependence as well as the attractive coupling dependence of the pertur-
bation expansion. Equations of state are constructed and compared with Jastrow —Monte Carlo
calculations as well as expectations based on semiempirical mass formulas. Excellent agreement is
found with the lat ter.

I. INTRODUCTION

Since the birth of the quantum many-body problem
over fifty years ago, two more or less distinct approaches
to understanding the ground-state energy of rnatter have
emerged. One of these approaches is based on perturba-
tion methods the other, on variational methods.
There exist some useful schemes which cannot be readily
classified into either of the above two classes, e.g. , the
exp( —S) or "coupled-cluster" theory. The variational
methods have largely relied on the use of Bijl-Dingle-
Jastrow (short-range) correlation functions, while the
perturbation methods have been almost entirely based on
the ideal (noninteracting) -gas limit of the many-particle
system as the unperturbed state. Both have suffered
from being eminently low-density theories and as such
they are of questionable validity for the description of
condensed phases.

It was van der Waals who suggested more than a hun-
dred years ago that the description of fluids could
perhaps be tackled best by dividing the pair interactions
jnto repulsive and attractive parts, next developing an
accurate description of the fluid of repulsive cores, and
finally adding, as small perturbations, the effects of the
originally neglected attractions. This remarkable idea
has only recently been fully vindicated when (i) it
emerged from both classical and quantum-mechanical
computer simulations that hard-sphere pair distribution

I

functions are qualitatively similar to those of a liquid
whose particles interact via a Lennard-Jones potential,
and (ii) it was noted that the pair distribution function
of an amorphous solid (such as Ni-P metallic alloy glass)
is remarkably similar to that of a classical system of
hard spheres in a random close-packing arrangement.
On the other hand, the structure of the ideal gas pair
distribution function is drastically different from that of
any physical condensed system.

The van der Waals idea has been exhaustively
exploited —though not without some difficulty —in con-
structing what is now considered the most successful
theory of classical liquids. It can also be irnplernented
for the quantum-mechanical ground-state problem.
One starts with the well-known low-density expansion
for the ground-state energy per particle, E/N, for which
the first few coefficients have been evaluated with the
help of quantum-field-theory diagrammatic techniques'
and infinite partial summation, among other methods.
This expansion is analogous to the well-known Ursell-
Mayer virial expansion for the pressure of a classical im-
perfect gas as a power series in the density, in which the
first few so-called "virial" coefficients are known. Unlike
the classical virial expansions, however, the quantum-
mechanical low-density expansions give rise to irregular
(i.e. , nonpower) series in the density. For example, for
either two- or four-species fermion matter composed of
N particles, the low-density expansion for the ground-
state' is

36k N
—:e= l+C&kFa+C&(kza) +[—,'C3ro/a +C4A ~(0)/a +Cs](kFa ) +C6(kFa) ln kFa

~

+[,'C7ro/a +C& A —0'(0)/a +C9](k~a) +o(kFa )

36 4338 1987 The American Physical Society



CONSTRUCTIVE METHODS FOR THE GROUND-STATE ENERGY. . . 4339

Here m is the mass of each fermion, a the S wave
scattering length, rp the 5-wave effective range, 2 &(0)
the P wav-e scattering length (cubed), 3 p'(0) a second
moment of the S-wave scattering length integral, ' the
coefficients C] through C9 pure numbers, " and Akz the
Fermi momentum related to the particle density
p=N/V, with V the volume, through

p=vkF/6vr (v=number of species) .

ao(fm) 3 l (0)(fm') ro(fm)

0.689 508 76 0.127 958 55 0.389 293 1

3 o' (0)fm')

—0.183 756 23

II. "BETHE HOMWORK-PROBLEM POTENTIAL"
NEUTRONS

TABLE I. Numerical integration values for the "Bethe
homework-problem potential" [Eq. (4)] of two-body scattering
parameters appearing in low-density expansion Eq. (1).

For the case of two-species fermion matter C6 ——0. The
dynamical quantities a, r p, and A, (0) are all pair-
potential-shape independent and directly derivable from
low-energy phase shifts. They, and also A p (0) (which is

unrelated to low-energy phase shifts), can be expressed
as integrals' over the pair potential times the zero-
energy scattering radial wave function. They can thus
be expanded into the power series

fp+f i~+f2~'+

where A, is an appropriate coupling parameter for the at-
tractive part of the pair potential. The coefficients f;
have been determined analytically" to sixth order for
the hard-core —plus —square-well potential and numerical-
ly' to 14th order for the Lennard-Jones potential. Sub-
stitution of (2) into (1) then leads to the ground-state en-
ergy

As our first example, we consider an essentially
infinite system of neutrons interacting pairwise via the
purely repulsive part of the 'Sp Reid' soft-core
nucleon-nucleon interaction,

vp(r) =9263. 14e "/r MeV (r in fm), (4)

(10mE/3' k X)

=—ep
' (x)=l+F,x+F2x +F3x +F4x +

also known as the "Bethe homework-problem poten-
tial. "' There is no attraction; A, =O in (2) and (3). The
scattering parameters a, rp, A &(0), and Ap (0) are ob-
tainable by numerical integration of Eqs. (3) of Ref. 12,
with the results displayed in Table I. %'e have used the
value A /m =41.55599 MeV fm of Ref. 16 jn order to
compare with their Jastrow —Monte Carlo calculations.
If we take the inverse square root of E and expand about
x =kzap~O then the low-density expansion (1) becomes

e(x, A, )= g e;(x)k',
i=p

x =kgap ap —= lim a
A, ~p

(3)

which is now a double series in the density parameter x
and the attractive coupling A, . It conforms precisely to
the van der Waals idea alluded to above, with ep(x) be-
ing the low-density expansion for the Quid of repulsive
cores, and e;(x) (i =1,2, . . . ) constituting the ith-order
perturbative corrections due to the attractions.

In this paper we apply this perturbation scheme to the
description of the ground-state energy of neutron matter
(hence v=2). In Sec. II we use the "Bethe homework-
problem" potential ' in Sec. III we consider hard-core
square-well neutrons and evaluate the exact energy per
particle in the ladder approximation by numerically in-
tegrating the Bethe-Goldstone equation. This energy is
then used to deduce the corresponding derivatives in A,

with which we construct adequate Pade representations
of the first few perturbation terms of the low-density ex-
pansion which is correct in the ladder case only through
k~ in Eq. (1). The ensuing extrapolants are then em-
ployed in the reexpanded low-density expansion of the
complete theory, correct through the k~ term in Eq. (1),
to predict the ground-state energy of the system as a
function of density. Section IV contains an application
with a more realistic two-neutron potential which per-
mits comparison of the resulting ground-state energies
with other calculations as well as with predictions of
semiempirical mass formulas. Section V presents our
conclusions.

with the pure number coefficients F; (i =1,2, 3, and 4)
known exactly and given in Table II.

In order to extrapolate to nonzero densities, we
represent the low-density series (5) by the Pade approxi-
mants'

where, by definition, (6) differs from (5) by terms of order
x for small x. Figure 1 shows a plot of all fourth-order
approximants to the inverse-square-root energy per neu-
tron of the ground state as functions of number density
p. The ideal Fermi gas equation of state, labeled [0/0]
and corresponding to the right-hand side of (5) equal to
unity, is shown for comparison. Also shown as open-
circled dots are the Jastrow —Monte Carlo (J-MC) results
of Ref. 16. These energies, being variational, are upper
bounds to the exact energy and are claimed to be only a
percent or so above it. Thus on our graph, the open-
circled dots are lower bounds to the exact result. Of the
fourth-order approximants we eliminate all but two: (a)
[4/0] corresponds to the truncated low-density polyno-

TABLE II. Coefficients F; of low-density expansion (5) for
"Bethe homework potential" neutrons.

F; —0.176 839 —0.045 860 —0.181 197 + 0.132 811

1+p]x +p)x + ' ' ' +pLx
[L/M](x) = (L +M (4),

1+q,x +q,x'+ - +q~x M

(6)
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(E/N)

(lv1eV )

0,10—

0.05

g J-MC

P(fm-')

is in principle interpretable as an instability of the gase-
ous phase of the homework neutrons, presumably to a
crystalline phase. Other calculations of neutron-matter
solidification, reviewed by Canuto, range from about
1.7 to 12 times nucleon saturation (solid horizontal bar
in Fig. 1 density axis). The crystalline phrase, if present,
has not been treated to our knowledge for this many-
body system in either Monte Carlo or FHNC studies.
Even though our Pade extrapolations can probably not
be relied upon at such high densities, the question of
crystallization here appears to remain an open one.

FIG. 1. Inverse square root of energy per particle vs density
of the "Bethe homework-problem potential" neutron matter
for several Fade approximant [L/M](x) representations of the
low-density expression (5). All except the [0/4] and [1/3] ex-
trapolants are discarded for reasons explained in text. Circled
dots represent Jastrow —Monte Carlo (J-MC) results from Ref.
16. The horizontal bar on the density axis illustrates spread in
theoretical estimates for crystallization density in neutron
matter (Ref. 20) while the leftmost arrow mark on the density
axis stands for 0.17 fm ' (nuclear saturation density) and the
rightmost one for the spinodal point mentioned in the text at
2.1 fm . Here x =kFao and p=kF'/3m. , ao being the S-wave
scattering length from Table I.

mial (5) which is seen to deviate drastically from the J-
MC results at all but the lowest densities, (b) [2/2] and
[3/1] are discarded since they predict a (second-order)
pole in the energy per particle at some finite density
value, a situation physically appropriate for hard-sphere
fermions, as in Ref. 18, but not for the soft cores of our
interaction (4), which can lead to a (random) close-
packing divergence only at infinite density, (c) thus,
there only remain the [0/4] and [1/3] extrapolants.

In Table III we compare these results with both the
J-MC energies as well as with what is perhaps the next
best variational calculation, ' labeled FHNC/4(JF) (for
Fermi hypernetted-chain, with Jackson-Feenberg
kinetic-energy form). The [0/4] numbers are somewhat
above the J-MC results, and the [1/3] is everywhere
somewhat below. Further tests of the accuracy of the
present results must of course await Green-function
Monte Carlo (GFMC) calculations, which presumably
give us exact (nonrelativistic, quantum-mechanical)
ground-state energies.

We mention that the [0/4] fails to give a monotonical-
ly increasing energy at about 12.6 times nuclear satura-
tion density. This spinodal point (at about p=2. 2 fm )

III. HARD-CORE SQUARE-WELL NEUTRONS

We now apply the methods of Ref. 11 to deal with the
attractions in fermion matter. Specifically, we consider
neutrons interacting via the hard-core square-well
(HCSW) pair potential

+(K, 0(r (C
u(r)= —Vo, c &r &R

0, r&R
(7)

and define, as before, " the dimensionless range and
well-depth parameters

a =(R —c)/c, A, —:m Vo(R c)'/fi—
As in Refs. 10 and 11, we shall distinguish the "ladder"
from the "complete" many-fermion problem. The form-
er corresponds to the summation of so-called ladder, or
Brueckner, diagrams to all orders in the interaction,
whereas the complete problem includes further dia-
grams. We recall in Ref. 10 that while the ladder energy
reproduces correctly the first two coefficients beyond the
Fermi kinetic energy term in the low-density expansion,
the complete energy reproduces the first four, i.e. , two
more than the ladder.

Although in the boson low-density problem the
ladder ' as well as the optimized Jastrow variational
scheme both correctly reproduce the first two correc-
tion terms in the corresponding low-density expansion
about the ideal Bose gas, it has recently been demon-
strated that for fermions this is not quite accomplished
by the Jastrow variational theory, i.e., the second correc-
tion coefficient is not correctly reproduced within this
latter approach.

The main objective of this paper is to construct accu-
rate ground-state energies for neutron matter with at-
tractions, based on the complete low-density expansion

TABLE III. Energy per particle (in MeV) of "Bethe homework-problem potential" neutron matter
according to Jastrow —Monte Carlo (J-MC) calculations, ' Fermi hypernetted-chain variational calcu-
lations' (FHNC/4) with Jackson-Feenberg (JF) kinetic energy form, and those of the present work
(last two columns).

p(fm )

0.17
0.30
1

2
4

J-MC

89.6+0.7
174.9+0.7

782+2
1976+6
4909+2

FHNC/4( JF)

90
177
790

1994

[0/4]

85.93
162.95
703.36

1455.36
1588.04

[1/3]

89.50
167.62

1021.40
3350.89

12 226.94
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To obtain the ground-state energy per particle EL /N
of fermion matter approximated by the summation of
ladder diagrams (with bare kinetic-energy denominator
terms), one essentially solves the Bethe-Goldstone
integro-differential equation for the perturbed pair
wave function, computes with this the matrix elements
of the so-called reaction matrix and sums over the occu-
pied states of the Fermi sea. This energy can be calcu-
lated to an accuracy within about 0. 1%%uo, for any
reasonable central potential, with or without a hard
core. This was done for the HCSW potentials (7) and (8)
for o. =22/7, A. =2.315051, and several density values in
the range 0&x—:kFc &3. (The upper value corresponds,
for neutron matter, to a density of about 84 times nu-
clear saturation density p„,=0.17 fm for a hard core
of diameter c =0.4F.) Conversely, nucleon saturation
density would correspond, for neutrons, to a value of
x =0.686. Table IV summarizes the essentially exact
ladder energy shift (from the ideal Fermi gas value).

On the other hand, the low-density expansion for the
ladder energy, being of the same form as (1), can be reex-
pressed, upon substitution of the expansions (2), as

x ep(x)
10m''

x[Xe, (x)+X e2(x)+X e3(x)
3

+A, e4(x)+ ] (9)

TABLE IV. Ladder energy per particle EL /N for two-
species fermions of mass m interacting via a hard-core poten-
tial of diameter c surrounded by an attractive square well of
range R = —c so that a=(R —c)/c= —", and attractive depth

parameter, Eq. (8), A, =2.315051 for several values of x =kFc,
as obtained by numerical integration of the Bethe-Goldstone
equation.

x =kFc

0.25
0.50
0.75
1

1.5
2
3

mc EL

AN
(kFc)

3 2

10
—0.011 293 9
—0.093 626 7
—0.343 805
—0.763 819
—1.823 957

+ 18.13907
+ 74.186 66

for two-species fermion matter. Our main strategy will
be to develop density Pade extrapolations, and generali-
zations thereof, within the ladder problem (which is ex-
actly solvable in practice) and then apply these to the
complete case to represent, as accurately as possible, the
density dependence of the various orders of perturbation
corrections, e;(x) of Eq. (3), about the hard-sphere fluid.
Finally, the perturbation expansion in the attraction is
itself represented by the different possible Pade approxi-
mants and the convergence to the ground-state energy is
studied. In general, fourth-order perturbation theory is
found to be more than adequate.

A. Ladder theory

We refer to Appendixes A and B of Ref. 11 for details
from which the following expressions can be deduced:

e, (x) = —0. 111 157(1+1.049 168 7x +7.236 696x

—1.536687x + . ),
e2(x) = —0.044462(1 —0.324 755x —l. 223 112x 2

e 4 (x ) = —0.007 292 7( 1 —3.003 423 lx —5.879 447x

+26.393 524x '+ ) .

Note that e, (0)/e2(0) =2.5, ez(0)/e&(0) =2.47, and
e3(0)/e4(0)=2. 47. In (9) the symbol ep(x) stands for
the pure hard-sphere term

ep(x ) = 10Em /3Nfi kF

=1+D,x+D2x +D3x'+D4x +O(x ),
with the coefficients D; (i =1,2, 3, and 4) given in Table
II of Ref. 11 for both the ladder and complete theories.
The Pade representation of (11) found in Ref. 11 is

2 3 2
1+a&x +a2x +a3x

ep(x ) ="
I [3/1](x ) ] 1+b]x

(12)

with the coefficients given there, except that the correct
values of a& and a3 are 0.24936088 and 0.22217122,
respectively. (The symbol =" shall stand for "represent-
ed by. ") Defining for convenience

3
ep(x )—: [Gp(x ) —1 ]10x

(13)

we show in Fig. 2 the inverse square root ep '~ (x) cor-
responding to the Pade representation (12) compared
with the best Pade approximant developed in Refs. 11
and 18 based on the complete low-density expansion.
The latter predicts, as it should, a second-order,
uncertainty-principle, random close-packing divergence
in the energy at some finite density (called the Bernal
density pii), marked by a triangle in the figure. By con-
trast, the ladder Pade representation for the energy does
not diverge at any finite positive density (since b»0).
This lack of divergence is expected since the exact ladder
energy is Pnite for all kF & ao. Also shown in the figure
is the ep

' (x) corresponding to the "exact ladder" en-
ergy (dashed curve)

mEL
ep(x) =—

NA'k' '0 .=0
(14)

By differencing the exact EL /N in A. , we obtained the
essentially exact values of e;(x) (i =1,2, 3, and 4) defined
in Eq. (9) for different values of x. These are given in
Table V and are seen to diminish rapidly in magnitude
with increasing order. An exhaustive search for ade-
quate fits to this data with Fade approximants to the
third-order polynomials of (10), however, yielded nega

—0.2004405x + ),
(10)

e3(x) = —0.017 9966(1—1.666 323 2x —5.006 117x

+10.223 398x'+ ),
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e~(x)=A, (1+a,x+a2x +a3x +a4x + . ),
and [L //M](x) is to correspond to e&(x), then

e, (x)=" 3, [L //M](x) .

(ii) For greater flexibility we utilize what may be called
fractional Pade approximants. To illustrate what we
mean by these approximants consider e &(x) and raise it
to the power n &, where n, is real and positive. Then (15)
leads to

e, '(x)=A, '(1+alx+a2x +a3x +aux ) ol x «
nl=3, '(I+a, x +aux +a3x +a4x + ),

(17)

with

a, —=n&a&,

a2 = ,'n](n )
——1)a,+n, a2,

(18)

(19)

(v =4)(v =2)

FIG. 2. Inverse square root of Eq. (13), where eo(x) is the
dimensionless energy per particle Eq. (11) of a two-species fer-
mion Quid of hard spheres of diameter c, vs x =kFc, corre-
sponding to the exact ladder energy Eq. (14) (dashed curve),
the [3/1](x) approximant of Ref. 11, Eq. (14), to the low-
density ladder energy per particle series as well as the [1/3](x)
approximant of Ref. 11, Eq. (18), to the low-density energy
series for the complete theory. The triangle on the x =kFc
axis locates the Bernal density for fermion hard spheres (two
species) while the two dots on the axis mark the x values corre-
sponding to four- and two-species fermion matter at nuclear
saturation density. Note that at these two x values the [1/3]
approximant to the complete expansion (5) gives somewhat
lower energy than the ladder approximation, in either exact
(dashed curve) or Pade representation (solid curve) forms.
Note also that the latter differs very little from the former for
0&x (1.

tiUe results.
To get good fits to e;(x) two modifications were intro-

duced.
(i) The approximants to the first-order quantity e, (x)

were fixed to yield —0.476 018 when x =2, according to
Table V, the table of correct ladder values. Since the ap-
proxirnants were forced, from the start, to give e& exact-
ly at x =0 [see Eq. (10)), they now became two point-
Pade approximants. ' The extra condition is equivalent
to fixing the coe%cient of the x term in the low-density
expansion of e, (x) presented in Eq. (10). Since e

&
is

known for several dift'erent x, the reader may well
wonder why x =2 was picked for special consideration.
The reason for singling out x =2 becomes clear when
the complete problem is treated in Sec. III B. The sym-
bol [L//M](x) is now introduced to denote two-point
Pade approximants. If

etc. Now determine the two-point Fade approximant
corresponding to e &, namely,

e, ' (x) =" 3, ' [L //M](x ) .

The approximant to e&(x) given by

e, (x) =" 3, [[L//M)(x)I

(20)

(21)

is called the fractional (in this case, ttoo point) Pade-ap-
proximant with exponent 1/n &.

In trying to fit the accurate values of e, (x) presented
in Table V, we tested fractional approximants with many
diA'erent exponents. Figure 3 illustrates a typical fit to
the ladder data (indicated by open circles). These turned
out to be

e, (x) =" 3, [ [2//2](x)) '

ez(x) =" 3 z [ [0/3](x) j
'/

e3(x) =" 3 3 I [0/3](x) I
'"

ez(x) =" 34 I [0/3](x) I
'/ '

(22a)

(22b)

(22c)

(22d)

Note that only the first-order quantity e& is represented
by a two-point (fractional) Pade approximant; higher or-
ders are given by standard, or one-point, but fractional,
approximants.

Now going back to Eq. (9) for the ladder energy per
particle and using (12) for the hard-sphere unperturbed
energy term eo, as well as (22), we arrive at a relation
with the form (3). This relation is just a fourth-order po-
lynomial in the coupling constant k with density-
dependent coe%cients. We in turn construct all the
Pade approximants [L /M](k) of order L +M &4 to it,

F-I. . 3A'
, x'[L/M](A) (L+M &4) .

rome'
(23)

We stress that [L/M](A, ) is density dependent, that it
becomes for X=O the hard-sphere term [3/1]'(x) of Eq.
(12) and that this in turn reduces to unity for x ~0,
leaving for Eq. (23) the ideal Fermi gas energy
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TABLE V. Essentially exact values of first through fourth derivatives in A, of the ladder energy Eq.
(9), obtained by differencing techniques, for several values of x =kFc.

0.25
0.50
0.75
1

1.5
2
3

—e](x)

0.185 384
0.307 217 9
0.408 208 2
0.451 562
0.490 915
0.476 018
0.368 20

—eq(x)

0.038 169 2
0.029 192 8
0.016 954
0.007 1704
0.002 395 45
0.000 727
0.000 172

—e3(x)

0.008 254 6
0.003 143 6
0.000 934 14
0.000 170 7
0.000 023 8

0.000 003 81
0,000 000 33

—e4(x)

0.001 769 3
0.000 362 3
0.000 061
0.000 005 6
0.000 000 429
0.000 000 039 8
0.000 000 001 56

3A kF/10m, as it should.
Figure 4 shows plots of Eq. (23) as a function of densi-

ty p in units of nuclear saturation density p„,=0.17
frn, for the HCSW parameters mentioned before, Eq.
(9). Some exact ladder energies deduced from Table IV
are also included as open circles. Note the rapid conver-
gence from first, [1/0)(A, ), through fourth, [4/0](A, ),
-order perturbation theory.

The results, as they stand, appear to be extremely reli-
able to densities considerably beyond ps„ for this partic-
ular two-body interaction. They can still be improved,
for example, by reducing the discrepancy (Fig. 2) be-
tween the exact ladder ep(x) and the adopted Fade ap-
proximant by considering both fractional and two-point
modifications for the hard-sphere term also. At any
rate, even without such improvements our results are
sufficiently promising that we proceed to analyze the
complete low-density expansion.

B. Complete energy

of all x and x terms will now be the complete ones for
the ground-state low-density energy expansion. The
constant terms plus the coefficients of the x terms will be
the same as the ladder ones since, as already mentioned,
the ladder approximation correctly reproduces the first
two corrections to the ideal Fermi gas in the low-density
expansion.

For the hard-sphere term eo(x) we now take the
[1/3] (x ) representation [Eq. (18) of Ref. 11] of the
complete series. This has a second-order (uncertainty
principle) pole at x =x~ = l. 939 15 corresponding to the
(random close-packing) Bernal density p~ =xs /
(3~ c ) =0.1741po, where po

——&2/c is the regular
close-packing density determining a face-centered-cubic
arrangement of hard spheres of diameter c. That this
predicted value of Fermion pz is reasonable has been
discussed in Ref. 18 within the context of random close
packing for boson as well as for classical hard spheres.

We use for e, (x) the two-point, fractional Pade repre-
sentation found for the ladder case, namely, the

We now consider the complete low-density expansion
for the HCSW potential studied in Sec. III A in the
ladder approximation. We take from Appendix B of
Ref. 11 the appropriate series expressions for e;(x),
(i =1,2, 3, and 4). The series are identical in form to
Eqs. (10) for the ladder case except that the coefficients

E/N
(7MeV)

0

-10

-20

-30

rp

0.6—

0.3—

X
, ()

,2I2, '
(x)

E XACT oy
LADDE. R g

HCSWLA2
/

/ -30

4/0], [~r~]

10 Psat
I

[wo], [4io], [w~], [vz]

0
0

40 — E/N
(7MeV)

FIG. 3. Plot of fractional, two-point Fade approximant, Eq.
(22a), deduced as explained in text, compared to exact ladder
energies e &(x) of Table V (circled dots) for two-species fermion
matter interacting via hard-core square-well (HCSW) pair po-
tentials.

FIG. 4. Ground-state ladder energy (23) deduced from Fade
analysis, compared with exact ladder energies of Table IV (cir-
cled dots) as function of density in units of nuclear saturation
density p„,=0.17 fm . Lower graph is detail of upper graph
around the saturation minimum.
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[ [2//2](x) I
' ', but based, of course, on the coefficients

associated with the complete case.
Here the two points of interest for the approximants

are x =0 and x =xz ——1.93915, rather than x =0 and
x =2 as in the ladder case. The following argument
shows how the value of e, (x) at x =xe can be deduced.
The energy per particle has the form

E
N

A kF

10 m N„
+—g E„A.", (24)

with the first-order correction formally given by

N

XE1 —— Vrjer, —C

j=1 i=1
(25)

XE1/N = ——Vo pa R —11
4~

2 3
at p=p~ . (26)

That is to say, the first-order (potential) energy per parti-
cle should just be that of the number of sphere centers
present within the (spherical) range R of the attractive
square well, minus one. Moreover, we expect that the
higher-order energies kE„ /X (n =2, 3, . . . ) should near-
ly vanish for p=pz. By previous definitions the right-
hand side of (26) becomes

where V(r,j ) is given by Eq. (7) and P refers to the
(unspecified) many-body ground-state wave function of
the pure hard-sphere reference system. We now argue
that near the Bernal density pz we must have

A' x 1.031 341(a+1) —1
2~

mc 7.520 605m
(27)

and thus, for the values of a, c, A /m, and xz quoted be-
fore,

e i (xe ) = —0. 502 141 2 . (28)

This is very close to the value e'i' "(2)=—0.476018 of
Table V used to construct the ladder, two-point, frac-
tional Pade approximant I [2//2](x) I

'~ . We shall in-
stead use (28) for the complete case.

The shapes of the extrapolants (22) corresponding to
the complete case turned out to look reasonable except
for ez(x)=A2I[0/3](x)I' which has a pole around
x =1, which obviously is very undesirable. In fact, the
standard third-order approximant [0/3](x) also has a
pole. We thus augment our original [[0/3](x) I

'~ ' ex-
trapolant to the two-point, fractional Pade approximant
[[2//2](x) I

' with the extra condition ez(xz ) =0.
Similarly, the [0/3] approximants for e3(x) and e4(x) are
likewise augmented, with ei(xe ) =e4(xe ) =0. The solid
curves of Fig. 5 are the results, compared with the
ladder (dashed) curves resulting from Eqs. (22). Note
that the e;(x)'s obtained with the present procedure mir-
ror the behavior of the exact e;(x)'s obtained in Refs. 10
and 11 from a perturbation treatment of coreless,
square-well fermions. Namely, e, (x) increases with den-
sity but e2(x), e3(x), and e4(x) rapidly decrease with
density as well as with order for fixed density. This out-
come is judged to be of considerable importance.

Finally then, the energy per particle is given (in di-
mensionless form), for c =0.4 fm and a =22/7, by

= 5.230 82(p!p„,) ( [ [1/3](x) I
—0.370 523x [ [2//2](x) j

'~ 1,
7 MeV

—0. 148 207x I [2//2](x) I
'~ k —0.059 989x I [2//2](x) I

'~
A,

3

—0.024 309x [ [2//2](x) I
'i

A, — ) ="5.23082(p/p„, )
i [L/M](A )

(L +M &4), (29)

where
[L!M](X)~ [[1/3](x)j ~ 1 . (30)

A, ~O x~O
In Fig. 6 we display several A, Pade approximants to the
complete energy per particle (29) for A, =2.315051 as
quoted before. We observed again, rapid convergence,
say, from first-order [1/0](k) through fourth-order
[4/0](A, ), (bottom). Note that on the whole, the ladder
theory tends to give larger binding, as well as denser sat-
uration, as compared with the complete theory. Neu-
tron rnatter is of course not expected to be bound —just
from the semiempirical mass formula —since the asym-
metry energy is positive and larger in magnitude (by
about 7 MeV) than the negative volume energy.

We thus turn to an even more realistic HCSW interac-
tion where we shall find the analyses of this section ex-
tremely useful.

IV. BAKER-HIND-KAHANE NEUTRONS

A more realistic, but still HCSW, nucleon-nucleon po-
tential is that proposed in Ref. 25. This is the same as
the HCSW form considered in Sec. III except that there
is no attractive welI for odd relative angular momentum
states to reflect more closely empirical two-nucleon
scattering data. It gives atflp1«

——5.39, rptzlp1«
——1.71 fm,

a„„s„,= —24fm, ro„„s&„——2. 14 fm (instead of 2.6 fm),
E„;„1«———2.20 MeV, and the S-wave phase shift be-
comes zero at around E„b—150 MeV (instead of -200
MeV). As odd relative angular momentum attractions
enter into the low-density expansion for the ground-state
energy (1) only via the P wave scattering qua-ntity A, (0),
i.e., in the kF term of the energy per particle, and as
A &(0) is expanded (Appendix A of Ref. 11) in powers of
A, /(1+a), it is sufficient to set equal to zero all terms in
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FIG. 5. Comparison between ladder energies and complete
energies, extrapolated as explained in text.

the energy expansion (Appendix B of Ref. 11 in
1/(1+a) to obtain the corresponding expansion for the
BHK potential. The appropriate value of k is now
2.368 705.

For e;(x) (i =1,2, 3, and 4) we first attempted using
the forms (22) suggested by the ladder energy study but

O.+ BHK

soon adopted the two-point, fractional forms used in the
HCSW potential in Eq. (29). These are exemplified for
both the ladder (dashed curves) and complete (solid
curves) cases, in Fig. 7, and a glance at these shapes sug-
gests the extrapolations to be adequate. The e&(x) ap-
proximant in the complete case develops a pole, Fig. 7
(top), but safely beyond the physical region of densities
0&x &x& ——1.93915.

Substituting the approximants for the complete case of
Fig. 7 into Eq. (29), we arrive at the results plotted in
Fig. 8 for the energy per particle versus density in units
of the nuclear saturation density p„,=0. 17 fm
Again, convergence in the perturbation treatment is
quite satisfactory, third- and fourth-order approximants
practically coinciding. The vertical bar at p=p„, indi-
cates the spread of values for the energy per particle of
neutron matter predicted by various semiempirical mass
formulas (where one puts Z =0, N = 3 ~ oo, and
e =0). These date from 1936 to 1971. The approximant
labeled [0/0](A. ) in Fig. 11 refers to the hard-sphere Fer-
mi fiuid. The [2/2](A, ) approximant has not been plot-
ted; it develops a pole at p//p„, =0.2 and was hence dis-
carded. Our converged results (thick curve) are seen to
lie almost at the midpoint of the semiempirical value un-
certainty. For comparison, we also display the unpub-
lished variational Monte Carlo (labeled V-MC) results
using a Jastrow correlation function

-40-
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(7MeV }
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[3/o]
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I/OI~,

[I/I], [4/0]
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0.1

-e, (x)

te

4(X)

X

2

0.04 ] "'(x)

-20 0.02

-25-

-30
E/N

(7MeV)
[Hcswcoz )

FIG. 6. Same as Fig. 4 but based on the complete low-
density expansion, using, however, the fractional Pade extrapo-
lants for e;(x) complete shown in Fig. 5. Solid curves denote
complete results, whereas dashed curves are for ladder results.

2

FIG. 7. Comparison of e](x) (upper) represented by Fq.
(22a) based on the ladder (dashed) and on the complete (sol&d)
low-density expansions, for Baker-Hind-Kahane (BHK) hard-
core square-well interacting neutron matter; same for e2(x)
(lower) and Eq. (22b) for ladder and as Eq. (29) for complete
low-density expansion. The open circle in the second-order
case locates the Bernal density x& ——1.93915 where the two-
point fractional, density Pade approximants are constrained to
vanish in second, third, and fourth order.
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V —MC

E/N
(7Mevj

[z/~] [i/2]
[zr~], [~r s] () )

FIG. 8. Complete ground-state energy per particle (in units
of 7 MeV) vs density (in units of nuclear saturation density

p„,=0. 17 fm ) for BHK neutron matter as represented by
various Pade approximants fL /M](A, ) in the attractive-well
coupling constant A, =2.368705 [see Eq. (29)]. The long verti-
cal bar denotes the spread in semiempirical mass formula
values as reported in Ref. 26. The approximant [0/0]( k )

refers to the hard-sphere fluid without attractions. Finally, the
short vertical bars stand for the variational Monte Carlo re-
sults of Schmidt.

0, r&c
1 —e "" ' r~cf(r)= .

and fixed specific values of p. They provide a strict
upper bound to the exact energy. The [1/1](A, ) approxi-
mant emerges as an apparent Io~er bound.

V. CONCLUSIONS

nonzero densities and attractive coupling strengths.
The illustrations refer to neutron mass interacting via

(a) the Bethe homework-problem potential, which is
purely repulsive, (b) a hard-core —plus —attractive-
square-well (HCSW) potential, and (c) the same but with
no attraction in states of odd relative angular momen-
tum, i.e., the BHK potential.

For the Bethe homework-problem potential neutrons
we find, up to about 24 times nuclear saturation density,
energy per particle values everywhere slightly below the
presumably best available variational calculation, name-
ly, that of Monte Carlo techniques applied to a Jastrow
correlated trial function.

For hard-core —plus —attractive-square-well neutrons
we develop our density Pade techniques to fit the exact
ladder approximation energies as functions of density.
The extrapolants thus derived are applied, with small
but crucial changes, to predict the ground-state energy
of the so-called complete theory whose low-density ex-
pansion contains twice as many correct virial-like
coefficients as the ladder theory, namely, four. Finally,
the more realistic hard-core square-well two-nucleon
BHK potential is employed to construct an equation of
state for neutron matter which is compared with the pre-
dictions of several semiempirical mass formulas. This
comparison is probably to be taken with caution since
real neutron mass, being too far away from the "/3-
stability line, " may not be adequately described by sem-
iernpirical nucleon mass formulas. However, we include
these data for lack of any better, even vaguely sugges-
tive, results for the ground-state energy of neutron
mat ter, save for the variational Monte Carlo results
which are an upper bound to the true result for the
Hamiltonian treated.

%'e conclude that the methods used, developed within
the context of the exactly soluble ladder problem, might
possibly lead to very reliable calculations of the ground-
state energy per particle of fermion matter. However,
the ultimate test of their reliability will only be had if
and when the eagerly awaited results of GFMC comput-
er simulations for interacting re ny-fermion systems be-
come available.

We have illustrated a new perturbation scheme for the
ground-state energy of quantum-mechanical ferrnion
fluids which considers as the unperturbed state not the
ideal fermion gas but the fermion hard-sphere Auid. The
scheme is based on the weil-known low-density expan-
sions for the ground-state energy of an interacting
many-fermion system, the coefficients of which have
been calculated in the literature using the techniques of
quantum-mechanical field theory applied to the many-
body perturbation scheme which starts from the ideal
gas. Our basic tools have been Pade approxirnants and
generalizations thereof, which permit extrapolation to
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