
PHYSICAL REVIEW A VOLUME 36, NUMBER 9 NOVEMBER 1, 1987

Theory of two-photon emission from atomic inner shells
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We prove from quantum electrodynamics that two-photon emission in transitions between atom-
ic inner shells can be treated in lowest-order approximation in the single-particle model. By tak-
ing many-body effects into account we show that, in the reduced single-particle model, the Pauli
exclusion principle does not prohibit summing over all possible intermediate states, including core
states. Some transition-rate formulas are presented that are useful for numerical calculations.

I. INTRODUCTION

Recent developments in experimental techniques have
made it possible to measure two-photon transitions be-
tween atomic inner-shell vacancy states. ' The results
must be interpreted relativistically. Existing theoretical
work has been based on the hydrogenic or nonrela-
tivistic self-consistent-field (SCF) (Refs. 4—6) models, ex-
cept for the recent relativistic SCF calculation of Mu
and Crasemann. The latter work suggests exploration
of some interesting questions: Is the Pauli exclusion
principle violated if one includes occupied orbitals
among the intermediate states, as done in Ref. 7? What
are the theoretical similarities and differences between
two-photon processes in hydrogenic versus inner-shell
atomic systems? In this paper we address these ques-
tions. In Sec. II, we analyze the theory of two-photon
transitions on the basis of quantum electrodynamics
(QED). The possible intermediate states are identified
automatically; they can be classified into two types ac-
cording to time ordering. One type is advanced: The
electron final state occurs when the intermediate states
do, which is in advance of the disappearance of the ini-
tial state. The second type is retarded: The time order
for the electron is first initial state, then intermediate
states, then the final state. In this derivation, the Pauli
exclusion principle is built in by commutation relations
of operators. The final expression for the S matrix ele-
ment shows that the problem can be formally treated as
a time-independent one, with the electron moving in the
field of the nucleus and the other electrons. In the re-
duced model, since there is no time-order difference, the
original two types of intermediate states patch up a new
set of intermediate states which is a complete set. The
Pauli principle is thus seen to allow summation over all
possible intermediate states, including occupied inner-
shell states.

In Sec. III, a time-independent many-body approach is
delineated. In Sec. IV, as an application of the results of
earlier sections, we provide formulas for matrix ele-
ments, transition rates, and differential equations to be
solved, which are formally the same as for the hydrogen-
ic case. The only difference is the external potential act-
ing on the electron. It is not that an inner-shell vacancy
is trivially equivalent to the hydrogenic case; there are

many-body effects in inner shells, particularly the restric-
tions imposed by the Pauli exclusion principle, while the
hydrogenic system consists of just a single bound elec-
tron. Nor should the reader think that this paper's re-
sult is just a simple repetition of the conclusions of
Brown et aI . regarding y-ray scattering, which are
based on a single-electron, i.e., hydrogenic model. If we
consider many-body effects and the built-in Pauli ex-
clusion principle in inner-shell y-ray elastic scattering,
the core contributions should in fact be excluded when
summing over intermediate states (unlike the procedure
in Ref. 8). By contrast, as shown here, all intermediate
states must be included (as done in Ref. 7) when one cal-
culates two-photon inner-shell transition probabilities,
taking the Pauli exclusion principle into account.

II. QUANTUM-ELECTRODYNAMIC APPROACH
AND THE QUESTION OF INTERMEDIATE STATES

The dominant part of two-photon emission is of the
double electric dipole (2E1) type; this is the only kind
considered here.

In the theory of QED, the second-order scattering
operator S can be expressed in Furry's representation as

S= —— d xd x'T j"x j'x' Az x 2 x'

The matrix element is

S21=(Ol (, core c,cza zSai
l
core&

where
l
core), in the lowest-order approximation, stands

for an antisymmetrically filled core wave function, and
l
0), for a photon vacuum state. We denote photon

creation and annihilation operators by c and c, respec-
tively, and electron creation and annihilation operators
by a and a. The remainder of the notation is of stan-
dard usage. Natural units (fi =c = 1 ) are employed
throughout. a = 1/137.036.

The electron field operator can be expressed as

f(t, r) = g a, 1t, (r) exp( —i e, t)

+ g a„g„(r)exp( i E„t), —
(3)

P(t, r)= g a, g, (r) exp(is, t)+ g a„g„(r)exp(i E„t).
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The summation index a runs over all core states, and n,
over all the excited states.

After time-ordered contraction manipulation, the S
matrix element takes the form

Sz] —— i—a f f d x d x'/]J]( x') y G(x, x')y]']/J&(x)

G(x, x') = —i (core
~

T]/J(x)]/J(x')
~

core) (5)

is the propagator for an electron hole and ]/J](x) and
]/Jq(x) are bispinor wave functions. The indexes 1 and 2
denote the initial and final states of electrons, respective-
ly.

where

X ( A ]„A2* + A 2„A']* ), (4) The explicit form for the electron-hole propagator can
be shown to be

~b (r')]iJ, (r)
277

( ~f) — E, + E, + E Vj

+ ~h„(r')~/J„(r)

„(f) —oo E, —E.n +l'g

The first term in the bracket on the right-hand side of
Eq. (6), which involves core intermediate states, is an ad-
vanced Green's function which describes the t ) t' pro-
cess; the second term, which involves excited intermedi-
ate states, is a retarded G-reen's function which describes
the t ) t process. This distinction is important in under-
standing the physical meaning of the two types of inter-
mediate states.

The two-photon processes can be described by Feyn-
man diagrams. We specify the initial and final hole
states in the following examples. Time progresses from
left to right. A solid line with arrow opposite to the
time direction represents an electron hole, a line with ar-
row in the time direction represents a real electron.
There are two equivalent ways of expressing the ad-
vanced process, as shown in Fig. 1. Figure l(a) describes
the process in terms of a hole, and Fig. 1(b), in terms of
an electron. For the retarded process, there are two
similar diagrams, shown in Fig. 2.

From this analysis, we obtain only two types of inter-
mediate states. Two other types of intermediate states
could in principle be constructed, but do not occur in
our derivation. One of these pertains to retarded real
core states; the disappearance of this type embodies the
Pauli exclusion principle. The other type of intermedi-
ate that does not appear here involves advanced excited
hole states; this type is excluded by the fact that an ex-
cited state cannot be annihilated from the core.

Electromagnetic waves and electron waves have the
forms

A](x)= A](r)e

1/J](x) =]/J](r)e ', 1/Jp(x) =]/Jp(r)e

respectively. After we integrate over time t, then t', and
then energy, we find the following expression for the S
matrix element:

]/J. (r')]]J.(r)
S2] ———i2vra f d r f d r']/J](r')y" g Jl ]„(r)Az (r')

Q7 )
—E.2+ E. +l'g

„(r')„(r) .(r') .(r)

n El+~2 En+~ I a ~2 82+a+~ g

]/J„(r')]/J„(r)
— A 2p(r) A ] (r') y"1/Jp(r)5(E/ —e] —co] —Q)p) .

E&+Co& —C.„+ig
The 6-function factor expresses the energy conservation law

E,2
—E, ) =CO ) +602 (9)

By using this energy conservation condition, we can rewrite the energy denominators. It then becomes possible to
combine the two types of Green's function into one with a complete set of wave functions as its intermediate states:

, (r'), (r)
S2] = i2na f f d—rd r']/J](r')y" g ' '

A*,„(r)32(r')
E., +~,—E.,

]/J, (r')]/, (r)
+ g 3z„(r)A*, (r') y"]/Jz(r)5(ez —e] —co] —~z) .

E,-+m2 —E2
(10)
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FIG. 1. Feynman diagrams for the advanced process (a) in

terms of a hole, (b) in terms of an electron.
FIG. 2. Feynman diagrams for the retarded process {a) in

terms of a hole, (b) in terms of an electron.

Here, the index i runs over all possible intermediate
states. The expression for the S matrix element is thus
reduced to a time-independent single-particle version,
which is formally the same as in the hydrogenic model if
we call the electron 2 the initial state, the electron 1 the
final state.

The only differences between the two models are in
two aspects: (1) The hydrogenic electron moves in the
Coulomb field of the nucleus, while the electron dis-
placed by the inner-shell hole moves in the combined
field of the nucleus and the remaining electrons. (2) The
summing and averaging over initial and final states, re-
spectively, are opposite in the inner-shell case to that of
outer shells. We have thus proved a theorem which is
useful in deriving formulas for numerical calculations.

Theorem I. E1 photon emission from atomic inner
shells, filling one vacancy, can be expressed in the
lowest-order approximation in a single-particle formula-
tion which is formally the same as in the hydrogenic
case, with the electron hole being treated as a real elec-
tron. The only differences are in the potential acting on
the electron and the treatment of summing and averag-
ing over the initial and final states.

III. TIME-INDEPENDENT MANY-BODY APPROACH

In a time-independent many-body approach, the initial
and final states can be written as

a, core (12)

a„a2a, core) . (13)

The dipole operator has the form

g-= y q, -, a,'a, , (14)

where m is the magnetic quantum number. The time-
independent many-body expression for the emission rate
is

core) I2&=az
I

core& .

As discussed in Sec. II, we have two types of inter-
mediate states, advanced and retarded. In time-
independent many-body perturbation theory, these can
be written as

d8'
dc')

38' 2

=COiQ)2 9~
l~ 2

After contractions, this form is reduced to a single-body form

dW 3 38a
m mml, m2

m2 ml
qa2 9' la

—E, )+Ca —M2

ml m2
qa2 9'la

—6 i+ Ea —COP

m2 ml
9'in qnZ

C2 —Cn —CO )

ml m2
9'in Vn2

E2 —E„—CO&

The many-body forms of the two types of intermediate
states are now reduced to core states and excitations in
the single-body form. If we impose the energy conserva-
tion law on Eq. (9), the Green's function that involves
core states and the one that involves excitations are
combined into a new Green's function that involves a
complete set of intermediate states. This proves
Theorem I over again. We therefore have the final form
for the emission rate:

dW
dt's)

3 8a 2

=COiCOp
9m ml, m2

m2 ml
92

E.; —E,2+ CO )

ml m2

+
e; —e2+ ci)2

(17)

If we specify the initial state for the atom as a [Is] hole
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state, the possible final states will be [2s],
[3s],[3d3&2), [3dszz], [4s], . . . , hole states. The possi-
ble intermediate states are of two types. The ones de-
rived from retardation are of the type of single-hole p
state of the core, and the ones derived from advance-
ment are of the type of state with one excited p electron
and two holes in the core. This agrees with the

0
classification of Aberg, and of Freund and Bannett.
Robinson, ' and Crance and Aymar" had similar treat-
ments and conclusions for core excitations in outer-shell
problems.

The time-independent many-body approach leads to
the same result as the QED approach. It is simpler, but
involves some imposed conditions, such as those regard-
ing the intermediate states and the energy conservation
law. It cannot reveal the time-ordered process, and
hence leads to less physical insight.

IV. MATRIX ELEMENTS AND EMISSION RATES

Theorem I reduces the inner-shell-vacancy two-
photon-decay problem to one tractable in the single-
particle model. The formulas for the hydrogenic case
can all be adapted to the many-body problem, but the
electron wave functions must be calculated for different
potentials. A formalism for relativistic two-photon emis-
sion in the hydrogenic case has been given by Goldman
and Drake. We follow their approach and that of
Johnson, which is equivalent to the approach of Brown
et ai. used in Ref. 7. After integrating over the angular
distribution, averaging over all possible final states, and

summing over all possible initial states, the 2E1 decay
rates per unit time in differential form are as follows.
For s~s,

dR
dc')

8 2

CO CO1[2[E1(Q) ,i'd 2)
—+E 1 (CO2, C01)]+

&
[E 2(C01, C02)+E —2(Q)2, C01)]—9 Ei(M ,1& 2) 1(M2, 1)

27~

+ 9E 2(coiy~z)E 2(~2&~1)+ 9[E—2(~1&~2)E1(~2&~gal)+El(~1~~2)E —2(~2~~1)]I (18)

For d3&& ~s,

2d8 8a
~1~2[ 3 [

1(~1~~2)+El�

(~2~~1)]+ )g [ —2(~1~~2)+ —2(~2~~1)]+ 9E1(~1~~2)E1(~2~~1)
2 2 2 2

8co ) 27&

,', E 2(co 1, CO2—)E 2(coz, CO1) + —", [E 2 (co, , CO2)E1(CO2, CO1)+E1(Cu „a)2)E 2(CO2, CO1) ] ] (19)

For dgyp ~s

2

~1~2 I 5 [ —2(~F1~2)+ —2 (1giz~~l ) ]+ g
E —2(~1~~2) —2(~2~~1) I (20)

The transition amplitude is given by

3 oo

E~(~1~~2)= dr [S„(r,A@1)U,(r, cuz)+ T„(r,A@1)V, (r, coz)],
Q)p 0

(21)

where S ~ and T„aresolutions of the perturbed Dirac equations

d K 3
[m —E, +co, + V(r)]$,„(r,co1)+ ——T, ~ (r, co, ) = K„,(r, co1),

dr r '
co&

6 K = 3+ —S, (r, co, ) —[m+E, —co1 —V(r)]T, (r, co, )= L,„(r,coi) .
dr r Cc)

&

(22)

The inhomogeneous terms K.. and L.. and the terms U. and V. in the integrand of Eq (22) are
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K, (r, ca, )=

K —K J') (ca,r) J'i (ca, r)
J't (ca&r)+ Fz(r)— Fz ( r ) ( Coulomb gauge )

2 N if' CO if'

J )(ca)r)G2(r)—
I

2
+ 1 j2(ca, r)Fz(r) (length gauge),

(23)

L (r, ca, )=

J &(cat t r) J &(carr)
j', (ca,r)+ G, (r)— G2(r) (Coulomb gauge)

2 Egin' 6) ir

j,( ca, r)Fz(r)— —1 jz(ca, r)Gz(r) (length gauge),

U„(r,ca2) =

V, (r, caq)= .

K+ 1 . , J 1(~2 ) J 1(~2r)
jl(~2r)+ F, (r)+ F, (r) (Coulomb gauge)

2 C02T Cg 27

~+1j, (co2r)G, (r)+ +1 j 2(co2r)F, (r) (length gauge),
2

v+1 J i(carr) A(
2 J t (ca2r)+ G, (r)— G&(r) (Coulomb gauge)

&+1J, (ca,r )F, (r )+
2

—1 j 2(ca2r)G, (r) (length gauge) .

(24)

Here G, (r) and F, (r) are the large and small com-
ponents of the electron wave function, satisfying the ra-
dial equations

[m —e, + V(r)]G, (r)+ ——F, (r) =0,K

df' T

+ —G, (r) —[m+E, —V(r)]F, (r)=0 .
K

dT T

(25)

These formulas are formally identical to those for the
hydrogenic case. The only difference is in the potential
V(r). In Eqs. (22) and (25), V(r) is the potential due to
the nucleus and the other electrons, but we do not ex-
clude the core contribution in the inhomogeneous equa-
tions (22). In the hydrogenic case, V(r) is the pure

Coulomb potential due to the nucleus. The notation
used here is the same as that in the paper of Parpia and
Johnson. If we set a'= —1 in Eq. (23), we obtain the
s~s decay rate, which is the same as the formula of
Parpia and Johnson. If we set ~'=2 and —3, we find
the d3/2~s and d»2~s decay rates.
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