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Renormalization of an inverse-scattering theory for discontinuous profiles
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A renorrnalized solution that is based upon the exact inversion theories of Gel'fand, Levitan,
and Marchenko has been developed by using a multiple-scales analysis. Our previous theory [J.
Opt. Soc. Am. A 2, 1916 (1985)] for the inverse-scattering problem for inhomogeneous, continu-
ously varying regions has been extended to include discontinuities in the dielectric permittivity. A
singular perturbation method has been used to obtain a uniformly valid expression for the electric
field within the dielectric region. The advantage of the multiple-scales analysis of the interior elec-
tric field is that it rigorously indicates the dielectric region over which the weak-scattering or
high-frequency approximation is valid. Furthermore, it is an effective renormalization technique
that is physically motivated by the requirement of energy conservation and that allows a systemat-
ic investigation of the various scales associated with the inverse problem. The singular perturba-
tion method for the solution of the inverse problem associated with the electromagnetic reflection
data from a discontinuous dielectric region utilizes the high-frequency Born approximation to
determine the magnitude of the discontinuity in the neighborhood of the origin. The method used
for reconstructing discontinuous profiles is also appropriate for the reconstruction of profiles with
turning points. The theory is demonstrated by two examples.

INTRODUCTION

Inverse-scattering theories provide methods for recon-
structing the physical properties of unknown objects
from information contained in scattering data. If the
scattering data can be represented by an analytic scatter-
ing matrix, i.e., perfect data over an infinite bandwidth
in wave-number space, then mathematically exact in-
verse theories' can be used to reconstruct the scattering
potential or the equivalent profile of refractive index.
However, all practical scattering data are limited and, in
any case, calculations based upon exact theories can
prove to be formidable. Recourse must then be made to
approximate inverse theories that are valid for restricted
physical models and limited data sets, for example,
weak-scattering (Born) conditions and high-frequency
data. The approximately reconstructed refractive-index
profiles will have limited validity due to divergent terms
in the perturbation expansion for the reflected fields.
These secular terms can be electively summed by using
a renormalization method first introduced by Rayleigh
to calculate the reflection of light from a stratified medi-
um.

A renormalized inversion theory (Refs. 6 and 7, here-
after referred to as I and II) has been developed that is
equivalent to a second-order regular perturbation solu-
tion of the exact Gel'fand-Levitan-Marchenko (GLM)
integral equation for the inverse-scattering problem.
Calculations based upon this theory have accurately
reconstructed profiles with an increased radius of con-
vergence in the wave-number domain compared to the
Born approximation. The renormalized inversion theory
assumed that the dielectric profile was a spatially con-
tinuous, slowly varying function of position, had no
turning points, and was dispersionless. Under these as-
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sumptions, the approximate expression for the electric
field within the dielectric region can be derived by the
method of multiple scales, which is a perturbation tech-
nique equivalent to a renormalization of the electric
field. In practice, the field renormalization is accom-
plished by denying the secular growth of the field ampli-
tude in the higher-order perturbation approximations.
The denial of secular growth is physically motivated by
the requirement of electromagnetic energy conservation
within the dielectric. In the lowest-order approximation
the renormalized field is equivalent to the Wentzel-
Kramers-Brillouin (WKB) approximation.

In this paper the renormalized inversion theory for
smoothly varying profiles will be extended to discontinu-
ous profiles by using singular perturbation theory. Since
any finite structure will always present a discontinuity to
an incident electromagnetic wave, this generalization is
both practical and necessary. To demonstrate this tech-
nique, Maxwell's equations within the dielectric region
are first reduced to a Helmholtz equation, which in the
high-frequency limit is a singular perturbation problem.
The general solution is derived by the method of multi-
ple scales and is compared with a solution obtained by
an extended WKB approximation. The resulting electric
field within the dielectric region is represented by a com-
posite expansion which is bounded throughout the entire
interior region. Under the assumptions of our model,
the calculations demonstrate that the phase and ampli-
tude of the electromagnetic wave can be regarded as
slowly varying functions of position in the region away
from the discontinuity. The solution in this region is
analogous to the outer solution of boundary-layer
theory.

In the neighborhood of the discontinuity, the phase of
the field is highly oscillatory; the solution in this region
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is analogous to the inner solution of boundary-layer
theory. However, since the phase function is complex,
the inner solution does not decay away from the discon-
tinuity but propagates into the interior as a high-
frequency wave. This high-frequency propagation or
global breakdown of the inner solution does not pose a
problem for the extended inversion algorithm. The
Riemann-Lebesgue lemma' guarantees that the inner
solution does not contribute to the complex reflection
coefficient in the outer region. In the neighborhood of
the discontinuity, the inner solution can be reduced to
the Born approximation for the electric field.

The magnitude and local behavior of the dielectric
profile function and its derivatives in the neighborhood
of the discontinuity can be accurately determined by a
Fourier transform of the complex reflection coefficient.
The outer approximation for the electric field provides a
kernel to reconstruct the dielectric profile in the assumed
slowly varying region. The regional dielectric profiles
can then be combined to provide a uniform reconstruc-
tion of the entire dielectric profile.

RENORMALIZED INVERSION THEORY
FOR CONTINUOUS PROFILES

The physical model considered here is the reflection of
perpendicularly polarized, time-harmonic plane waves
with wave number k incident at an angle Op on an inho-
mogeneous region with permittivity e(k, z ), as shown in
Fig. 1. The scattering data can be represented by the
complex refiection coefficient r(k, Ho) so that the inverse
problem is to reconstruct the dielectric permittivity
profile relative to free space,

e„(k,z) =e(k, z)/eo, @0=(l/36ir) &&10 F/m

from information contained in r(k, Ho).
The total electric field in free space (z & 0) is

E (x,z, k, 80) = [exp(ikz cos80)

+ r ( k, 80)exp( —ikz cos Ho ) ]

X exp(ikx sin80) .

The electric field E~ within the dielectric satisfies the

z,(z, k)

scalar Helmholtz equation

BE BE
, +k 2E„(k,z)E, =0 .

x2 Bz
(2)

Since E~ must be continous for all x across the interface,
a solution to Eq. (2) has the form

E = ti(z, k, H o)e xp(ik xsinHo), (3)

and

U (k, z, HO)=e„(k, z) —sin 80)0.
The field solutions to the differential equation (4) can be
expressed as an integral equation by using the one-
dimensional Green's function" exp(ik

~

z —z'
~

cosHO)/
(k cosHo),

p(z, k, 80)

ik
=t/c;„+ exp(ik

~

z —z'
~

cosHD)
2 cosOp —oo

X [e„(k,z') —1]g(z', k, Ho)dz',

where g;„=exp(ikz cosHO). An expression for the
refiection coefficient r(k, 80) can be obtained from Eqs.
(6) and (1) by applying the continuity of E at z =0,

ik
r(k, HO) = exp(ikz cosHo)[e„(k, z) —1]

2 cosOp 0

(7)&& g(z, k, Ho)dz .

Equation (7) is an exact expression for r(k, Ho) in terms
of the relative dielectric permittivity and the electric
field within the dielectric. If the dielectric region is elec-
trically thin, i.e., for weak scattering, the following con-
dition is satisfied,

kL
I
F„(k,z) —1

where I. is the thickness of the region. Under this as-
sumption Eq. (6) indicates that a reasonable approxima-
tion for the interior electric field amplitude is

P(z, k, Ho) =P;„(z,k, 80)

and after substituting this approximation into the in-
tegral in Eq. (7), and assuming that the permittivity is
lossless and dispersionless, e„(k,z ) =e„(z), then the
Fourier transform of r(k, HO) with respect to k yields the
inversion algorithm

4cos Op
[e„(z)—1]=

where the scalar field amplitude g(z, k, 80) satisfies the
one-dimensional Helmholtz equation

d2
+k U (k,z, 80)/=0,

dz

FIG. 1. Physical model for scattering of plane waves from
an inhomogeneous dielectric region.

r(k, 80)
X exp —i 2kz cosOp dk

2~ — k
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which is equivalent to the Born approximation ' and
provides a simple and direct procedure for reconstruct-
ing the dielectric profile e„(z) from r(k, 8o). However,
the condition imposed by Eq. (8) restricts its utility to
small values of k or weak reAections.

The radius of convergence of the inversion algorithm
in k space is increased by applying the method of multi-
ple scales. In order to accomplish this, the differential
equation (4) for the electric field within the dielectric re-
gion is expressed in terms of the electromagnetic path
length s(z, 8o) in the dielectric region,

s(z, 8o) = f '
U(z', 8o)dz',

0

{In[U(S)])= ' f" r(k, 8o)exp( —2iks )dk
4 ds 27K oo

=R(2s), (17)

which is readily integrated to give the effective dielectric
profile

Substituting Eq. (16) into Eq. (15) and taking the Fourier
transform of r(k, 8o) over k space yields an ordinary
differential equation for the dielectric profile in s space,

s(0, 8o)=0, s(L, 8o)=sL U(s) = U(0)exp —2 f R (t)dt
0

(18)

+g(z, 8o) +k /=0,
S S

(12)

where

1 dUg(z, 8o) =
U (z, 8o)

{1n[ U(z(s), 8o)] j .
ds

(13)

Equation (11) is the Liouville transformation' between
z, which is a fast variable, and s, which is a slow vari-
able; note that the function U(z, 8o), Eq. (5), is assumed
to be piecewise continuous. The differential equation (4)
for the electric field within the slab can now be ex-
pressed in s space as

This generalizes Eq. (31) of I by using the effective
dielectric profile at non-normal incidence, U(s). Equa-
tion (18) results from an effective summation of the secu-
lar terms in the perturbation solution of Eq. (12). Thus
it is a field renormalization obtained by requiring energy
conservation for the electromagnetic field within the
dielectric region.

It has been demonstrated by several calculations that
this algorithm has a larger radius of convergence in k
space than the Born approximation. However, the
penalty paid for this advantage is that the dielectric
reconstruction is defined in s space. The dielectric
profile function in geometric z space is obtained by ex-
panding the Liouville transformation (11) as a Maclaurin
series,

The renormalized inversion theory of I and II as-
sumed that the function g(z, 8o) was a continuous and
slowly varying function of position z. Under this as-
sumption, an approximate solution for P was construct-
ed by the perturbation technique of multiple scales
which is a form of renormalization theory. An
equivalent solution can be readily obtained by converting
Eq. (12) to an integral equation for the wave amplitude
in s space by using the Green's function
exp(ik

~

s —s'
~

)/k,

dE„

,(, 8) .

' 4 U 8o d .=o
p

z cosOp& z (0

Applying reversion of series to Eq. (19) yields

z =z(s, 8o)

z)0
(19)

L

g(s, k)=exp(iks)+ exp(ik
i
s —s'

~

)
2k o ds

&& {ln[U(s')]I, ds',
ds'

(14)

where the Oo dependence has been absorbed within s, so
that the reAection coe%cient can be expressed as

r(k) = f exp(iks ) {ln[U(s)]) ds .
l L . d d

2k o ds ds
(15)

1((s,k ) = 1(t,„(s,k ) =exp( iks ) . (16)

As an initial approximation for 1(j in the interior of the
dielectric slab, we let

1
[s —

—,'g(0, 8o)s ]+, z)0 .
[e„(0)—sin 8o]'

(20)

Equation (20) indicates that z =s/cos8o if the dielectric
profile is continuous [e„(0)= 1] and slowly varying
[g(0, 8o) « 1]. If the slab thickness L is known in
geometric space, this linear transformation from s to z
space can be used to reconstruct the dielectric profile in
geometric space. If L is not known, the reconstruction
contains an unknown multiplicative constant.

If the profile is discontinuous [e„(0)~l] but slowly
varying away from the discontinuity, Eq. (20) provides a
correction to reconstruct the profile in z space. Thus it
is important to be able to estimate the magnitude of the
discontinuity at the origin. In the next section we will
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analyze this problem by using a singular perturbation
technique. The asymptotic behavior of the profile as
s~ ~ can be obtained from Eqs. (17) and (18). Using
the assumption that the region z(0 is a homogeneous
half-space, i.e. , the left-hand side of Eq. (17) is 0 for
z &0, and taking the Fourier transform of Eq. (17) (with
t =—2s) which introduces the Dirac delta function into
Eq. (17), Eq. (18) reduces to (with k =0) 4(s, t)=%,(s, t)+ f K(s, z')%,(z', t)dz', (29)

cident pulse has interacted with the inhomogeneous
medium. It is possible to relate the wave amplitude
4(s, t) in the inhomogeneous region with the wave am-
plitude %0(s, t) in the free-space region by the linear
transformation

lim U(s) = U(0)exp[ —2r(0, 9O)] .
S~ oo

(21)
where

0',(s, t ) =5(s —t )+R (s+ t ) . (30)

A demonstration of this asymptotic behavior for
U(0)&1 is given in example 2; note that r(0, 90) might
not be 0.

Equation (18) is a renormalized solution of the
inverse-scattering problem that is equivalent to a
second-order regular perturbation approximation of the
exact GLM theory. The term involving the first deriva-
tive in Eq. (12) is eliminated by the change of variable'

'I'( st)=0 for s &t . (31)

Thus K(s, t)=0 for t ~s. Substituting expression (30)
into Eq. (29) and using Eqs. (28) and (31) yields the in-
tegral equation

From physical considerations we know that 4(s, t) is a
rightward-moving transient, so that

u(s, k, Oo)
p(s, k, 90) =

[e„(z)—sin 8O]'
(22)

K(s, t )+R (s+t )

+ f K(s,z')R(z'+t )dz'=0, s ~ t (32)

d2
u+ [k —q(s)]v =0,

ds

where the effective potential q (s) is defined by

q(s) = — ln[U(s)] + — ln[U(s)]d d 1

2 ds ds 4 ds

2

(23)

(24)

The mathematically exact relationship between q (s) and
r(k) is provided by GLM theory' '"'; the basic equa-
tions can be conveniently obtained by considering a
time-dependent formulation of the scattering problem.
The Fourier transform 4(s, t) of g(s, k) satisfies the
time-dependent wave equation

This transformation assumes that the functional form of
e„(z) is known; in general this a priori information is not
available. By using the method of multiple scales it is
possible to obtain this transformation without knowing
the explicit form of e„(z). Substituting Eq. (22) into Eq.
(12) yields a Schrodinger-type equation for v (s, k ) in s
space,

which is Kay's version of the Gel'fand-Levitan-
Marchenko integral equation. Substituting representa-
tion (29) into the wave equation (25) shows that the func-
tion K(s, t) satisfies a differential equation of the same
form as Eq. (25) for the wave amplitude %(s, t) if the fol-
lowing conditions are imposed:

K(s, —s)=0,
2 K(s, s) =q(s) .

d
ds

(33)

(34)

Thus if the integral equation (32) can be solved for the
function K(s, t), then Eq. (34) yields the mathematically
exact solution to this inverse-scattering problem. Vari-
ous methods for solving Eq. (32) are possible; especially
important are those where the scattering data are
represented by rational reflection coefficients r(k) since
these are physically interesting and have wide ranges of
application. '

Integral equation (32) can be solved iteratively for
K(s, t) by considering the integral to be a perturbation
term in the equation and introducing the ordering pa-
rameter p, so that Eq. (32) becomes

a'
4(s, t) — %(s, t) —q(s)ql(s, t) =0,

BS2
' Bt2

(25)

where t is the time variable with the velocity of light
c =—l. In free space the incident plane wave for the time
dependent equation (25) is represented by the unit im-
pulse

K (s, t) +R (s + t)

+p f '

K(s, z')R(z'+t)dz'=0, s ~ t .—t
(35)

%,„(s,t) =o(s t), — (26)

(27)

Due to causality,

R(s)=0 for s &0, (28)

i.e., a reflected transient is not produced until the in-

which produces the reflected transient or characteristic
function

R (s +t) = f r(k)exp[ ik(s+t )]dk—.
27T —oo

Expanding K (s, t) in a regular perturbation series,

K(s, t)= g p"K„(s,t), (36)
n =].

leads to the second-order perturbation solution for q(s),

q(s) = —2 [R (2s)]+4[R (2s)] (37)
ds

when p =—1. It can be shown' that the expression for
the dielectric profile, Eq. (18), is the exact analytic solu-
tion of Eq. (24) if approximation (37) is used for q (s) and
an appropriate integrating factor is used to solve this
Riccati equation. This result is equivalent to the zero-
order renormalized solution. The first-order approxima-
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%(s, k ) =exp(i ks ) 1 ——ln
1 U(s)
2 U(0)

(3&)

tion for the electric field can be obtained by substituting
Eq. (17) into Eq. (14) and evaluating the integral to ob-
tain

D, Q+Q+o[2D D, /+Do(lnU)D, Q]

+o. [Dolt+Do(lnU)D0$] =0, (43)

Substituting these expressions into Eq. (40) yields the fol-
lowing partial difFerential equation for g,

this process can be iterated. Since the asymptotic form
of the solution of Eq. (22) is known to be'

and a solution for this equation is sought in the form

40( 10 /1)+of 1( 90 1l )+o I( 2( qo 71)+ (44)

%(s, k ) = exp( iks )exp ——ln
1 U(s)
2 U(0)

(39)
Substituting Eq. (44) into Eq. (43) and equating corre-
sponding powers of the perturbation parameter yields a
coupled system of partial differential equations,

the iterative approach yields the correct series expansion
for the solution lf

l
—,'1n[U(s)/U(0)]

l
& 1.

RENORMALIZED INVERSION THEORY
FOR DISCONTINUOUS PROFILES

o: (D, +1)lto ——0,
o': (D 1 + 1 )Itrl: —[2D0D 1 Italo+Do (1I1U )D 1 $0]

o: (D 1 + 1)it'2= —[2D D0, t I+ID (0l nU)D (l'i]I

(45)

(46)

In I and II the function g(z, go) in Eq. (13) was as-
sumed to be a continuous and slowly varying function of
position z; under this assumption an approximate solu-
tion for e, (z) was constructed by a perturbation tech-
nique of multiple scales. Here we consider a discontinu-
ous dielectric profile such that g(z, 90) is not assumed to
be a slowly varying function in the neighborhood of the
dielectric discontinuity; this inverse problem is cast as a
singular perturbation problem and solved by the method
of multiple scales.

Equation (12) for the electric field within the dielectric
slab can be rewritten in the form of a singular perturba-
tion problem'

o. + [ln[U(s)]] +/=0,d P d dg
. dn' dn d Jl

where q=s/sL is a dimensionless spatial parameter and
the perturbation parameter g = 1/ksL &~ 1. Thus the
present analysis is applicable to high-frequency data
since sl ~ I. and k && 1.

The local behavior of the electromagnetic field near
the discontinuity will be determined by the high-
frequency Born approximation. In order to perform the
multiple-scale analysis of Eq. (40) two independent vari-
ables are introduced,

—[Dolt'0+Do(»»Dolt 0] . (47)

The general solution of the zero-order equation (45) is

l//0 = 2 0('go)exp( ill, ) +B0( i)0 )exp( —I 2)1 ) (4&)

which has the form of a harmonic oscillation with con-
stant coefficients on the fast scale g]. Substituting the
zero-order solution (48) into the first-order equation (46)
for g, yields

(D1 +1)PI= i [2D—o Ao+ AoD 0(lnU)]exP(i I)) +c.c.

(49)

2D0 A 0+ A 0D0(1I1U)=0 (50)

whose solution is

where c.c. denotes complex conjugate of the first term;
Eq. (49) has the form of a driven harmonic oscillator
with frequency one. The forcing terms on the right-
hand side are in resonance with this frequency and will
lead to divergent behavior of QI/$0 as I)~ oo. In order
to conserve energy, this secular growth is denied by
equating the arbitrary coefficients of the resonant terms
to zero. Thus by denying secular growth in the first-
order correction for g, the functional forms of the
coefficients of the zero-order solution on the slow scale
are determined from the condition

'gp = 'g and
90

(41)
Ao(I)0) =0 lo (51)

gp is a slow variable and corresponds to the outer vari-
able of boundary-layer theory and q] is a fast variable
and corresponds to the inner variable. The differential
operators defined in Eq. (40) are now replaced by partial
differential operators It'I ——3 I(rlo)exp(i Ill)+B 1(I)0)exp( i'll) . — (52)

where up is an integration constant. The general solu-
tion of the first-order equation (46) is now given by

d

a+—:—Dp+ —Di,
~'90

2 8 12+ +
Bgp ~'go~'g i 0 Bg ]

2 1=Do+ —DoD[+
C7 0

(42)
The variable coefficients in this solution are determined
by denying those terms which lead to secular growth in
the equation for the second-order correction. The gen-
eral solution through first order for the electric field is

g=aoexp(i', ) 1 — q(t)dt [U(I)0)] ' +c c. , .
2 0

(53)
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where

ao ——[1+r(k, 0o)][U(0)]'~

as determined by the boundary condition at z =0.
Since rii ——iso/a, Eq. (53) reveals that the electric field

is a highly oscillatory function of gp. The high-
frequency solution represented by Eq. (53) only makes a
significant contribution to r(k, Oo) in the neighborhood
of the origin, as can be demonstrated by considering the
dimensionless form of Eq. (15) for the refiection
coefficient. Writing this as a function of cr yields

I o- ~ ~Ho d dgr(tr ) = exp [lnU(sL go)]

draco,

2 0 0 d'gp gp

where

d P 'rio
=apexp

d'gp 0

( )

[ U( )]I/2

1 1 dU
q(t)dt .2U~ dip p

i 1 1 1 dU
c [U(&, )]i~2 2 U' '

draco

(55)

(54) Substituting (55) into (54) yields

ir(o ) = — aoexp
2 p

2l Zap d 1 o. dU
[lnU(sL iso)] +0(o. ) duhio .

[U(no)]'" 2 [U(no)]'" "» (56)

As o.~0, the higher-order powers of o. can be neglected
and Eq. (54) reduces to

subintervals within the dielectric eA'ectively cancel; this
observation follows from the Riemann-Lebesgue lem-
ma, "

apexp
2l 7j'p

1 dr(a) = —
—,
' [ lil U(sL, r/o ) ]d go[U(go)]'

(57)

b
lim r(o )= lim f f(t)exp(itlo )dt =0 .
o~p o~0 a

(58)

Rewriting Eq. (57) in the original variables with t =2s,
we obtain

The exponential term in Eq. (57) oscillates rapidly in
the high-frequency limit (o ~0) so that, if the integrand
is integrable, the contributions to r(k, Oo) from adjacent

»i, aoexp(ikt )
r(k) = ——,

' f — (lnU)dt .
o v'U (t) dt

Taking the Fourier transform of Eq. (59), we obtain

(59)

f e'"', e'"'dk»I. aoexp(ikt )
r(k) dk = ——,

' — (lnU)dt
2~ ' — 27r o v'U (t) dt

1 1 d
, (lnU),

2 VU dt' (60)

for o;o=1. Taking the high-frequency limit k ~ oo and
using Eq. (58), the right-hand side of Eq. (60) also goes
to 0. Physically, this means that the profile U obtained
from Eq. (60) will have no meaningful solutions from
high-frequency reAection data away from the origin
t &0. Thus the high-frequency inversion algorithm con-
sidered here can only provide the correct local behavior
for dielectric profiles. Equation (57) is analogous to the
Born approximation used in Eq. (15) in the renormalized
inversion algorithm for the continuous profile. The
dielectric profile in s space can now be calculated by us-
ing an equation of the same form as Eq. (18) except that
for the discontinuous profile, R(0)~1. The multiple-
scales analysis has summed the terms of the high-
frequency perturbation solution of the inverse-scattering
problem and included local behavior of the discontinu-
ous profile by using the high-frequency Born approxima-
tion.

The fact that R(0)~1 suggests that a discontinuous
profile is present and also provides the means for the re-
normalization of this inverse-scattering theory. The
asymptotic behavior of U(s), Eq. (21), reveals that the
dielectric discontinuity U(0) "propagates" in s space,
which induces a bias in the reconstructed profile, as
shown in example (ii) Fig. 4. With the assumption that
the reAection data were obtained from a finite slab of
known thickness, the eff'ective permittivity U (s) ap-
proaches its free-space value as s~ op. A bias in the
reconstruction due to this propagation of the discon-
tinuity U(0) can be eliminated with the transformation
to z space by reversion of series.

EXAMPLES

The renormalized inversion theory will be applied to
two examples that illustrate, first, the second-order per-
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turbation solution of the GLM equation starting with a
rational r(k) and, second, the approximate solution of
the GLM equation starting with numerical data generat-
ed by the solution of a direct-scattering problem. The
reAection data of Fig. 3 and the dielectric profiles of
Figs. 2, 4 and 5 have been reproduced directly from
computer plots; computer artifacts have not been re-
moved.

(i) The reflection coefficient r (k) is produced by plane
waves normally incident upon a semi-infinite inhomo-
geneous electron plasma whose positive background
makes a negligible contribution to r(k). In the absence
of a static magnetic field and electron collisions in the
physical model of Fig. 1 with L ~+ ao, the relative per-
mittivity has the form'

1
e„(k,z) = 1 — q(z)

k
(61)

This inverse problem has been solved by using the exact
GLM theory' to obtain the profile function

q(z) = 0, z(0
4 z)0

( 1+&2z )

(63)

where the profile function q(z) is proportional to the
electron density. In this case the time-independent
Helmholtz equation (4) can be transformed directly into
the time-independent Schrodinger equation in z space.
The reAection coefficient is represented by a rational
function of k with two poles on the unit circle in the
complex k plane; these are designated "Butterworth
poles, "

—kik2
(k —k, )(k —k~)

(62)

The correct local behavior of q(z) is obtained up to first
order in z; thus the application of singular perturbation
theory has provided a mathematical justification for the
ad hoc results of Ge et al. 20

Turning points for the local solutions of the
2=differential equation will occur when e„=1 —q(z)/k =0.

Using Eq. (68) for q(z) up to first order in z, the turning
point at k = 1 occurs at z = ( 1/2) v 2 and at k=2 occurs
at z=0; examples of reconstructed profiles and their as-
sociated turning points are shown in Fig. 2.

(ii) The reflection coefficient data are numerically gen-
erated by solving the direct problem for scattering from
an a priovI assumed linear gradient in the permittivity,

(a+bz)
i
z

i
(L,

1 elsewhere, (69)

where a =2.5, b = 1.0, and L =2.0. The reAection
coefficient in the inhomogeneous region obeys the Ricca-
ti equation [I, Eq. (33)]

(z, k)= [e„(z)(1 +r) —(1—r) ]
~

z (LJz 2

DISCUSSION

A fourth-order Runge-Kutta method was used to solve
this dift'erential equation with the dielectric profile, Eq.
(69), in order to obtain the complex reflection data of
Fig. 3. The reAection coefficient displays strong
reflections over a bandwidth kL =25X2 that represents
several orders of magnitude in wave-number space and is
much larger than that allowed by the Born approxima-
tion. The discrete numerical data for r(k) were used in
the inversion algorithm, Eqs. (58) and (18), to obtain the
profile in s space, Fig. 4. Information about the limiting
behavior, R (s)~R (0)=2.5 as s ~ oo, and reversion of
series produced the reconstruction in z space, Fig. 5.

which has the Maclaurin expansion

q(z)=4[1 —2&2z+3(&2z) + ], z) 0 . (64)

A renormalized solution that is based upon the exact
inversion theories by Gel'fand, Levitan, and Marchenko

The high-frequency behavior of the fields near the
discontinuity at z =0 provides the approximate solution
q(z). Using the approximation (9) in (7) gives

r(k) = J exp(i 2kz )q(z)dz,
2k (65) FREE SPACE

so that using (62) and taking the Fourier transform of
(63),

q(z) =r, exp( —i2k tz )+rqexp( i2kzz )—,
where r

~
and r2 are the residues of r (k). The Maclaurin

expansion of q(z) is —2

8gq(z) =q(0)+ z+ (67)

so that for the pole configuration of (62),

q (z) =4 —8&2z + 8z '+ (68)

FIG. 2. Local behavior of the dielectric profiles e„(k,z)
reconstructed from the rational r(k) of example (i). Turning
points are indicated by A.
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dependence of the dielectric permittivity function on k,
e.g., Eq. (59), analytic transformations can be obtained,
so that the Helmholtz equation (4) is transformed direct-
ly to a Schrodinger equation (22) in geometric z space;
otherwise the Liouville transformation (11) must be used.
This transformation assumes that the functional form
and extent of the relative permittivity e„(k,z) are known;
the multiple-scales method does not require a priori
knowledge of the functional form of e„(k,z) which would
be needed for an analytic transformation between z and s
spaces. Furthermore, if the Liouville transformation (10)
is a monotonic function of z and independent of k, the
reflection coefficients in z and s spaces are identical.
These renormalized solutions are equivalent to the
second-order perturbation solution of the GLM equation
in s space. The Fourier transform of the time-
independent Helmholtz equation is simply related to the
plasma wave equation, which has physically meaningful
solutions for continuous spectra. ' '

If the reflection coefficient is represented by a rational
function r (k) of the wave-number k, then it is possible
to relate the functional form of the reconstructed profile
q(z) with the pole-zero configuration of r(k). In gen-

eral, the "smoothness" of q(z) increases as the number
of poles, X, of r(k) increases; several examples of this
behavior have been given previously. ' In addition,
pole-zero configurations are restricted to "allowed" re-
gions of the complex k plane, which are determined by
physical conditions, e.g. ,

~

r(k)
~

(1. Thus the first-
order agreement of the Maclaurin expansion for the ex-
act q (z), Eq. (64), with the approximate q(z), Eq. (68), is
due to the two-pole representation for r(k), since the
conditions on the solution IC(s, t) of Eq. (32) will depend
on R (0) and R '(0).

The type and number of scaling parameters needed for
renormalization were determined by the characteristics
of the scattering data and by a priori information built
into the inversion theory. The ordering parameter p was
used for the regular perturbation analysis of the GLM
integral equation, the fast and slow scales for smoothly
varying profiles were distinguished by the logarithmic
gradient of the dielectric profile y and the local behavior
of the electromagnetic field near a discontinuity by the
high-frequency parameter o. . An inversion theory for
strong reflections from several discontinuities will re-
quire many dift'erent scales.
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