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Quantum chaos has been demonstrated in several studies of the interaction between N two-level
quantum systems and a single-mode radiation field interacting in a resonant cavity. It has been
shown that the mechanism for this chaos is dynamically identical to a periodically perturbed,
near-separatrix motion of a pendulum. Identification of this mechanism followed from examina-
tion of the rotating-wave approximation and corrections to this approximation. Our earlier study
established the nature of the corrections on the basis of numerical simulation experiments and
heuristic arguments. In this paper we invoke an averaging procedure which enables us to sys-
tematically establish the form of these corrections. We first apply this procedure to the Rabi rnod-
el in order to illustrate its utility and exhibit its structure, and then we apply it to the more com-
plicated problem of quantum chaos.

I. INTRODUCTION

The question of whether the dynamical chaos ob-
served in classical systems has an analogue in quantum
mechanics has been debated in the recent literature. ' A
model was presented by Belobrov et al. (BZT model)
which strongly indicated that X two-level quantum sys-
tems interacting with a single-mode radiation field in a
resonant cavity could be chaotic. The cavity is tuned to
be resonant with the energy-level spacing of the two-
level systems, and it is the feedback effect of the two-
level systems on the radiation field which is responsible
for the chaos. Belobrov et al. studied the putative chaos
from the perspective of Liapunov exponents, whereas
Milonni et aI. studied essentially the same model from
the viewpoint of power spectra. We subsequently
showed that together with these two approaches it was
possible to isolate the dynamical mechanism responsible
for the chaos. We discovered the dynamical equivalent
of a periodically perturbed Eberly-Chirikov pendulum
hidden in the dynamics of the BZT model. This proved
that the mechanism for quantum chaos in this model is
the same mechanism which is generic for a large class of
classical systems, as was originally demonstrated by
Chirikov for classical, near-resonant systems.

In classical physics, chaos may be readily studied by
looking at phase-space trajectories. Rapid, exponential
separation of initially adjacent trajectories is indicative
of a positive Liapunov exponent which implies chaos.
There is no obvious analogue to phase space for a quan-
turn system. Nevertheless, we took the point of view
that the expectation values of a complete set of observ-
ables may be used to define an effective phase space for a
quantum system. As time progresses, the expectation
values change and a trajectory is produced. Power spec-
tra for components of these trajectories and even
Liapunov exponents can be obtained, just as for classical
dynamical trajectories. When this approach is applied
to the BZT model, five expectation values are involved.
They evolve in time in accord with a system of five cou-

pled first-order, ordinary differential equation which pos-
sess two conservation laws. This implies only three in-
dependent quantities. Three variables is the minimum
number necessary for chaos, although it is not always
sufficient by any means.

When the rotating-wave approximation (RWA) is ap-
plied to these BZT equations, one more conserved quan-
tity is created. This reduces the dynamics to just two in-
dependent variables, which is insufficient for chaos.
Moreover, it renders the problem exactly solvable. We
previously showed that a change of variables in the
RWA converts the dynamics into that of a spherical
pendulum: the Eberly pendulum. With a special choice
of initial conditions, this RWA Eberly pendulum be-
comes a planar pendulum which operates close to its
separatrix: a Chirikov pendulum. We then showed
that the full BZT model amounts to the RWA Eberly-
Chirikov pendulum plus corrections. For relatively
weak coupling between the two-level systems and the ra-
diation field, these corrections take the form of a period-
ic perturbation. With the special initial conditions men-
tioned above, this produces a periodically perturbed,
near-separatrix Chirikov pendulum dynamics, which is
generic for chaos. It is also nonintegrable, but when we
numerically simulate the periodically perturbed Chirikov
pendulum equations, we reproduce the behavior seen in
the full BZT model, in particular the time evolution of
one important component of the trajectory and its power
spectrum.

Our earlier work relied heavily on numerical simula-
tion experiments and heuristic arguments in order to ob-
tain the corrections to the RWA. In this paper we uti-
lize an averaging method which has proved to be highly
useful in classical dynamical systems. ' With it we are
able to systemat ically obtain the corrections to the
RWA, thereby corroborating our earlier numerically
empirical results. This averaging procedure does not
seem to have been previously used in conjunction with
the RWA approach. In order to illustrate its structure
and utility, we first apply it to the Rabi model, which is

36 4321 1987 The American Physical Society



4322 RONALD F. FOX AND JOHN C. EIDSON 36

not chaotic and is much simpler than the BZT model.
The averaging technique easily and naturally produces
the Bloch-Siegert shift" for the Rabi model.

The rest of the paper is organized as follows: Section
II presents the averaging technique in a general setting,
Sec. III applies it to the Rabi model, and Sec. IV
presents the results for the BZT model.

II. THE AVERAGING THEOREM (REF. 10)

though we know that it really depends on t. This
reflects the fact that for small e, x is slowly varying, i.e. ,

secular, whereas sin t is a fast oscillation. Thus, we
have

f=f+f = —,'x —
—,'x cos(2t)

because sin t = —,
' [1—cos(2t) ]. Therefore, (5) becomes

(note the change from x to y)

The reader is referred to the references for full details
regarding the precise conditions for the validity of this
averaging theorem and regarding the asymptotic accura-
cy of the result. Consider a coupled first-order system of
ordinary differential equations

x =of(x, t, e),

—co= ——cos(2t) .
a y
at 2

This yields

co = ——sin(2t)
4

(10)

in which the dot denotes a time derivative (d /dt),
0(e &1, xeUCR", and f: R "&(R &&R+~R" is C",
r )2, bonded on bounded sets, and of period T )0 in t.
The associated autonomous averaged system is defined
by

y =e—+e —[1—cos(2t)]
2 2

——sin(2t)
4

because we treat y as secular in integrating (10). Equa-
tion (3) becomes

y =e—f f (y, t, 0)dt =Ef(y) .
T

T 0

1 . y
4

——sin(2t) — +O(e ) .3

2
(12)

where f, is of period T in t; and if x(t) and y(t) are
solutions to (1) and (2) initiated at x0 and y0, respective-
ly, at t =0, and ~x0 —ya =O(e), then x(t) —y(t)

~

=0 (e) on a time scale —1/e
This is a constructive theorem in that f ~

is explicitly
determined in the following way. First, write

f(x, t, e)=f(x)+f(x, t, e) .

Then solve for cu using the equation

—
co= f(y, t, e) .

a
at

With this solution, f ~
is given by

(4)

(5)

f~(y, t, e) =[D~f (y, t, e)]co(y, t, e) —[D~co(y, t, e)]f(y) .

(6)

Written out with explicit indexes, we have x; =y;+@co,
and

I3f; 8co;
(7)

ay, ' ay,

It is instructive to give a simple example' to illustrate
this method and the subtle aspects of its implementation.
Consider

x =ex sin t . (8)

Clearly, f(x)= —,'x because 1/2ir f sin t dt= —,'. Note
0

that in computing f, x is treated as a constant, even

For our purposes, the averaging theorem may be ex-
pressed as the following.

Theo~em: There exists a C" change of coordinates
x =y +@co(y, t, e) such that (1) becomes

y =~f(y)+~'f ~(y, t, ~)+O(~'),

One may readily verify

II = ,'ficoao, +A'A, cr„cos(cot—) (14)

in which fi is Planck s constant divided by 2~, A'~0 is the
energy of the level spacing of the two-level system, o., is
a Pauli matrix, A, is the coupling strength for the elec-
tromagnetic field, o. is another Pauli matrix, and
cos(cot) represents a single-mode field with frequency co.
The resonant situation corresponds with the choice
cu =co0 which we use from here on. The Heisenberg
equations of motion are

ox= ~oy ~

cTy —ci)o ~
—210 cos(cist )

o, =2Ao-~ cos(cot) .

(15)

(17)

Let us define x, y, and z to be the expectation values of
the Pauli operators with respect to the initial state of the
system:

x=E„(o ), y=E (o. ), z=E (o, ).
The linearity of Eqs. (15)—(17) implies that these expec-

x (t ) —y ( t ) = exp(
&
et )[ ~

x o
—yo ~

——ex o sin(2t )

+O(e )] (13)

by solving (8) and (12). This confirms the prediction of
the theorem, even for this diverging example.

III. THE RABI MODEL

The Rabi model not only proves useful for exhibiting
a relatively simple application of the averaging theorem,
but it also exhibits what occurs when a single two-level
system is driven by a single-mode radiation field without
any feedback because there is no resonant cavity. For
this problem the underlying Hamiltonian is
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tation values satisfy exactly the system of three coupled
ordinary, first-order differential equations

and

x = —coy,

y =cox —2Az cos{cot )

z =2k.y cos(cot ) .

We now transform to a rotating frame

cos(cot) sin(cot) x
—sin(cot ) cos( cot ) y

This produces the equivalent system of equations

(19)

(20)

(21)

(22)

—,'z [ cos(2t) —1]
——,'z sin(2t)

—
—,'a [ cos(2t) —1]+ ,'b s—in(2t)

Putting all of this in (7) yields

dt
=E Pa[ —'sin(4t) —sin(2t)]

+ ,'b [1——cos(2t) —sin (2t)] ] +0(e ),

(35)

(36)

a = —Az sin(2cot),

b = —M [ cos(2cot)+ 1],
z =Ra sin(2cot)+Lb[ cos(2cot)+1],

(23)

(24)

(25) dt
=eh+@ [——'z sin(2t)] . (38)

= —ez+e [ ——'a sin (2t) —'b sin—(4t)]+O(e ), (37)

which is the system we will analyze with the averaging
theorem. We want to study how the two-level system
evolves in time by observing how it changes from the
upper state to the lower state and back again. This is
given by z =F (o, ).

The averaging theorem may be applied as follows.
First rescale time to the dimensionless time

These equations appear to be just as complicated as Eqs.
(27)—(29). However, they have the advantage that they
are well ordered in the parameter e, which is not the
case for Eqs. (27)—(29). This means that the secular be-
havior and the fast oscillation behavior can be easily
separated. For example, to first order in e we simply get
the RWA equations

t =cot . (26)

a = —ez sin(2t),

b = —ez[ cos(2t)+ 1],
z =e[a sin(2t)+b[ cos(2t)+1]]

(27)

(28)

(29)

Let e—:A, /co and rewrite Eqs. (23)—(25) in terms of t', but
then drop the prime, yielding

db = —FZ
dt

dz =eb,
dt

which have the well-known RWA solution for z:

z(t) =z(0) cos(et )+ (0) sin(et )
dz

dt

(39)

(40)

(41)

Make the identifications for Eqs. (1) and (3):

a

Z

(30)

with the unshifted (but scaled) frequency a=A, /co. Be-
cause e(( 1, this is the slow, secular behavior, whereas
the fast oscillations have scaled frequency 2.

We can also apply the averaging theorem to the sys-
tem (36)—(38). This produces the twice averaged equa-
tions

y —+

Z

(31) da
dt

(42)

—z sin(2t)

f~ —z[cos(2t)+1]
a sin(2t)+ b [ cos(2t)+ 1]

Clearly,

(32)

db = —ez+e ( ——'a),
dt 4

dt

(43)

(44)

0

f(y) —z

b

{33)

These equations provide a systematic correction to the
RWA of order e . Their solution is easily obtained by
noting that

and
16

= —eh ——'eb (45)

—z sin(2t)

f(y)~ —z cos(2t)
a sin(2t)+b cos(2t)

which has the solution

db(0)b(t) =b(0) cos(Pt)+ sin(Ilt),
dt

(46)
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in which P is defined by
1/2

P=e 1+
16

(47)

which contains the well-known Bloch-Siegert shift!"
Solving for a and z yields

a(t) =a(0)+ —,'E[z(t) —z(0)], (48)

z(r) =z(0)+ b(—0) sin(pt) —— (0)[ cos(p~) —1],e db(0)
P dr

(49)

replacecould db(0)/dtwhich we by
—ez(0) —(e /4)a(0).

It is illuminating to represent the dynamics with a
second-order diff'erential equation for z(t). The relation-

ship between z and z, according to the averaging
theorem, is

z =z+E[ ——,'a [ cos(2t) —1]+ ~ b sin(2t) j +O(e ) .

in

Taking two time derivatives of this equation and substi-
tuting (36)—(38) on the right-hand side up to order e,
yields

z= —e [I+3cos(2t)]z

+2@[a cos(2t) bsin(2t)]—+O(e3) . (51)

The functions a, b, and z may be approximated by a, b,
and z to order e . We may then write the z equation,
consistent to order e, as

z =z +ez b sin(2t)+O(e ) . (54)

Equations (36)—(38) imply that z + b is conserved up
to order e. Let the conserved value be C. Therefore, we
obtain

and

C z=b —e—z b sin(2t)+O(e') (55)

compared with the numerical solutions obtained from
the full Rabi model given by (23}—(25). There is ap-
parently exact agreement, given the resolution limit of
the line plots.

While empirically exploring numerical simulations of
ad hoc or heuristically derived equations to serve in the
place of (52), we discovered the equation

z = —iE z +-2e( 1 —z )' sin(2t) —1 e cos(2t}(5z + 1 )

(53)

in which z also appears in the periodic perturbation
term, unlike (52). The choice of a plus or minus sign
was made numerically and depends on the initial condi-
tions. Moreover, the e z term also has the factor —,', not
seen in (52). Most curiously, the line plots of (53) show a
secular Rabi oscillation upon which there are superposed
small periodic perturbations of frequency 2, just as for
(52) and (23)—(25). The secular motion appears to have
frequency e, in spite of the presence of the —', . This has
puzzled us for some time. Now, we can show, using the
results above which were obtained from the averaging
theorem, that (53) is equivalent with (52), to order e .
Squaring (50) implies

z' = —e z —2mb sin(2t) —
—,'-e cos(2t)(5z + 1), (52)

which represents a Rabi oscillator with a periodic pertur-
bation. The perturbation contains b which is determined
from (46). In Fig. 1, the numerical solution to (52) is

+(C —z )'~ =b 1 ——,'e: sin(2t) +O(e ) .
b

Finally, this means

b =+(C —z')' + —,'ez sin(2t)+O(e ) .

(56)

(57)

C)
CV

Using this in (52) gives

2= —e z+2e(C —z )' sin(2t) —e z sin (2t)

—
—,'e cos(2t)(5z + 1)+0 (e ) . (58)

Using averaging on the e term, we may write, accurate
to order e,

CO

C)

z= —
—,'e z+-2e(C —z )'~ sin(2t)

——,'e cos(2t)(5z + 1)+O(e ) . (59)

O-
I

0.0 50.0
I

100.0
I

150.0

FIG. 1. Results of the averaging approximation for the Rabi
model. (a) Numerical integration of the full Rabi model, Eqs.
(27)—(29), for a(0)=b(0)=0, z(0)=1, and @=0.05. To allow
comparison the trajectory solution has been given a vertical
offset of +1. (b) Numerical integration of the averaging ap-
proximation, Eq. (52). The solution has been off'set by +0.5.
(c) Numerical integration of the "2"equation (53).

This reduces to (53) when C = 1, as it was during our nu-
merical experiments.

In Sec. IV we exhibit these same phenomena for the
BZT model. As is the case here with the Rabi model,
the averaging theorem provides a systematic procedure
for obtaining periodic perturbation corrections to the
RWA.

IV. THE BZT MC)DEL

The Hamiltonian for the BZT model is'

H = ,'fi~P', +fico(a a+ —,
' )+Pi—kS,(a +a ),
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S = —coSy,

S~ =coS —2X(a +a )S, ,

S, =2k, (a +a )S~,

(61)

(62)

(63)

in which S, = g. &cr,j, S = g.
&
o„~, and crtz is the

lth Cartesian component for the jth two-level system,
and in which a and a are photon creation and annihila-
tion operators, respectively. We have in mind, explicit-
ly, the quantum nature of the radiation. This is in con-
trast to the Rabi model in which the radiation field is
treated semiclassically, i.e., by introduction of a c-
number external electromagnetic field. In this model, we
have a quantized single-mode field, and both the two-
level systems and the field evolve in time. Heisenberg
equations are readily derived and are

cos( tot ) sin( cot )

s —sin(

cot�

) cos( tot ) B (73)

The dynamics is now expressed by

ly quantal treatment because of the factorization approx-
imation, we do make a definitive statement for the semi-
classical case: Chaos is manifested for special condi-
tions. The specific interpretation of the N two-level-
systems —field interaction given in either (60) or (72) is a
subtle question, ' and not all types of elementary cou-
plings translate into (60) or (72). For us, this is an A.p
type of coupling with a vector potential which satisfies a
nodal boundary condition at the reflector ends of the
cavity. '

In addition to (22), which we again use here, we also
use the rotation

a+a = toi—(a —a ),
i(a —a )=co(a +a )+2XS„.

(64)
a = —Azz [r sin(2cot)+s [ cos(2cot) —1]j

(65)
b = —A,zz [ —s si (n2 tto) + r [ cos( 2tot ) + 1]j

(74)

(75)

Nx =E„(S„), Ny =E„(S~), Nz =E (S, ),
Q =E„(a +a),P =E (ia —ia ) .

(66)

Unlike Eqs. (15)—(17), these are nonlinear by virtue of
two, bilinear nonlinearities in Eqs. (62) and (63). More-
over, there is an S feedback term in (65) which has no
analogue at all in the Rabi model. It is this term which
becomes the central focus of our further studies.

Once again, we introduce as real variables, the quan-
tum expectation values of the relevant operators by
defining

r'=A& [a sin(2cot)+b [ cos(2~ot) —1]j

s =A~ [ bsin(2cot—)+a[ cos(2 tco)+1]j,

(77)

(78)

which is the system we will analyze with the averaging
theorem. We will again rescale time with t'=~t and let
e—:A,&/co. Rewriting the equations and dropping the
prime on t ' yields

z =Xz [ ( ra sb ) sin—( 2' t ) + ( rb +sa ) cos( 2' t ) + ( rb —sa ) ],
(76)

The nonlinearity creates the dilemma caused by the in-
equality of products of averages and averages of prod-
ucts. Exact factorization of averaged products is valid
only in the limit N~ oo, for which it can be shown that
there is a relative error of O(1/N). This point is ad-
dressed in greater detail in the Appendix. Introducing
the scaling Xz ——&Nk, 3 =Q/&N, and B =P/&N,
we obtained the closed factorized system of equations

a = ez [r s—in(2tot)+s [ cos(2cot) —1]j,
b = —ez [r[ cos(2t)+1]—s sin(2t) j,
z =E[ ( ra sb ) sin( 2t ) +—( rb +sa ) cos( 2t ) + ( rb —sa )],

r =@[asin(2t)+b [ cos(2t) —1]j

(79)

(80)

(81)

(82)

x = —coy, (67)
g =a[a [ cos(2t)+ 1]—b sin(2t) j (83)

y =~x —2z~za,
z =2z~ya,
3 = —coB,

B =co 3 +2k~x

(68)

(69)

(70)

(71)

which are the analogue to Eqs. (27) —(29). As in the
Rabi model, these equations are now well ordered in e.
The averaging theorem will convert them into a system
in terms of a systematic expansion in e.

We make the identification for Eqs. (1) and (3):

This is equivalent to a particular ab initio semiclassical
theory in which Eqs. (67)—(69) remain the same and
equations (70)—(71) are replaced by the Maxwell equa-
tion

X~ Z (84)

(72)

Therefore, the BZT model may be understood as either a
factorization approximation in a fully quantum problem,
or as an exact treatment of a corresponding semiclassical
problem. The latter interpretation is closer to the spirit
of the Rabi model, and will be followed here. Thus,
while we do not make a definitive statement about a ful-

y~ z (85)
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—zr sin( 2t ) —zs [ c os( 2t ) —1 ]
z—r [ cos(2t)+ 1]+zs sin(2t)

f~ (ra sb—) sin(2t)+(rb +sa) cos(2t)+rb —sa, (86)
a sin(2t)+b [ cos(2t) —1]
a [ cos(2t)+ 1] bs—in(2t)

—z r sin(2t) —z s cos(2t)
zr—cos(2t}+z s sin(2t)

f(y)~ (r a —s b ) sin(2t)+(r b+s a ) cos(2t)
a sin(2t)+b cos(2t)
a cos( 2t ) bs—in( 2t )

Z S

—Z 7

f(y)~ r b —s a (87)

z r [ cos(2t) —1]—z s sin(2t)

zr sin—(2t) —z s[ cos(2t) —1]
cu(y)~ —,

' —(r a —s b )[ cos(2t) —1]+(r b +s a ) sin(2t)
—a [ cos(2t) —1]+b sin(2t)

a sin(2t)+b[ cos(2t) —1]

(89)

Using all of this in (7) leads to a sizable amount of algebra, the output of which is

=ez s+ —'e~[r s b[3 sin(2t) —2 sin(2t) cos(2t)]+r s a [2 cos (2t) —1 —cos(2t)]
dt

+r a sin(2t)[ cos(2t) —1]+r b[ cos (2t) —cos(2t)]

+s ~b[2cos(2t) —1 —cos~(2t}]—s a sin(2t) cos(2t)+z b[3cos(2t) —3]+z a sin(2t)] (90)

= —gz r+ —'g~[r s b[2sin(2t) —1+ cos(2t}] rs a[2—sin(2t) cos(2t)+ sin(2t)] —r a sin (2t) rb sin(2t) co—s(2t)
dt

+s b[ sin(2t)cos(2t) —sin(2t)]+s a[1+ sin (2t) —cos(2t)]+z a[cos(2t) —1]—z b[3sin(2t)]I,

(91)

dt
=g(r b —s a )+—'a~[a b[4 —4cos(2t)]+b [3 sin(2t)] —a sin(2t) —z s sin(2t) —z r sin(2t) ) (92)

dt
eb+ —'e [r z —sin(2t)[ cos(2t) —1]+z s[3 cos(2t) —3]] (93)

=Eh+ —,'e [r z[ cos(2t) —1]—z s [3 sin(2t)] Idt
(94)

Although these equations are much more complicated
than Eqs. (79)—(83), they are well ordered in e.

To first order in e, the equations are identical with the
RWA for the BZT model, which is also identical with
the Jaynes-Cumming model '

These equations support three conservation laws
—2+b 2+ —2 ]

r +s '+2z =g,
{100)

(101)

da =E'Z S
dt

db = —EZ P'

dt

=e(r b —s a),
dt

dl = —eb,
dt

ds =E'a
dt

r a+s b=P . (102)
{95)

(96)

(97)

The first is conservatio~ of total probability for the two-
level system, the second is conservation of total energy
for the combined system of the two-level system, radia-
tion field, and interaction, and the third is generated by
the RWA as was mentioned in the Introduction. It is
instructive to render this dynamics as a second-order
differential equation for z(t):

d z(t) = —e (1++z —3z ),
dt 2 (103)

(99)
which is readily obtained from Eqs. (97), (100), and (101).
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The Eberly transformation

z = cosp

leads to the equivalent dynamics

(104)

As in the Rabi model, we will keep the periodic pertur-
bation to order e only and in the secular term we may
substitute the conservation laws (100)—(102) which hold
true to order e. This produces

2 P cospp=e sinp+e
sin p

(105)
z= —e (1++z —3z )+@[2(ra —s b) cos(2t)

—2(r b+s a ) sin(2t)] . (114)

p =E slnp ) (106)

with initial conditions p(0) =0 and p(0) =+2er(0),
which is small, i.e., of order e. This implies a near
separatrix motion of the planar pendulum (p=0 is the
vertical position with the pendulum bob up). This prob-
lem may be completely integrated in terms of Jacobian
elliptic functions.

In the Rabi model, the twice averaged equations, '

(42) —(44), still implied a second-order equation, (45),
which possessed a Bloch-Siegert shifted frequency.
Here, the averaged equations are

dt
=Es z+ —'e ( 'r b ——'s—b —3z b), (107)

db
dt

= —eFz+ —e ( —ra+ —s a ——z a ),2 2 2
(108)

which is precisely a spherical pendulum in a vertically
uniform gravitational field with azimuthal angular
momentum P. The e sinp term arises from the o. feed-
back term in (65).

Of special interest to us has been the particular initial
conditions a(0) =b(0) =0, z(0) = 1, r(0)&0, and
s(0)=0. This implies P =0, so that (105) reduces to a
planar pendulum

Consistent to order e for the secularity and order e for
the perturbation gives

z = —e (1+hz —3z )+2e[r a —s b ) cos(2t)

—(r b+s a ) sin(2t)], (115)

p = —,'e sinp+ 2e&g 2cos—p sin(2t), (116)

in which z also appears in the periodic perturbation
term, unlike (115). Moreover, the e sinp term also has
the factor —,', not seen in (115) or in (106), the Eberly
transform of the secular part of (115) for special initial
conditions. The line plots of numerical simulations of
(116) show a secular behavior upon which there are

which is a periodically perturbed pendulum dynamics,
and in which the perturbation contains a, b, r, and s
which are determined by Eqs. (95)—(99) for this order in
e. Numerical simulations of Eq. (115) are compared in
Fig. 2 with numerical simulations of the full BZT model
given by Eqs. (79)—(83). The agreement is excellent, al-
though not identical anymore within the resolution of
the line plots.

While empirically exploring numerical simulations of
ad hoc or heuristically derived equations to serve in
place of (115), we discovered the equation

dt
=e(r b —s a )+—'e (4a b ), (109)

dt
eh+ —'e ( ——3s z), (110)

=@a+—,'e ( —r z) .
dt

They do not reduce to a simple second-order equation
for z because two of the conservation laws, (101) and
(102), are no longer identities. However, it is still possi-
ble to obtain periodic perturbation corrections to order
e for Eq. (103) through use of the averaging theorem.

According to the averaging theorem,

z =z+ —,eI(r b+s a ) sin(2t) —(r a —s b )[ cos(2t) —1]I

C)
o

+O(e ) . (112) 0.0
I

100.0
l

200.0
1

300.0

+O(e ) . (113)

Taking two time derivatives of z and substituting Eqs.
(90)—(94) on the right-hand side yields

z=e [ —a b —(r +s )z—
+[b +a +z(s —3r )] cos(2t)+4z s r sin(2t) I

+e[2(r a —s b ) cos(2t) —2(r b+s a ) sin(2t)]

FIG. 2. Results of the averaging approximation for the BZT
model. (a) Numerical integration of the full BZT model, Eqs.
(74)—(78), for a (0)=6 (0)=s (0)=0, z (0)= 1, r (0)= 10, and
@=0.05. As in Fig. 1 the trajectory has been given a vertical
offset of +1. (b) Solution to the averaging approximation, Eq.
(115); offset = +0.5. (c) Solution to the —equation (116) with

the initial condition p(0) =0, p{0)=2er(0), and with z(t)
=cosp(t).
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small, rapid oscillations of period 2, just as for (115) or
(79—(83). The secular motion appears to have a frequen-
cy determined by e, in spite of the presence of the —,'.
The explanation of this curious behavior follows from
the averaging theorem just as it did for the Rabi model,
as was explained in Sec. III.

The special initial conditions invoked above to get
(106) imply that the solutions to (95)—(99) are
a(t) =s(t) =0, r(t) =+[/ —2z(t)]'~, and b(t) =+[1
—z (t)]'~ . Therefore, (112) becomes

z =z+ ,'E[r b s—in(2t)]+O(e ) .

Squaring this gives

z =z +ez[r b isn(2t)] +O(e ) .

Therefore,

(117)

(118)

1 —z = 1 —z —ez r b sin(2t)+0 (e )

=b 2 ez r b—sin(2t)+O(e ), (119)

in the second line of which we have used the solution for
6 above. Thus,

+(1 z)' =—b ,'ez r s—in—(2t)+O(e )

or equivalently

b =+(1—z )' + —,'ez r sin(2t)+O(e ) .

Similarly,

g —2z =g —2z —er b sin(2t)+O(e )

=r er b sin(2t—)+O(e' )

(120)

(121)

(122)

in the second line of which we have used the solution for
r above. Thus,

r =+&/ —2z + —,'eb sin(2t)+O(e ) .

Using (121) and (123) in (115) gives

z = —e (1+hz —3z ) —2er b sin (2t)

e(1 +g—z —3z )+2@[(1—z )(g —2z)]'~ sin(2t)

—e sin (2t)[(1—z )'~ b+(g —2z)' z r]+O(e )

= —e [1+ sin (2t)](1+hz —3z )

+2@[(1—z )(g —2z)]' sin(2t)+O(e ) .

(123)

The last equahty utilizes (121) and (123) to the desired
order. Using averaging on the e term yields

z= ——', e (1+hz —3z )

+2e[(1—z )(g —2z)]'~ sin(2t)+O(e ) .

The Eberly transformation, z = cosp, converts this into
Eq. (116), with initial conditions p(0) =0 and
p(0) = +2er (0 ). Clearly, we have a periodically per-

turbed, near-separatrix motion of a pendulum, which is
generic for chaos.
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APPENDIX

For a single two-level system (N =1) in a single-mode
electromagnetic field, the interaction may be modified in
the form given by Jaynes and Cummings. ' This makes
the quantum model exactly solvable, and the variable z
exhibits the phenomena of collapse and revival. ' ' It is
known that for this model, factorization of expectations
of products yields equations which fail to reproduce col-
lapse and revival. This raises serious doubts regarding
our procedure for the BZT model when it is applied to
a single two-level system. Moreover, even if the Jaynes-
Cummings interaction approximation is not invoked,
Graham and Hohnerbach have shown by numerical
analysis that collapse and revival still occur, although
somewhat modified. ' Recent experimental' work
confirms these expectations for low-density Rydberg
atomic beams. However, as N is increased, revivals are
quenched, so that for only N =9 no revivals are seen at
all in the numerical studies. ' Moreover, the onset time
for collapse increases in N as well. Thus, as N increases,
the predictions of the factorized equations provide better
and better agreement with the numerical studies.

In fact, the validity of the factorized equations for
large N has been extensively studied. A general
framework, applicable to both the Jaynes-Cummings in-
teraction and to the BZT model has been elucidated by
Yafte. With it, it may be shown that factorization is
exact for the BZT model in the limit N~ oo. For finite
N, the relative error is O(1/N). While our earlier work
was applied to the case N =1, for which factorization is
clearly invalid, our presentation in this paper is for N
two-level systems in the large-N limit. Remarkably, Eqs.
(67)—(71) are the same as were used for N = 1, with the
exception that the coupling strength is now kz, &N
times bigger than before. This increase in coupling
brings the possibility of physical realizable manifesta-
tions of the equations closer.

For finite N, the Hamiltonian (60) has a discrete eigen-
spectrum and the time evolution of the Heisenberg
operators is almost periodic. ' For N~oo, this eigen-
spectrum may become truly continuous, which could
justify the chaos observed in the factorized equations,
(67)—(71). Therefore, the bona fide chaos we see in our
semiclassical equations may represent chaos in a fully
quantum system [governed by Hamiltonian (60)] in the
limit N~ oc. We believe this would provide the first ex-
ample of genuine quantum chaos.
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