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We show that in addition to the length of the Bloch vector there exists an energylike integral of
motion for the Maxwell-Bloch equations. This allows us to recast the semiclassical problem of
atom-field interaction into a classical Hamiltonian problem of two coupled oscillators which con-
tain both periodic and homoclinic orbits. Melnikov s method is then used to demonstrate the ex-
istence of Smale horseshoe-shaped maps in its dynamics which preclude the existence of any fur-
ther analytic integral of motion. The treatment yields a systematic procedure for understanding
the mechanism of instability in this fundamental model of quantum optics.

A system of N identical two-level atoms interacting
with a single-mode classical electromagnetic field is one of
the fundamental models of quantum optics. The math-
ematical description of this model is provided by the cou-
pled Maxwell-Bloch equations' which admit of a wide
variety of solutions pertaining to different physical situa-
tions. While these solutions are regular, there exist
characteristically irregular or chaotic solutions which
have become important recently in the context of chaotic
dynamics of the atom-field interaction. It is now well
known that stochasticity in this semiclassical dynamical
system appears when the rotating-wave approximation
(RWA) is not invoked and the strength of the atom-
field interaction is increased beyond a critical value.
The non-RWA version (as well as RWA version) of the
Maxwell-Bloch equations is known to possess only one in-
tegral of motion, namely, the length of the Bloch vector.
We show here that in addition to this integral there exists
another classical-Hamiltonian-like constant of motion.
This allows us to recast this semiclassical problem of the
atom-field interaction into a purely classical Hamiltonian
problem of two coupled oscillators. One of the oscillators
is harmonic with periodic orbits while the other one is
anharmonic with homoclinic orbits. We show that the
small-coupling perturbation breaks the integrability of the
uncoupled system by introducing a complicated kind of in-
variant set (obtained on the Poincare map defined on each
constant-energy hypersurface in some energy interval), a
Smale horseshoe-shaped map, into the dynamics. Very
recently Fox and Edison have considered the Belobrov-
Zaslavskii- Tartakovsky version of the Maxwell-Bloch
equations on the basis of seminumerical arguments based
on Chirikov s pendulum for the study of instability in the
atom-field interaction. The present treatment, however, is
completely analytical.

The method for finding the horseshoe-shaped maps is
based on Melnikov's technique' extended to the system
of two" and higher degrees of freedom' by Holmes and
Marsden. "' In Melnikov's method one is concerned
with the perturbation of the homoclinic manifold in the
Hamiltonian system which consists of an integrable part
and a small perturbation. It is well known that if
Melnikov's function admits of simple zeros than the stable
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where x, y, and z are the usual Bloch-vector components.
E is the single-mode classical field with frequency m. The
right-hand side of Eq. (2) is the macroscopic polarization
source term for the ¹atomic system which is connected
to the microscopic polarization through the simple rela-
tion P =Ndx. cop and d represent the transition frequency
and the transition dipole for the atom, respectively. The
overdot denotes differentiation with respect to time t.

For convenience, we put Eqs. (1) and (2) in dimension-
less form through the following change of variables:
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Since we will be concerned with the resonant atom-field
interaction we use the resonance condition p =1.

and unstable manifolds, which for the unperturbed system
of oscillators coincide as a smooth homoclinic manifold,
intersect transversely for small perturbation. The Smale-
Birkhoff" homoclinic theorem asserts the existence of in-
variant sets —horseshoe-shaped maps on the Poincare
map. Second, the existence of horseshoe-shaped maps
precludes the existence of any further analytic integral of
motion and explains qualitatively the mechanism of devel-
opment of instability in this fundamental model of atom-
field interaction.

The dynamics of interaction between N identical two-
level atoms with a single-mode classical electromagnetic
field is described by the following set of Maxwell-Bloch
equations: '
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Here the overdot represents differentiation with respect to
the scaled time z.

It is well known that this non-RWA version of the
Maxwell-Bloch equations (2) and (3) possesses only first
integral of motion

The system of Eqs. (1) and (2), which thus contain only
a single parameter p, therefore, reduces to

(2a)

Fig. 1). Now the G system is simply a harmonic oscillator
so that one can use a canonical change of coordinates to
action angle variables (I,8) through the relation
=J2I sin8 and P@ =J2I cos8, such that 8 is 2ir periodic,
I & 0. Then 6 becomes simply 2I. The coordinates of the
F system are retained unaltered. Therefore G(I) =2I,

F(X,P~) =hz+2 Jp' (X'+—P~2),

H ' =242P~ JI cos 8 .

The equations of motion for the unperturbed system
GSF are

r)F dF
and P~=-

t)Px t)Px
+y +Z —1 (4) 0=2 and I=0 .
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The presence of the two integrals of motion reduces the
dimension of the autonomous system [(2) and (3)] from
five to three. We shall show that the system does not pos-
sess any further integral (thus proving nonintegrability).
Moreover, this reduction in dimension greatly facilitates
the study of this dynamical system through the Poincare
section.

Let us now look into the second integral (5) more close-
ly. We first eliminate z from this integral by making use
of the relation (4), then H becomes

H=8 +8 +P y +2PJI —(x +y ) —2P@y .

Since x = —y we have

H=8 +a2+p x +2pJl —(x +x )+2p@x

We note here that in addition to this integral there ex-
ists a second integral of motion which is the following en-
ergylike quantity:

H=6 +8 +2Pz —2P@y+P y

The fixed point for the unperturbed G system is (0,0)
which is evidently an elliptic fixed point. The fixed points
for the unperturbed F system are (0,0) and (0,
+' v p —1). A linear-stability analysis around these
fixed points reveals that of these three fixed points (0,0) is
hyperbolic and the other two are elliptic for p & 1.

In order to study the classical perturbative dynamics us-
ing Melnikov's method the unperturbed system must con-
tain a homoclinic orbit. In the present problem the F sys-
tem satisfies this requirement. Since this orbit passes
through the hyperbolic fixed point (0,0) the energy of the
F-system on this orbit is 2p. The homoclinic orbit can
then be obtained from the following equation:

P'+2 JP' —(X'+P') =2P

which can be rewritten as

P~ 4(P 1)P~2+4X—'=0 —.
Note the graphical plot of the homoclinic orbit (X vs P~)
which is reminiscent of that of the Duffing's oscillator [in
fact, they become identical if PL is replaced by X and vice

Rescaling x and x as X=Px and P~ =x which are canoni-
cally conjugate pairs of dynamical variables, and denoting
8 and 8 by 8 and P@, another set of conjugate field vari-
ables, we can write down the constant of motion 0 as the
sum of the Hamiltonian of two subsystems F(X,P~) and
G(6",Pg) and the perturbation H'(XP~, C,Pg) as follows
(we follow the notation of Holmes and Marsden "):

H =G(C, Pg) +F(X,PL)+ eH'(X, P~, 6',Pg), (6)

where

G(e, P, ) =~'+P$,
F(X,P ) =P~+2Jp' (X'+P&), —

and

H'(X, Pr, N, P@) =2P~P@ .
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We note that while F contains only the atomic variables,
6 is a function of purely field variables. t. is a smallness
parameter introduced in the perturbative momentum-
coupling term needed for usual perturbative analysis.

Let us first begin with unperturbed system G F (see

FIG. 1. (a) Unperturbed periodic and homoclinic orbits;
(P& I) for G and F systems. Elliptic and hyperbolic fixed
points are denoted by x and ~, respectively. (b) Perturbed
homoclinic orbit; transverse intersection of stable and unstable
orbits (P & 1).
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dt

4 ' 2

—4(p —1) +4X'=0 .
dX
dt

Unfortunately, this equation does not possess any explicit
solution in terms of t. Instead, we have an implicit solu-
tion as follows:

g = tan h [2g + J4/C (r r p) ]
where

(io)

versa in Eq. (9)].
in many weakly nonlinear problems the unperturbed

system does not possess any homoclinic orbit. However,
to exploit Melnikov's technique, sometimes suitable
averaging and truncation are used to cook up an eA'ective
Hamiltonian system which contains a homoclinic orbit.
Such procedures, however, are not always correct. " In
the present problem our unperturbed system G SF natu-
rally possesses a homoclinic orbit. This natural oc-
currence has made our analysis quite straightforward.

The Hamiltonian system associated with the F system
possesses the homoclinic orbit which can be obtained as
the solution of Eq. (9),

coupled field and atomic system which is integrable and
one gets the invariant curves on the Poincare map. The
question is what happens when e&0, but sufficiently
small. We shall see that the Smale horseshoe-shaped map
appears in this case.

Following Holmes and Marsden "' this two-degree-
of-freedom autonomous system can be reduced to a one-
degree-of-freedom nonautonomous system using Whit-
takar's method. In this process one actually eliminates
the action I from the Eqs. (11) and (12) using the integral
of motion H. Then from the system of equations contain-
ing H one further eliminates the variable t which is conju-
gate to H and the resultant equations of motion are writ-
ten by expressing the coordinates and momenta as func-
tions of the angle variable 0.

We need not explicitly follow here this procedure but
can directly use the theorem of Holmes and Marsden" to
calculate Metnikov's function which actually measures the
leading nontrivial distance between the stable and unsta-
ble orbit in a direction transverse to the dynamic variable
8. In practice, the calculation involves the following in-
tegration of the Poisson bracket jF,H'] around the homo-
clinic orbit of the unperturbed system

and

g- t/Jz(Q-, ' —2x/c —J-,' +2x/c),

c=4(p —1) .

X(r —r, ), P ~(r —«),
~ + oo

M(ro) =„[F,H']dr .
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We shall see, however, that for our purpose we need not
have to have the explicit solutions X and P~.

Let us now turn toward the perturbed Hamiltonian H.
The perturbation H' is smooth and 2n periodic in 8. The
equations of motion corresponding to H are

aF ae aF ae'
aP ' ex ax '

Since

H'=242' JI cos8

and

F=P +2JP —(X +P )

we have

0=2+6, I = —6
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For e =1, these are exactly the same Maxwell-Bloch
equations [(2) and (3)] with which we have started.
Those have been recast into a classical two-degree-of-
freedom Hamiltonian problem. For e =0, we have the un-

I

Again the energy of the homoclinic orbit is 2p. So
2I =h —2P, (h & 2P) where H(B,P@,X,P~) h. Because
of Eq. (8) we have 8 2t, the frequency being 2. There-
fore, the Melnikov function is given by

cos(2r )X(r to)dr—
M tp = —4 h —2P " Qp' [X(r r.)'+P ~(r —r, )']— — (ts)

Changing the variables of integration from t to ~ using
t —to= r we obtain

cos [2(rp+ z) ]X(z)dz
M tp = —4 h —2P " QP' —[X(z)'+P (z)']

(i6)
or

M(t o) =44(h —2P) [A sin(2t0) —8 cos(2r p) ]

where

sin (2 z)X(z)d z" JP' —[X(z)'+P (.)']

L

and

cos(2 z)X(z)d z" JP'- [X(z)'+P (z)']
Since the explicit calculation of X(z) and p~(z) from the
implicit equation (10) is impossible, one must have to
adapt the iterative procedures or other approximate
methods for calculation of A and 8. For the present prob-
lem, however, these are not necessary. Rather Eq. (17)
can be written more compactly as

M(r. ) =4J(h —2p) cos[2r.+y(p)],
where p is expressible in terms of A and 8 through the re-
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lations A =R sing and B =Rcosp.
Since the Melnikov function M(to) has simple zeros

which are independent of e, one can immediately infer
that for e&0, sufficiently small the stable and unstable
manifolds intersect transversely, giving rise to scattered
homoclinic points. The theorem of Holmes and Marsden
then immediately asserts that the dynamical system [(11)
and (12)] (equivalently the Maxwell-Bloch equations) has
a complicated invariant set in the form of a horseshoe in
its dynamics on the energy surface H =h. Second, the ex-
istence of the horseshoe-shaped map rules out the possibil-
ity of existence of any further analytic integral of motion
(i.e., the model is nonintegrable).

In this Rapid Communication, we have recast the semi-
classical problem of the atom-field interaction described
by a set of coupled Maxwell-Bloch equations into a classi-
cal Hamiltonian problem of two interacting oscillators.
Melnikov's method is then used to investigate the motion
near the vicinity of homoclinic manifold under a small

perturbation. We have shown that the transverse intersec-
tion of the stable and unstable manifolds generates the
Smale horseshoe-shaped map. The treatment thus yields
a systematic procedure for understanding the mechanism
of instability in this fundamental model of quantum op-
tics. We hope that this method of mapping the semiclassi-
cal problem into a classical Hamiltonian problem can be
extended to systems with more than two degrees of free-
dom (i.e., fields with additional modes) to explore the pos-
sibility of observing Arnold diAusion, etc. , in the problem
of radiation-matter interaction.
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