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This paper presents perturbation calculations using the density matrix to describe the nearly de-

generate four-wave-mixing spectral response in resonant systems subject to state-specific reservoir

coupling. The calculations provide physical insight into the origin of narrow resonances observed
in recent experimental work in atomic sodium and ultranarrow resonances in crystals. The calcu-
lations are for systems which are homogeneously broadened as well as systems which are inhomo-

geneously broadened due to velocity effects or random crystal fields. The calculations show that it
is possible to eliminate the effects of either kind of broadening and measure the decay rate of the

dipole coherence as well as the decay rates of both states of the transition. Furthermore, the cal-
culations indicate that the method of cross-correlated optical fields which was used to eliminate
the effects of laser jitter in longitudinal relaxation rate measurements could be extended to the
measurements of slow dephasing rates in crystals.

INTRODUCTION

The study of line shapes in nearly degenerate back-
ward four-wave mixing (NDFWM) can provide impor-
tant spectroscopic information about the relaxation of
states or coherent superposition states due to reservoir
coupling. A common example of this is spontaneous
emission due to coupling to the vacuum radiation field.
Spontaneous emission causes decay of a state as well as
decay of coherence between the states of the radiating
transition. There are also other important forms of cou-
pling to a reservoir. In gas-phase systems, examples of
reservoir coupling include state-changing, velocity-
changing, or phase-interrupting collisions. In solids in
addition to spontaneous emission, examples of reservoir
coupling include phonon and impurity scattering. De-
cay of coherence can also be caused by fluctuating fields
in a crystal.

Furthermore, NDFWM is of great practical impor-
tance. The NDFWM spectral response is related to the
reAectivity bandwidth associated with optical phase con-
jugate mirrors produced in backward four-wave mixing.
Such mirrors are of potential importance to real-time
aberration correction in optical systems.

This paper describes the spectral response of back-
ward NDFWM in a two-level system in the presence of
state-specific reservoir coupling. The NDFWM response
is defined as the line shape associated with the signal as
a function of frequency of any of the three input beams.
A number of line shapes are discussed for different cases
of state-specific reservoir coupling. The model provides
a simple physical explanation of the origin of collision-
induced subnatural narrow resonances in Doppler-
broadened gases' and the ultranarrow resonances in
solids observed in earlier experiments. The physics is
shown to be similar to the origin of pressure-induced ex-
tra resonances in FWM (PIER4) first discussed by

Bloembergen (see also review by Rothberg ) and the
narrow spectral holes and antiholes observed in modula-
tion spectroscopy discussed in detail by Boyd. '

These effects arise due to an incomplete cancellation of
quantum-mechanical amplitudes. ' ' We also extend
the calculation to include the NDFWM spectral
response in a medium inhomogeneously broadened by
random crystal fields. We show that in some cases, it is
possible to eliminate the effects of both inhomogeneous
broadening and laser jitter in the measurement of the
effective transverse and longitudinal relaxation rate.

MODEL

Nearly degenerate four-wave mixing is described by a
third-order nonlinear optical susceptibility which can be
evaluated using third-order perturbation theory and
double-sided Feynman diagrams. ' ' General expres-
sions for all 48 terms of the third-order susceptibility
have been given by many authors. ' ' In this calcula-
tion, we rederive the third-order nonlinear optical sus-
ceptibility for a two-level system for backward NDFWM
in order to obtain a physical understanding of the origin
of NDFWM spectral profiles. The calculation takes into
account spontaneous emission into the ground state
along with decays of both states to the reservoir and
pure dephasing of the dipole. Because of its generality
to multilevel systems and its extension to the treatment
of nonexponential decay coupling to the reservoir, we
use the density-matrix approach first pioneered by
Bloernbergen and Shen with a classical description of
the radiation fields. While this calculation is based on
assuming exponential decays for the different matrix ele-
ments, the density-matrix equations are particularly
powerful since they can be generalized to a more com-
plete quantum-mechanical transport equation.

' '

The specific form of the density-matrix equation is
given as
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where the v. V term accounts for motion and v is the
classical velocity associated with the center of mass, Ho
is the Hamiltonian for the unperturbed system, V is the
classical electromagnetic interaction of the form —p.E,

Ik x —&cu t
where E= —,

' g E,e +c.c. is summed over all

electromagnetic fields. I is the decay operator; A is the
source term to account for incoherent pumping. The
other two terms, (dpldt) ~,~ and (dpldt)

~ ~„,account
for decay into a state due to spontaneous emission from
a higher state and decay of coherence due to dephasing,
respectively.

Unlike our earlier work, we do not include any source
terms from the reservoir. For example, if we are
describing a gas-phase system with collisions, the reser-
voir decay terms account for loss of an atom at velocity
U due to a velocity-changing collision. However, we do
not allow for the possibility of an atom in a given state
at velocity U' to undergo a velocity-changing collision
and have its velocity changed to v. This means we will
fail to describe such important behavior as collision-
induced velocity hole filling.

The polarization is given by P =Tr(pp). If the system
is a gas, then p is a function of velocity, and the polar-
ization must be integrated over the velocity distribution.
If the system is a solid and inhomogeneously broadened
due to random crystal fields, the v. V does not contribute
to the density-matrix equation, but the polarization must
be integrated over the distribution describing the energy
levels. This integration is a very important part of the
problem and can greatly effect the results and physical
interpretation.

To illustrate the physics observed in the experiments,
we consider a simple two-level system shown in Fig. l.
The k; represent incoherent pumping into level i, and
the corresponding operator in the Eq. (1) has the form
(i

~

A
~
j)=k;5;~. The I are exponential decays to the

reservoir due to spontaneous emission, inelastic col-
lisions, or other nonradiative-type transitions. The

Ef Eb

Ep

FIG. l. Energy-level diagram for a general two-level system.
For these calculations, the assumed experimental configuration
is for backward NDFWM. Figure 1 shows the appropriate ar-
rangement of incoming optical beams.

a,
1 =y.P

In the rotating-wave approximation (and noting

p;J =p~*; ), the equations for the matrix elements become

+ 'V P11 [ 12P21 '] ~y1P11at

+ 1 f1yq+22+1flk, 1

a T+v V P22 [ ~12P21 c c 1 1~y2P22+1~~2
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a +v.V P12= —&~ap12+ [I'12p22 —P» I'»]
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—l A3 ph| 12

where y2 ——y2+y, ~
and y~q

———,'(y2+y1}+y~h. For level

degeneracies, one must be more careful about correctly
including the effects of source terms on coherences be-
tween degenerate states and correctly accounting for the
vector nature of the interaction term —p-E.

Figure 1 also shows the optical beam configuration for
backward NDFWM. There are three input fields, desig-
nated E, , where a =f, b, or p for forward pump, back-
ward pump, or probe, respectively. The nonlinear opti-
cal interaction of interest follows from a third-order
nonlinear optical polarization of the form
P' '=7' 'E&.EI,E~* ~ The phase-matching conditions for
the wave vectors result in the signal field, E„counter-
propagating with respect to the probe beam, provided
that the two pump beams are exactly counterpropagat-
ing. By energy conservation, if the pump beams are at
frequency ~ and the probe beam is at frequency

operator has the form (i
~

I
~ j ) =y;,.5;~. . Note that

these decays contribute to the dephasing of the dipole.
This is seen by noting that these terms contribute to the
decay of the off-diagonal matrix element, the optical
coherence p, 2. In addition to this contribution, to the
decay of the dipole coherence, there is additiona1 de-
phasing. This term in the general equation is given by
(i

~

(r)plr)t }
~ ~h ~

j)= —y~h(1 —5,~). This term repre-
sents so-called pure dephasing because the physical ori-
gin for this term does not contribute to any other de-
cays. (It should be noted that in the earlier work, ' ve-
locity changing collisions and dephasing collisions arise
from the same scattering event. Hence, the effects of
velocity-changing collisions on the diagonal matrix ele-
ments, causing loss or generation of a state in a specific
velocity group, and collision-induced dephasing, causing
loss of dipole coherence and frequency shift of the reso-
nance, is handled by a single operator. However, physi-
cally, the origin of the resonant response does not de-
pend on these details. ) Finally, state 2 can decay by
spontaneous emission back to 1. This is accounted for
by a source term for state 1 given by
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co~ =co+5, then the signal frequency is at co —6.
The equation of motion for the density operator is

solved to third order in the electric field. Using Fig. 1,
we can associate a simple physical interpretation for the
origin of the signal wave. For a simple system such as
this (in the absence of two-photon resonances), there are
two important contributions to the signal. In the first
case, the forward pump and probe interact to form an
effective interference pattern which spatially modulates
the ground-state and excited-state population. This spa-
tial modulation of the population results in a spatial
modulation of the absorption and dispersion. The "grat-
ing" spacing is k/[2sin(0/2)], where 0 is the angle be-
tween the forward pump and probe. If the backward
pump is counterpropagating with respect to the forward

pump, then it Bragg scatters off the grating in the direc-
tion counterpropagating with respect to the incoming
probe. The second case is similar, except that the back-
ward pump and probe interfere with a grating space of
A. /[2cos(0/2)]. In this case, the forward pump scatters
from the spatially modulated population.

DISCUSSION

Initially, we consider a very simple homogeneously
broadened system of two-level atoms with no motion.
For a two-level system, we can ignore field polarization
effects. The nonlinear polarization for the case of fre-
quency degenerate pump beams at frequency co, and
probe beam at frequency co =~+6 is given by

P' = —2ND XI+&X&e I(b+iyz&) '+[(—6 —5)+iyz&] 'I[( —3+5)—iyzz]

SP

T
32 71

(5—i@i) + I+~ —1 Vsp

32 71
(5 i@2 —) ' +c.c.

where b, is the pump resonance detuning A=co —~o.
is the Rabi fiopping frequency p&2E, /fi associ. ated with
optical field E, . No is the equilibrium population
difference:

1

(p» —pz2).,=
1

r

2 3 sp1—
'V2

In the limit of weak coupling (no pump depletion and no
coupling of energy to the probe beam) the field equations
decouple and the frequency dependence (as a function of
5) of the signal intensity is obtained by looking at the ab-
solute value squared of the polarization. Equation (5)
shows a number of denominators with resonances as a
function of 6. In general, there are resonances at 6=0
and +6 with widths and amplitudes determined by the
various state decays and dephasing.

In the first case, we examine Eq. (5) in the limit that
the system is absolutely closed; i.e., y1 ——y2 ——0 and there
is no additional dephasing, mph

——0 and mph ——y,p/2. In
this case state

I

1) is the ground state, and we take
A,

&
——X2 ——0 and No=(p»), q. Figure 2(a) shows the

NDFWM spectrum as a function of pump-probe detun-
ing, 5. (In this discussion, all parameters are put in di-
mensionless form by normalizing with respect to the
spontaneous emission rate. ) There are two resonances.
The first occurs when the probe frequency is coincident
with the resonant frequency coo at 6= —A. The second
at 6=6 corresponds to the signal frequency being reso-
nant with coo. The resonances are associated with the di-
pole coherence and the width of the resonances are
determined by yph. The resonances are expected at these
values of 6 because they correspond to the frequency of
the probe where either the probe resonates with the di-
pole in absorption, or the signal resonates with the di-
pole in emission.

The individual time-ordered perturbation sequences

are characterized by a resonance at 6 =0 associated with
population dynamics (seen in the second-order contribu-
tion to the perturbation sequence), though from Fig. 2(a)
there is obviously no such resonance. The nonlinear
response in the vicinity of 6=0 is determined in part by
the dynamics of both the ground state and the excited
state. The dynamics are determined by the rate at which
a specific state decays. In this paper, we have restricted
the discussion to a simple two-level system and are not
considering excited-state or ground-state coherences.
Hence, the tuning of 6 can be interpreted as a temporal
modulation of the populations. We first consider the
origin of the resonance for each of the states separately

(b
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EA

CLP

—IO

I

-5 0 5 IO -IO

Probe Offset Frequency

l I l

-5 0 5 IO

Probe Offset Frequency

FIG. 2. NDFWM spectrum for 6=3 for various decays.
All frequencies and decays are normalized to the spontaneous
emission rate. (a) The system is closed and there is no addi-
tional dePhasing (yl ——y~

——yph
——0). (b) Same as (a), excePt ad-

ditional dephasing has been added, yph ——0.5. (c) y I ——0. 1,
1 yph:0* (d) yph 0.5 yi =0.1, and y2 ——0.05. (See text

for discussion. )
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and then examine why in some cases, the resonance is
not observed.

The perturbation of state
~

2) caused by the optical
field exciting atoms from state

~

1 ) decays at a rate
determined by the total decay rate out of state

~

2).
The perturbation of state

~

1 ) caused by the optical field
exciting atoms to state

~

2 ) decays with a rate deter-
mined by the net decay rate of state

~

2) back down to
state

~

1) due to spontaneous emission (a "filling in" of
state

~

1)) plus the decay rate out of state
~

1). Howev-
er, for y, =y2 (for a closed system, population is con-
served and yi ——y2 ——0,) the perturbation of state

~

1) de-
cays at exactly the same rate as state

~

2); hence, there
is no relaxation of the ground state determined by just
y, : The resonance width determined by y, is multiplied
by an overall factor of zero [determined by
1 —y, /(yz —y, )]. For a closed system, this result is

physically expected since p» +p22
——No for all time.

(The case for different state decays is discussed below. )

For the excited state, the perturbation of state
~

2) is
described by a resonant denominator with a width deter-
mined by the relaxation rate of state

~

2). The overall
multiplier of this factor is not zero [I+y,~/(y2 —yi)].
The resonance occurs at second order in the perturba-
tion and is due to the fact that at second order the
response of the system is determined by the dynamics of
the diagonal matrix elements or population, in this case
state

~

2). To understand, however, why this resonance
is not observed under the conditions of Fig. 2(a), we note
that formally, the numerator obtained by combining the
two terms in the first set of square brackets is
—(5 2iy ~&)—, and for a closed system, with no addition-
al dephasing, y~&

——y,~ /2. In addition, y2
——y,~, and the

numerator exactly cancels the resonant denominator,
thus accounting for the lack of resonance at 6=0. This
represents an interference of two different time-ordered
perturbation sequences for the density matrix operator
such as the type represented by Gustafson-Yee diagrams.

However, the strength of this interference is reduced
in the presence of additional dephasing, y~&, or nonzero
state decays. Hence, in a closed system, a third reso-
nance at 6=0 will be observed in the presence of addi-
tional dephasing. This behavior is shown in Fig. 2(b),
and can be seen in the original equations of Bloember-
gen. When these resonances are caused by the presence
of pure dephasing, they are called dephasing-induced
coherent emission resonances and have been discussed
by Andrews and Hochstrasser. However, the above
description shows that these resonances can also be
caused by state decay as well as "pure dephasing" and as
the discussion below will show, the spectral response can
be extremely narrow if y ] « y z. Finally, for a closed
system in the presence of additional dephasing, the am-
plitude of the 6=0 resonance is determined by y~i, and
the width is determined by the spontaneous emission
lifetime.

We now consider the two-level system with state cou-
pling to the reservoir; i.e., y& and yz are nonzero. For
small y; and for y] ——y2 there is little difference in the
NDFWM line shape with Fig. 2(a) except for some slight
additional broadening because of the additional dephas-

ing due to the state decay, and some slight filling in
around 6=0 due to the fact that the interference be-
tween the first-order pump and probe interactions is no
longer complete. However, Fig. 2(c) shows the
NDFWM response when y& &y2. A very narrow reso-
nance is observed with a width determined by y&. To
understand the origin of this behavior, we note that as
before, when the decays are equal, the resonant enhance-
ment at 6=0 due to the response of the upper-state dy-
namics is reduced by the interference between the two
dispersive contributions. In addition, the ground-state
dynamics are determined by the decay of the excited
state back to the ground state in addition to the net de-
cay out of the ground state. Hence, as before, there is
no contribution from the dynamics associated with the
pure decay of the ground state (the factor multiplying
the ground state 5=0 resonance is still zero). However,
when y & & yz, the ground-state perturbation does not de-
cay as fast as the upper state. Hence, there is a residual
nonlinear contribution remaining due to the ground
state. The dynamics of this nonlinear response is deter-
mined by y&, and we obtain a resonance at 6=0 with a
width given by y&. In the case of an experiment where
the presence and magnitudes of the state-specific reser-
voir coupling rates is controllable from zero to some
finite value, it would appear to be an extra resonance, of
a type similar to PIER4 resonances referenced earlier.

However, when the dephasing is large, the sidebands
associated with resonances at 6=+8 broaden and disap-
pear altogether, leaving a single Lorentzian profile with
a width given by y&. In the limit of very large dephasing
(y~»&y&, yz, y,~), this response is very similar to the
work in Cr: YA103. In that work, the model was a
three-level system; however, the physical result of decay
to a metastable state was to create a long-lived perturba-
tion in the ground state with the ground-state dynamics
determined by the decay of the metastable. We see,
however, that these interactions are also viewed in terms
of temporal modulations of the populations at frequency
6 and, hence, are closely related to the population pulsa-
tion effects which give rise to spectral holes in the non-
linear absorption spectrum of homogeneously broadened
material. ' '

In the discussion below, we will generalize the calcula-
tion to include the effects of velocity-induced inhomo-
geneous broadening; however, the physics of linewidth
effects of reservoir coupling are not effected by this addi-
tion. In the earlier experiment, ' we observed collision-
induced line narrowing. For these experiments, we de-
scribed the observations for 6=0 because of improved
signal-to-noise ratio (the effects were also observed for
finite h. ) For b, =O, Eq. (5) predicts a single resonance,
corresponding to the merging of the two resonances in
Fig. 2(a), with the width determined by the spontaneous
emission decay rate (y i

——yq ——0). In the presence of
state-specific decay, however, where y& & y2, the line nar-
rows to a linewidth given by y& which would have been
anticipated from Fig. 2 in the limit b, ~O. (The physical
origin of y; for these experiments is either velocity-
changing or state-changing collisions. ) We see from the
analysis, however, that this resonance is the result of a
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finite contribution from the ground-state dynamics.
Hence, though this resonance appears as a narrowing of
the spectral response, the physical origin is more
correctly understood as arising from a resonance which
is observed only in the presence of state specific reservoir
coupling. This behavior is similar to the pressure-
induced resonances mentioned earlier " if the physical
origin of y i and y 2 is due to collisions. We note, howev-
er, that there is really no fundamental difference between
this kind of resonance and the kind of resonance seen in
solids such as Cr:YA I 03 ~

It should be noted that in many experiments, one de-
cay is significant compared to other decays resulting in
line shapes which are often nearly Lorentzian. This is
not seen in the figures shown because for the sake of il-
lustration, the different decay rates were chosen to be
comparable though different A Lorentzian line shape is
unusual for nonlinear spectroscopy signatures in homo-

geneously broadened systems, but was seen experimen-
tally in the Cr:YA 103 measurements. This is in con-
trast to the fully degenerate four-wave mixing response
where the spectral profile (in the limit of weak pumps) is
given by the cube of a Lorentzian. '

Finally, we consider the case where y 2 & y &
. In this

case, we note that as a result of interference between
ground-state and excited-state dynamics it is possible to
produce a NDFWM spectra with a dip in the middle as
shown in Fig. 2(d). The figure shows a NDFWM spec-
trum but with y i

——O. 1, y 2 ——0.05, and f ph
We now consider the case where the atoms are mov-

ing, and we must consider Doppler effects and thermal
washout described by v V. In this case, after velocity in-
tegration, we find that in the extreme Doppler limit the
polarization is given by (assuming a fully collinear
geometry and a thermal velocity distribution)

p(3) cVo —i [(cu—6)t+k .r] 21 77
~ 1 /2

8ku o
Pi2II'I b 1&e

5 —2b, 2i (—y i2+ y,p/2+ yah)

sp 1

'V z

+1+ — +c.c.Tsp 1

'V —P t 6 —1 3' z

In the Doppler limit, we have ignored the interference
term between the backward pump and probe (small spac-
ing grating) because this term is extremely small due to
washout by thermal motion. In the limit that 6 =0, the
back grating effects are discussed very thoroughly by
Lam and Abrams. Physically, the thermal motion
washout results when the transit time between fringes is
small compared to the effective longitudinal relaxation
rate. This motion has the effect of lowering the contrast
ratio between the fringes that result between the back-
ward pump and probe that spatially modulate the popu-
lation difference, resulting in a reduced scattering
eKciency for the forward pump.

In this case, we have considered the problem where
the reservoir coupling may be due to velocity-changing
or state-changing collisions. In the limit that we do not
consider velocity-changing collisions into the resonant
velocity group or consider collision-induced frequency
shifts, we find that this equation follows directly from
our earlier work. The analytical description in the ear-
lier analysis was more complete; however, the physical
implications of state-changing collisions is not as easily
seen. To illustrate the behavior, Fig. 3(a) shows the
NDFWM spectral response as a function of pump-probe
detuning for a system in the Doppler limit when y &

——y 2.
When the pump beam is tuned off resonance (with
respect to the zero velocity group), we see that two reso-
nances are observed. The first resonance occurs at 6 =0
and has a width determined by the spontaneous emission
rate. The second resonance occurs at 6 =2A and has a
width determined by the total dephasing rate. In the ab-
sence of state-specific reservoir coupli ng, these results
are similar to those of Yariv and Nilsen. Again, as we
examine the polarization, we see that the resonance at

O

-I0 -5 0 5 10 -IO -5 0 5 to
Probe Offset Fr equ ency Probe Offset Frequency

FIR. 3. NDFWM spectrum in a closed system inhomogene-
ousl y broadened by velocity eA'ects at 6 =2. 5 . (All frequencies
and decays normalized to y,p. ) (a) Closed system with
y l

—y 2
——y» ——0. (b) The same conditions as (a) except now

p ph: 0.25. (See text for discussion. )

6 =0 has a width given by y &
but does not contribute for

the same reasons as given above. However, unlike the
homogeneously broadened system, even when the system
is closed, a resonance occurs at 6 =0.

The physical origin of the two resonances is seen by
considering the motion of the holes in velocity space as a
function of pump-probe detuning. Figure 4 shows the
ground-state velocity distribution assuming the pumps
are detuned from resonance by an amount 5 . Assuming
the pumps are degenerate, we find that they burn holes
in the velocity distribution at velocities given by

k .v =O. Two holes are burned corresponding to ve-
locities Doppler shifted into resonance for the backward
and forward pump beams. The probe is detuned and
burns a corresponding hole, according to the amount of
detuning. If the probe is given by m +6, then by energy
conservation, the signal is at frequency ~—6. A corre-
sponding hole is burned by the signal, but the signal k
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FIG. 4. A schematic of the origin of NDFWM resonances
in Doppler-broadened material. This is a plot of the ground-
state velocity distribution showing four velocity holes burned

by the two frequency degenerate pumps, the probe beam, and
the signal ~

vector is shifted by a minus sign since the signal is prop-
agating backward with respect to the probe (according
to the phase-matching conditions). Resonances in the
signal will then be observed when holes can be made to
overlap. In this case, the probe hole can be adjusted.
The two resonances described above are observed to
occur when 5=0 and 5=26. The first corresponds to
when the probe hole aligns with forward pump hole and
the second corresponds to when the signal hole aligns
with the forward pump hole. The remaining resonance
at 6= —2A corresponds to the probe hole aligning with
backward pump hole, but is usually not observed inside
the Doppler limit because of thermal washout described
above. Hence, we see that the origin of the observed res-
onant structure can be interpreted in terms of velocity
hole burning pictures.

We now consider the effect of reservoir coupling.
First, as the system begins to experience additional pure
dephasing, we see in Fig. 3(b) that, as expected, the
second resonance begins to broaden. To examine the
case of state specific reservoir coupling we consider the
case for b, =O (corresponding to experiments'). Curve
(a) in Fig. 5 shows the NDFWM response, again with a
width determined by the total dephasing for the case
y1 ——y2-0 and yah ——0. As the state decay rates increase

-10 -5 0 5
Probe Offset Frequency

)0

FIG. 5. (a) In order to show the apparent collisional nar-
rowing observed in the atomic sodium experiments which were
performed with 5=0, we show the predicted NDFWM spec-
trum under these conditions with no state-specific decay. (y;
took on identical values corresponding to the transit time
across the beam. The value is 0.001.) (b) In the presence of ve-

locity or state-changing collisions, the y; become different

(yl ——0. 1 and y&
——1) resulting an apparent narrowing of the

NDFWM spectrum. However, as shown from the analysis,
this narrowing is really the appearance of a new resonance
with a width due to the ground-state lifetime.

in the presence of state-specific reservoir coupling (due
say to state- or velocity-changing collisions), we see in
curve (b) the line narrows (for yi &yz). Nearly identical
behavior is observed off resonance (b,&0) in both the
theory and experiment; however, in the experiment, the
signal to noise becomes poor due to collision-induced op-
tical pumping. Agreement between theory and experi-
ment is excellent at low pressures. At high pressures
this theory becomes inadequate, and it is necessary to
correctly account for collisional processes that thermal-
ize the effects of velocity hole burning. " '

Finally, we consider NDFWM in material inhomo-
geneously broadened by random crystal fields. In this
case, we simply assume a normal distribution in coo and
integrate Eq. (5) over coo. In the limit of extreme
broadening, the result for the polarization is

(3) O +
—i [(tt) —5)t+k r]N

8~I 12 f b p

2i~'"
—25',/ —5/b + 2i ( y, ~+y, i, /2+

yah�

)

Xsp
T

V1
+

~pf ~$1 ~pf +~fb ~y1

+1+ T
TZ —3'1

+
f —1 P2 5pf +6fb —1 P

+C.C )

where 8 is the inhomogeneous width, and 6, , is ~; —co .
In this polarization, we can identify two terms as fp
[ I /(5pf y J ) and 1/(5 &

—1 y'2 ) ] and two terms
as bp [1/(5 &+5&b —iy, ) and 1/(5 &+5&b iy2)]-
These terms describe the dynamics associated with either
the ground state (state 1) or the excited state (state 2)
and are associated with linewidths y, or y'z, respectively.
The terms identified by fp are due to the interaction by

the forward pump and probe, and hence are associated
with the large spacing grating (in a nearly collinear in-
teraction). The terms identified by bp are due to the in-
teraction by the backward pump and probe and hence
are associated with the small spacing grating. In the line
shape discussions which follow, we do not include con-
tributions from the terms identified by bp since these
terms are usually small even in solids because of excita-
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tion diffusion. Many times, these terms can be further
reduced experimentally, however, by rotating the polar-
ization of the backward pump. The magnitude of the
backward pump and probe interaction is then deter-
mined by the strength of the alignment term which is
often small.

For this problem, we notice that there is no depen-
dence on the absolute resonance frequency (except by
way of a Gaussian factor with a width determined by 8"
the broadening is assumed to be large, and the value of
the exponential is taken as 1). This is because the
strength of the interaction for any given atom is the
same for all three input optical fields, independent of the
field propagation direction. The only frequency group
that has a strong interaction with the optical fields is the
group in exact resonance with the fields. Hence there is
no dependence on coo except through the overall proba-
bility factor which determines how many atoms are in
the specific resonance group. These results are similar to
those obtained earlier for polarization spectroscopy tech-
niques in condensed phases.

To appreciate the effects of NDFWM in material in-
homogeneously broadened by random fields, we first
note that in degenerate four-wave mixing, the DFWM
response in Doppler-broadened media is Doppler free.
The line width as a function b, (for 6=0) is determined
by the natural linewidth. Again, the reason is because it
is only for the optical frequency corresponding to reso-
nance for the zero velocity group for which a signal is
observed. The equal but opposite Doppler shift for
counter propagating beams eliminates the signal when
the laser interacts with any other velocity group. This is
not the case if the material is inhomogeneously
broadened by random fields. The spectral width of
DFWM would be determined by the total inhomogene-
ous width. However, if one of the optical beams is de-
tuned in frequency, while the other beams are held fixed,
it becomes possible to measure linewidths associated
with fundamental decay processes, rather than a
linewidth associated with the inhomogeneous width. In
a typical system the probe frequency is detuned with
respect to the pumps, then the linewidth is determined
by the relaxation rates of states 1 and 2 as shown in Fig.
6(a) (5fb ——0). However, if the backward pump beam is
detuned, then the linewidth is given by twice the dipole
coherence relaxation rate, as shown in Fig. 6(b) (note the
scale change on the x axis. ) This kind of spectroscopy is
clearly closely related to hole burning spectroscopy. It
is interesting to note that these results suggest a very
powerful aspect to this kind of spectroscopy. Namely,
using correlated fields, it should be possible to eliminate
the effects of laser jitter on both transverse and longitu-
dinal relaxation rate measurements. In the earlier work,
we demonstrated that the longitudinal relaxation rate
was measured as a function of 5f . Hence, if cof and co

'Io) (b)
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FIG. 6. NDFWM spectrum in a material which is inhomo-
geneously broadened by random crystal fields. In these curves,
mph was taken to be 10 times y,p and y 1

——y2 ——0. In these spec-
tra, it is assumed that the grating formed by the backward
pump and probe is small either because of excitation diffusion
or because the polarization of the backward pump is rotated
giving only a small alignment contribution. (a) The probe
beam is scanned showing a width determined by y,p. (For both
of these measurements, we took 5fb ——0.) (b) The backward
pump beam is scanned, showing a width determined by mph.

are correlated (come from the same laser), then they
have the same jitter, and 6f should be free of jitter, as
we demonstrated. We see now in the current calcula-
tion that the transverse relaxation rate is measured as a
function of 6bf, which if we use correlated fields, would
also be free of laser jitter. The absence of laser jitter in
these measurements is because the nonlinear response is
independent of the absolute resonance frequency.
Hence, the system does not sense changes in the absolute
laser frequency, and it should be possible to measure
very long dephasing times without resorting to the devel-
opment of ultrastable lasers.
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SUMMARY

This paper describes the physical origin of many line
shapes observed in frequency domain NDFWM. While
there is considerable interest in using frequency domain
four-wave mixing to study state specific reservoir cou-
pling and ultrafast phenomena, it is clear from this
analysis that it may become difficult to interpret any
given line shape without having considerable detailed in-
formation on the system from other experiments.

Note added in proof. Since this paper was first submit-
ted, we have experimentally demonstrated the existence
of narrow spikes and dips similar to Fig. 2 in collision-
less systems. These narrow features are induced by radi-
ative decay and are present when either population,
alignment, or orientation is not conserved. Results for
systems that do not conserve population are discussed in
Ref. 39. Results and complete theory for systems that
conserve population but not alignment and orientation
will be discussed elsewhere.
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