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Two-photon bremsstrahlung in low-frequency approximation
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Methods developed previously for estimating the amplitude for the nonrelativistic potential
scattering of a charged particle accompanied by the emission of a single low-frequency photon are
extended and applied to the problem of two-photon emission. In the case where only one photon
is soft, previously developed techniques, which involve asymptotic evaluation of integrals in

configuration space, can be taken over with little modification. The simplest way to obtain a low-

frequency approximation when both photons are soft is through analytic continuation of this latter
approximation, valid when one photon is soft and the other hard, in the frequency of the hard
photon. A direct examination of the relevant integral shows that this method is in fact justified.
The low-frequency approximation for two-photon bremsstrahlung requires, as input, the physical
{on-shell) amplitudes for radiationless scattering and for single-photon emission, and introduces an

error which vanishes linearly with frequency. The result obtained here represents the nonrelativis-
tic analog of a theorem of Brown and Goble [Phys. Rev. 173, 1505 (1968)] who based their deriva-
tion on the principles of Lorentz invariance, analyticity, and gauge invariance.

I. INTRODUCTION

The emission of two photons by a charged particle as
it is being scattered from a target is a fundamental pro-
cess which can now be subjected to careful experimental
study. ' Recently, Gavrila et al. have performed a high-
ly accurate calculation of the nonrelativistic two-photon
bremsstrahlung matrix element (combining analytic and
numerical techniques) for the case where the scattering
potential is purely Coulombic. An extension of this pro-
cedure to allow for a wider class of potentials will be
more difficult since analytic solutions of the radiationless
scattering problem will generally be unavailable. How-
ever, useful approximations can be obtained in those
cases where one or both photons have energies small
compared to the scattering energy. If one photon is
"soft" one expects, on the basis of Low's analysis of
single-photon bremsstrahlung, that the two-photon ma-
trix element can be expressed rather simply in terms of
the physical (on-shell) one-photon amplitude, while if
both photons are soft one would look for an approxima-
tion involving the on-shell scattering amplitude in the
absence of radiation. In the latter case this expectation
is borne out by the work of Brown and Goble who, in
an extension of Low's work, made use of analyticity and
gauge-invariance properties in the context of a relativis-
tic model. Here we study the problem in a nonrelativis-
tic formulation based directly on the configuration-space
representation of the matrix element. As expected, the
general structure revealed by the Brown-Goble calcula-
tion is recovered, as are the low-frequency limiting forms
obtained in the calculation of Ref. 2 for the purely
Coulombic potential.

It is reasonable to expect that there will be a continu-
ing interest in carrying out detailed and reliable calcula-
tions of nonrelativistic multiphoton free-free transition
amplitudes, taking into account the internal structure of

II. BREMSSTRAHLUNG MATRIX ELEMENTS

For the sake of orientation and to introduce notation
we begin with a brief outline of the theory of free-free
transitions in a form convenient for our purposes. The
Hamiltonian of the system is represented as

H =Ho+HF +H', (2.1a)

where

Ho=(pop) /2@+ V (2.1b)

is the sum of the kinetic and potential energies of the
particle, HF is the energy operator of the radiation field
in occupation number representation, and H' is the
particle-field interaction

II'= —(e/pc)p, v A+ (e'/2pc')2' . {2.1c)

The vector potential, in dipole approximation, can be ex-
panded as

A=-g (2trc /to;L )'~ A, ;(a;+a; ), (2.2)

in units with A = 1. In this expression L represents the
quantization volume, a; the annihilation operator for the
ith mode, co; the frequency, and A, ; the (linear) polariza-

the atomic target and extending over a broad range of
frequencies. The present calculation should provide
some guidance in these more difficult undertakings, and
this has been our primary motivation for recasting the
Brown-Goble analysis in nonrelativistic form. It might
also be mentioned that the amplitude for spontaneous
two-photon bremsstrahlung appears as input to an ap-
proximate evaluation of the amplitude for scattering in
an intense external field, and this provides additional in-
centive for a study of the two-photon matrix element.
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tion vector. In the absence of the interaction H' the
state vector takes the form

The t-matrix element is related to the amplitude f of the
outgoing scattered wave in the absence of radiation by

(2.3) t(p', p)= (4t—t!2p, )(2ir) 'f (p', p) . (2.7)

where the photon state
l
N ) is defined by the collection

of occupation numbers N&, N2, . . . , for the various
modes. The field energy is EN =g; to;N;. The particle
states

l
u p

—1) are fixed by specifying the asymptotic
momentum p along with the boundary conditions—
either incoming wave ( —) or outgoing wave (+) at
infinity —as described in more detail below. We then
have

S' ~ = —(2iri )6(E ~ E—) U ~ (2.8)

with

and

U..=&a.', 1l [H +H G'+'(E. )H ) +1+') (2.9)

Radiative effects are contained in the matrix element
Sa a ~ defined by

(H0+HF )
I +pN ) EpN l @pN ) (2.4) G '+ '( W') = lim ( W +i e H)—

p —+O+
(2.10)

with

(1) (2)
a'a a'a + a'a (2.5)

with E&~ ——E&+E& and Ez ——p /2p.
Consider a transition from state

l @pN ) —=
l
4~) to

state
l NpN ) —=

l

@ ~ ). Adopting standard distorted-
wave techniques to the radiation problem at hand, we
express the S-matrix element as

In the following the one- and two-photon emission
amplitudes in lowest nontrivial order of perturbation
theory will be of particular concern. The matrix element
for single-photon bremsstrahlung in first order is

& e.'-. '
l

H'
l
e.'+')

= —(e/pc)(2~c ltoL )' k &up
' p,„ l

up+'),
(2. 1 1)

s.",.' = & ~.'-, '
l

4'.+ ' )

= —(2iri)5(Ep Ep)t (p', p—)6N N . (2.6)
and the two-photon emission amplitude in second order
1S

'
l

H'G0 '(E~)H'
l

N~+ ) =(elec) (2irc lto, L')' (2~c Ito2L')' M(p', p;to, A, c02A2) .

The matrix element M, of primary interest here, is defined as

M(p p ~1~1 ~2~2) = & u,' '
l
~2 p.,G0+'«, —~1)~1 p., u „'+' ) + & u, ' ~1 p.,G0+ '«, —~2)~2 po

(2.12)

(2.13)

with g'( —I)'&1 (r)[&t (p)]*=&(fI -, —II-) . (2.17)

G(')+'( W')= lim ( W+ie H0)—
@~0+

(2.14)

with

u p+„'(r) = (2ir) (i/2pr)(4m. )

Higher-order contributions to the S matrix can be gen-
erated from the expansion G'+'=

Go+ '+ Go+ 'H'Go&+ '+, but we shall not be concerned with such terms
here.

To conclude this preliminary discussion we record, for
later reference, the asymptotic forms in configuration
space of the wave function and free Green's function.
An explicit summation of the partial-wave expansion of
u p1+ '(r) for r ~ ce provides us with the asymptotic form

(2.15)

u p+„', (r)=(2') e'~"Ir(1 L /2ipr)f (pr,—p) . (2.18)

[These results must be modified slightly, in a manner dis-
cussed previously, to account for the presence, in the
potential V(r), of a long-range Coulomb tail. ] Since
[u p

'(r)]*= u '+p'(r) the asymptotic behavior of this
function can be obtained directly from the forms given
above. Finally, with 8 =q /2p, the Green's function
can be represented as

&r'
l

G0+'(W)
l
r) —=G0+'(r', r; W)

I, v

The appearance of a correction term of order 1/r in Eq
(2.16) results from our having retained the first t too

terms in the asymptotic expansion of the radial wave
function in each partial wave. In a similar way one
finds (with corrections of order 1 lr ignored)

&(e 'F"( I+L /2ipr)6(Q, -, —0-) . (2.16) ——(2p/4vr)(2~)

Here L= —ir)&V is the angular momentum operator.
The directional 6 function arises, in the course of the
partial-wave summation procedure, from an application
of the closure relation valid for r ~ oc, r' &&r.

(2.19)

&& e '~"/r ( 1 L /2iqr)u '+-', (r')—,
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III. ONE SOFT PHOTON

As a first step in the development of an approximation
for the two-photon amplitude given in Eq. (2. 13) it will
be convenient to replace the momentum operators which
appear there by coordinate operators; this is done with
the aid of the commutation relation

p.„=—
S [r., HD] .

Then, with M =M] +Mz and

M2(P ~P~~1~1~~2~2) Ml(P ~P~~2~2~~1~1)

one obtains the configuration-space representation

(3.1)

(3.2)

M, (p', p;~, A, co2A2)= —@co,co2 f d'» f d'»'u'+llr')A2 r'GD+'(r', r;E —co, )k, ru~+'(r) . (3.3)

Note that this transformation from the velocity form of
the matrix element to the length form is not valid sepa-
rately for Mi and Mz, rather, in forming the sum there
is a cancellation of terms whose presence can be traced
to the fact that Ga satisfies an inhomogeneous diA'erential

equation.
In the remainder of this section we consider the case

where co] «E~, with coz~E~. The limit in which both
co& and cuz are small compared with the scattering energy
is studied in Sec. IV. For clarity in the following discus-
sion we focus our attention on the amplitude M&, with
M then obtained by symmetrization with respect to the
photon indexes.

We first observe that the integration over r in the ex-
pression (3.3) for M, diverges in the limit cu, ~O. Gen-
eralizing an earlier treatment of the single-photon
bremsstrahlung amplitude we define the approximation
for the integral (3.3) by the condition that terms which
remain finite in the limit cu~ —+0 are ignored. In the case
where the potential is short ranged the terms retained
are of order ~& and ~& ', taking into account the factor
col multiplying the integral in Eq. (3.3), it follows that
the leading approximation to M& is of order co&

' with a
correction of order col. (The addition of a Coulomb tail
to the potential results in the appearance of logarithmic
terms which modify the nature of the correction term, in
a manner indicated below. )

For coz large enough, the integration domain in Eq.
(3.3) corresponding to»'~ ~, »' &» does not involve a
slowly varying exponential and accordingly does not lead
to a near singularity. Following the approximation rule
introduced above (retain only terms which are singular
for col~0) we confine the integration, as a first step, to
the region R &r & ~, 0&r'&r; R is a constant, large
enough so that the asymptotic forms given in Sec. II for
the wave function and Careen's function are applicable.
With u~+'(r) decomposed as in Eq. (2.15) it is readily
seen that the integral involving u &+0„',(r) may be neglect-
ed since a rapidly varying exponential factor appears in
the integrand; that is, u~~+ (r) may be replaced by its
incoming-wave component given in Eq. (2.16). Similar
reasoning may be used to justify extension of the integra-
tion domain down to the origin —the contribution from
the domain r &R is finite in the limit ~&~0. As a final
simplification the restriction r' & r may be dropped since
the additional contribution coming from the domain
r'& r is nonsingular for co]~0, coz&0. More explicitly,
we write fad»'= JD d»' —J "d»' and neglect J "d»'.

with p' /2p+co=p /2p expressing energy conservation.
The result of the calculation is a low-frequency approxi-
mation (col «Ez ) for M =M, +M2 of the form

M(p', p;~, A, co2A, 2)

1
A, , p'M(p'+tucolA, 1/A, l.p', p;cu2A2)

CO]

1
A 1 pM(p', p —

pcoik 1 /A, l p;cd2A2) . (3.5)

As remarked earlier, this approximation provides not
only the correct residue of the pole at ~i ——0 but also the
leading correction term; the error is of order co& for
co i ~0 with coz fixed and nonvanishing. A second
noteworthy feature is that, with corrections of order co&

ignored, the relations

(1/21u)(p —pcs, A. , /A, , p) =p /2p, —co, ,

(1/2P)(P +0~1~1/~l'P ) =p /2tu+~1

(3.6a)

(3.6b)

are satisfied so that, as input in Eq. (3.5), only on-shell
values of M need be known. The result (3.5) is in con-
formity with Low's theorem, ' which is expected to
hold for a general scattering process accompanied by the
emission of a single soft photon. Another point of com-
parison is provided by the calculation of the two-photon
amplitude with V(») purely Coulombic. The limiting
form, corresponding to a single soft photon, with only

One may justify this directly (even when long-range
Coulomb eff'ects are included), since for» and»' both
large, the integrand can be expressed in terms of known
asymptotic forms and the integrations carried out explic-
itly. The nonsingular nature of the term to be neglected
is then evident.

At this point the remainder of the calculation is essen-
tially identical to the one described earlier [leading to
Eq. (3.24) of Ref. 7] for the single-photon amplitude,
with the radiationless scattering amplitude of the previ-
ous calculation here replaced by the amplitude for
scattering with the emission of a single photon. This
amplitude, corresponding to arbitrary photon frequency
co and polarization A, , is given (in dipole approximation)
by the expression

M(p', p;coA, )=( —i@co) f d» [u &
l(r)]*A, ru&+'(r),

(3.4)
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the leading term retained, was quoted in Ref. 2; that re-
sult is consistent with the approximation (3.5).

The modification of Eq. (3.5) due to the effect of a
long-range Coulomb tail, V(r)-g/r for r~ ~, can be
obtained straightforwardly by including the appropriate
logarithmic distortions in the asymptotic forms of the
wave functions and Green's function, in a manner very
similar to that described previously. The result is to in-
troduce an additional factor B (p', q2 ) in the first term on
the right-hand side (rhs) of Eq. (3.5) and a factor
B (p, q, ) in the second term, where q,2/2p, =E
i =1,2. The function B(p',p) is defined in Eq. (3.19) of
Ref. 7. When expanded in terms of p=(p —p')/p one
finds

B(p',p)=1 i(g—p/p)Pln(
~
P

~

l2)+O(P), (3.7)

indicating the origin of the logarithmic corrections asso-
ciated with the Coulombic behavior of the potential at
great distances. Coulomb effects are more difficult to
keep track of in the case, considered below, in which
both photons are soft. These additional complications
should be surmountable but we have not attempted to do
so here. In the following discussion the potential is as-
sumed to be of short range.

IV. T%'Q SC)FT PHOTQNS

As a first approach to the problem of estimating the
two-photon amplitude when both photons are soft we
adopt the approximation (3.5) and replace the single-
photon amplitude M appearing in that expression by a
low-frequency approximation of the form derived previ-
ously. This procedure, which has the merit of simplici-
ty, is based on the assumption that the expression (3.5)

I

t(P +9~2~2/~2 P «P P~i~i/~i P)

may be analytically continued from large to small values
of ~z. The validity of the analytic continuation can be
justified through a more careful analysis of the integral
(3.3), as discussed subsequently.

To begin, we introduce the decomposition

M(p', p;coA, ) =MLi:~(p', p;coA, )+R (p', p;coA, ), (4.1)

with the low-frequency approximation defined as

MLi ~(p', p;coA) = (I/co)A, .P't (p'+peak/A, p', p)

—( I /m)A, pt (p', p —pcoA, /A, .p), (4.2)

with E~ =E~ —co. [From this form, and the analogous
result (3.5), it is clear how to write down an approxima-
tion for scattering with the emission of one soft photon
and N hard photons, in terms of the N-photon ampli-
tude. ] To first order in co the t-matrix element appearing
in Eq. (4.2) is on shell by virtue of relations, of the type
shown in Eqs. (3.6), satisfied by the shifted momenta.
Since MLFA correctly accounts for terms of order co

and co in the low-frequency limit, the remainder R is of
order co in that limit.

The result obtained by combining Eqs. (4.1) and (4.2)
with the expression (3.5) for the two-photon amplitude
takes on its simplest form when the t matrix is expressed
in terms of the energy and momentum-transfer variables.
That is, we write

(4.3)

In fact, the t matrix appears in Eq. (4.2) with shifted mo-
menta. Since it need only be represented correctly to
first order, we may write, for example,

-=&(E,—,(p' —p)')+2@( /&i/&2 p'+ & /&i p) (p' —p)(c)/c) )&(E, )
~

(4.4)

with similar expansions introduced for the other t-matrix elements which appear with different arguments. We then
arrive, after a bit of algebra, tp the approximation

M =MLFA+R,

with
MLFA(P «P«~1~1«~2~2) (~lc«~2) [ (~1 P )(~2 P )~(Ep«&)+(~i'P)(~'«P)~(Ei««r)

—( A.
&

' p ) ( A p)2T ( E
&
—c«i p «7 ) —( A, p ) ( A, p ) T ( E i«

—c«i „r) ]

(4.5)

(4.6)

and r=(p' —p) . Remarkably, all of the correction
terms which are explicitly of order 1/co& or 1/~z have
canceled in the expression (4.6). (Terms of this type
would be introduced if the T matrix were expanded
about the energy Ez, but this is not necessary, nor would
it be appropriate in the neighborhood of a resonance
which caused the T matrix to vary rapidly with energy.
In this connection it should be recalled that Feshbach
and Yennie pointed out some time ago that low-
frequency approximations could be expressed in a form
which remains valid in the presence of scattering reso-
nances, and further that this could be used to advantage
in the analysis of resonance phenomena. )

A simple diagrammatic interpretation can be given to
each of the terms on the rhs of Eq. (4.6). The first term
corresponds to radiationless scattering at energy Ep fol-
lowed by the emission of two photons. In the second
term the two photons have been emitted before the
scattering takes place; the value for the scattering ener-
gy, Ep Ep co] M2 is then the appropriate one. The
third and fourth terms account for emission of one pho-
ton before and one photon after the scattering event;
again, the T-matrix element appears with the appropri-
ate energy variable.

The remainder in the approximation (4.5) is
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R (p', p;cd]A] cd2A2) = ( I/cd])(A] p')R (p'+]Mcd]?(]/A] p, p;cd2A2)

—( I /cd])(A l P)R (P, P —]cccd]k]/k]. P;cd2k2)+(cd]A]~cd?k2) . (4.7)

The first two terms on the rhs arise from the approxima-
tion procedure described above and the terms with pho-
ton indexes interchanged have been added to impose
Bose symmetry. These latter terms vanish in the limit
~&~0, with co& fixed and finite. Therefore, they are not
contained in the approximation (3.5), nor are they ex-
cluded by that approximation. It will be seen below that
these terms appear naturally when the calculation is per-
formed in an explicitly symmetric manner. The di-
agrammatic interpretation of the terms appearing in Eq.
(4.7) is clear. Each represents a process in which one of
the photons is emitted in either the initial or final state
while the other is emitted during the scattering process.
This latter emission is described not by the full single-
photon bremsstrahlung amplitude but rather the
remainder, defined in Eq. (4. 1), as required to avoid dou-
ble counting of terms already included. The momenta
appearing as arguments in the remainder term are shift-
ed in such a way as to preserve the physically appropri-
ate energy conservation conditions. It should be em-
phasized that each of the subsystem scattering operators
that appear in the low-frequency approximation —the T
matrices in Eq. (4.6) and the remainder terms in Eq.
(4.7)—is a physical, on-shell amplitude and can be relat-
ed directly to measurements of cross sections for pro-
cesses of a simpler kind than the two-photon process of
primary interest. Presumably, results of a similar nature
car be established for transitions in which more than
two soft photons are radiated.

The approximation contained in Eqs. (4.5) —(4.7)
displays the singularity structure expected from simple
perturbation-theory considerations. That is, the ampli-
tude MLFA contains the double-pole terms, which arise
from sums of products of single poles according to the
relation

Cd] (Cd]+Cd?) +Cd? (Cd]+Cd7) =Cd] Cd?
—1 —i —1 —1 —1

and the remainder R represents the single-pole terms
corresponding to only one photon emitted in an initial or
final state. According to the asymptotic evaluation
method which was described earlier and used in the
derivation of Eq (4.5), th. e error in the approximation
must vanish in the limit coi~0, co& fixed and finite, and
also in the limit coz~O, cubi fixed and finite. This, in it-
self, does not exclude the possibility that terms have
been neglected which are nonvanishing in the limit
coi~0, coz~O, with co&/co& fixed and finite. The simplest
function of this type which also satisfies the requirement
of symmetry is cd, cd2/(cd, +cd2) . However, a second-
order pole in the variable (cd, +cd2) is inconsistent with
perturbation theory and may be ruled out. Terms of a
more complicated structure, obtained by introducing ad-
ditional powers of (cd, +cd2) ', or by allowing the ap-
pearance of branch-point singularities, may be ruled out
on similar grounds. In the absence of such terms the ap-

proximation (4.5) is seen to be exact in the low-frequency
limit, the leading terms in the error vanishing like cu, or
co& in that limit. '

The derivation given above of the low-frequency ap-
proximation (4.5) was based on analytic continuation of
the approximation (3.5) from large to small values of cd2.
In addition, a term was added to the remainder (4.7) to
conform to the Bose symmetry requirement. The same
result may be obtained through a more direct procedure.
This involves an asymptotic evaluation of the original in-
tegral for the two-photon amplitude, in which the two
photons are treated on an equal footing, so that Bose
symmetry is manifest at the outset and no analytic con-
tinuation is required. For completeness we now brieAy
outline this alternative derivation.

Consider once again the matrix element
M =Mi+Mz, with components M& and Mz defined in
Eqs. (3.2) and (3.3). The wave functions and Green's
function appearing in each of these integrals are replaced
by their asymptotic forms, as given in Sec. II. These in-
tegrals are now evaluated in a manner very similar to
that described earlier in connection with the derivation
of Eq. (3.5), but with the assumption cd2 »cd, now
dropped. This makes the calculation rather more in-
volved since one must now deal separately with the re-
gions of configuration space corresponding to r & r' and
r & ~', with the appropriate asymptotic form of the
Green's function adopted for each region.

A typical integral encountered is of the form

J o dr fOdr'1(r', r) and this is rewritten as

f dr f o" dr'l(r', r) —J 0" dr f dr'I(r', r) The . first
integral can be evaluated, to the required accuracy, fair-
ly easily; the calculation is similar to that performed in
the derivation of Eq. (3.5). Evaluation of the second in-
tegral is more tedious, but stil1 straightforward. One ob-
tains in this way the approximation

with

N' ' ' =2M LFA +R

=MLFA .(2)

(4.8a)

(4.8b)

(4.8c)

Here ML„A and R are given by Eqs. (4.6) and (4.7), re-
spectively, so that Eqs. (4.8) do reproduce the earlier re-
sults.

As outlined above the calculational procedure is
oversimplified since the form (2.19) for the Green's func-
tion should be modified in the domain in which

~

r —r
~

is bounded with r and r' each very large. It is possible
to estimate the error introduced by our having ignored
this complication. The dominant correction is obtained
by replacing Go(r', r;q /2p), the Green's function in the
presence of the scattering potential, by the "free"
Green's function
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2p exp(iq
~

r —r'
~

)

4~
/

r —r'/

(It may be shown, as justification for this replacement,
that the component of the Green's function thus omitted
leads to integrands with rapidly varying exponential fac-
tors from which no near singularities can be generated. )

Next we introduce the variables p=r —r', R=(r+r')/2,
and write f d r f d r'= f d p f d R. The p integra-
tion, when restricted to a sphere of finite radius, is non-
singular and the dominant contribution to the R integra-
tion comes from terms of the form

lim f dR R expI[ —e+t'(p' —p)]R ] =+2i /(p —p')
a~0+ 0

in which both r and r' have been replaced by R as a first
approximation. In this way the leading correction term
is found to have a frequency dependence of the form
ca&ca2/(ca&+ca2) . Higher-order corrections to this first
estimate arise from terms containing additional factors
of R ' in the integrand and these introduce additional
powers of (ca&+ca2). Now we have pointed out that such
terms, which vanish in the limit cu&~0, coz fixed, or
cu2~0, co& fixed, have been neglected elsewhere in the

calculation [i.e., in the derivation of Eqs. (4.8)] so that it
is consistent to ignore them here as well, in evaluating
the contribution from the domain p finite, R ~ oo .
Presumably, a more accurate evaluation of the integral
would show that terms of the form co&cuz/(ca, +ca2) and
ca~ca2/(ta~+ca2) actually cancel in the final result, since
otherwise the physical amplitude would contain second-
and third-order poles in the variable co&+cuz and this
cannot be the case in second-order perturbation theory.

In summary, the low-frequency approximation con-
tained in Eqs. (4.5) —(4.7) is confirmed by this alternative
derivation. It has been shown that the error in the ap-
proximation vanishes in the separate limits co[~0 or
m2 ~0. If we add the assumption that higher-order
poles in co&+co& are absent —which is reasonable on the
basis of the expected singularity structure of the ampli-
tude, as discussed above —the error must in fact vanish
when co& and co2 vanish, even when co&/~z remains fixed
and finite.
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