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Negative-ion photodetachment in a weak magnetic field
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A sequence of three frame transformations is used to describe the escape of a photoelectron into
a uniform magnetic field. Standard elements of quantum-defect theory are combined with a
Harmin-Fano-type local frame transformation from spherical to cylindrical coordinates, account-
ing nonperturbatively for the electron motion in both the magnetic field and the field of the atom.
A dramatic dependence of the cross section on the incident light polarization is predicted whenev-

er s waves are not present at threshold, as in H photodetachment.

I. INTRODUCTION

Several years ago Blumberg, Jopson, and Larson'
made the first observation of negative-ion photodetach-
ment in the presence of a uniform magnetic field. At the
field strengths used, B 5 10 kG, the motion of electrons
in the negative ion is hardly perturbed by such a weak
field, but its effect on the photodetachment spectrum is
dramatic nevertheless. The most conspicuous field effect
is its modulation of the photodetachment continuum ow-
ing to the Landau quantization of the detached
electron's motion across the magnetic field.

In order to interpret these measurements Blumberg,
Itano, and Larson (hereafter BIL) described the motion
of the detached electron using the Landau-channel wave
functions of a free electron in a magnetic field. This
treatment, when combined with appropriate angular
momentum weighting factors relevant to the particular
negative ion studied (S ), accounts for most of the ini-
tial observations. It also predicts, surprisingly, that the
photodetachment cross section diverges to inanity at
each Landau threshold, rising in proportion to
(E—E,h )

' . Clark showed later that this divergence
is an artifact deriving from the total neglect of electron-
atom interactions in the final state. This paper pointed
out that the usual Wigner threshold law cr ~ (E—E,h

)'
should in fact apply in the immediate vicinity of each
threshold. A brute force R-matrix procedure outlined in
Ref. 3 should, in principle, be capable of dealing simul-
taneously with the cylindrical (Landau) structure of the
wave function at infinity and with the electron-atom in-
teractions at smaller radii which are described most nat-
urally in spherical coordinates. Such a calculation has
not been performed, mainly because of the enormous
number of Landau channels (typically of order 10 or
larger) that are required for any such calculation to be
realistic.

In this paper a theoretical treatment of this problem is
developed which includes the electron-atom interaction
and the electron-field interaction on an equal footing.
Starting from an LS-coupled complex at small distances
where the photon is absorbed, a sequence of three frame
transformations is applied to the wave function as the
photoelectron escapes. These are depicted schematically

in Fig. 1. Within the reaction zone at r ~rI&~, the de
Broglie phase of the electron is determined mainly by
the total orbital L and spin S angular momenta of the
final negative-ion continuum state. Somewhat further
out, the exchange interaction has decayed exponentially
to zero; here the electron wave function must instead be
described by a jj-coupled channel expansion since the
electron phase accumulates at a different rate
k; =12(E EJ )]' de—pending on the residual atomic

fine-structure state j;. This IS-jj geometric frame trans-
formation has been a standard element of previous
quantum-defect analyses in many different contexts, in-
cluding the study of zero-field detachment by Rau and
Fano.

The effect of the magnetic field has been totally
neglected to this point, because the inhuence of laborato-
ry strength fields is extremely weak compared to the
scale of atomic forces at smaller radii. As the electron
evolves to much larger radii, however, it begins to be
affected profoundly by the field in two stages. First, at
r & r,, z„,„, the electron phase starts to vary depending
on the specific Zeeman level in which the residual atom
has been left, and depending also on the electron-spin
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FIG. 1. Schematic illustration of the four regions involved
in the escape of a photoelectron in the field of a neutral sulfur
atom and of a uniform magnetic field. Distances shown are
order-of-magnitude estimates, assuming a 5-kG magnetic field
and an electron kinetic energy of 0.1 eV.
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direction. A second frame transformation is therefore
needed to describe the electron wave function by an ex-
pansion into Zeeman-split channels. This transforma-
tion, like the first, is accomplished using simple Wigner
coefficients. In the last stage occurring at still larger ra-
dii, r & r z L»d», the diagmagnetic term —,

' a p in the
Hamiltonian prevents the electron from escaping in any
direction except parallel to the field axis. Qualitatively,
the spherical outgoing wave function of the photoelec-
tron is diabatically projected onto the energetically ac-
cessible, cylindrical Landau channels. The description
of this last step in the outward propagation of the elec-
tron wave function utilizes a local, nonunitary frame
transformation of the type developed by Harmin' and
Fano. In that context, the small-r spherical wave func-
tion evolves into a channel expansion in parabolic coor-
dinates. Here the same idea is used in the sense that the
field effect is expressed finally as a density-of-states ma-
trix, but the nature of the spherical-to-cylindrical trans-
formation is considerably different.

The Harmin-Fano local frame transformation method
also seems ripe for extension to other problems which
are separable in different coordinate systems in two dis-
tinct regions of configuration space. Another article de-
velops a similar analysis to treat negative-ion photode-
tachment in an electric field. This theoretical technique
might have relevance even to the quasi-Landau problem
of an atomic Rydberg electron affected by a uniform
magnetic field, for which current theoretical descriptions
are not satisfactory. This will require a nontrivial gen-
eralization of the current approach, however, since the
large-r Schrodinger equation for the electron in a
Coulomb and diagmagnetic potential is not separable in
any coordinate system. Nevertheless, the quasi-Landau
Hamiltonian is approximately separable in spherical
coordinates near the nucleus and in cylindrical coordi-
nates at large distances.

The paper will be organized as follows. Section II de-
velops the required theoretical analysis associated with
the sequence of orthogonal and nonorthogonal frame
transformations. The analysis is applied to S photode-
tachment in a 6-kG field, which is essentially a one-
electron problem in the energy range considered. A
second example considered in Sec. III is the photode-
tachment of Rb in a magnetic field, which shows a
more complicated effect in the vicinity of a doubly excit-
ed negative-ion resonance near the Rb(5p~zq) threshold.
A discussion of the theoretical method and its limita-
tions follows in Sec. IV.

II. THE THREE-STEP FRAME TRANSFORMATION
FOR S PHOTODETACHMENT

As a photoelectron escapes from a residual sulfur
atom, it encounters four distinct regions depicted in Fig.
1. Three frame transformations are therefore needed to
"propagate" the small-r wave function outward to
infinity. Electron motion through the first three regions
is separable in spherical coordinates, and accordingly the
first two transformations are orthogonal as usual. These
are discussed in Sec. II A below. The frame transforma-

tion from region III into region IV is nonorthogonal,
however, owing to the cylindrical separation required in
region IV. Its implementation involves several new ele-
ments and is described separately in Sec. II B. Details of
the application of this treatment to S detachment are
presented in Sec. II C.

A. Orthogonal frame transformations
by angular momentum recouplings

At small radii, r 10 a.u. , the electron remains within
the range of the atomic electrons, and the atom-electron
interactions are strong. In particular, the exchange in-
teraction overwhelms all fine-structure terms in the
Hamiltonian and all magnetic terms as well. The eigen-
states of the system within region I must therefore be LS
coupled. This includes the entire localized initial state
of S,p' P3/2 and also the part of the final continuum
state within region I, which must be p s P' since dipole
absorption does not affect the total spin directly. This
doublet spin state (S= —,') will in fact become coupled to
the quartet state (S=—,')p s P', owing to boundary con-
ditions to be imposed beyond region I, at r & rLs J~. In
any case the relevant scattering parameters needed to de-
scribe the region-I final state are a doublet and a quartet
scattering length ad, aq. Their values, which Rau and
Fano obtained by semiempirically fitting zero-field de-
tachment cross sections, represent the starting point for
our analysis,

ad ——3.5, aq ———10 .

If there were (a) no fine-structure splitting in the sulfur
ground state, and (b) no external magnetic field, then re-
gion I would extend to infinity and its (smooth, analytic)
reaction matrix would be diagonal,

~Co, ijss' = —as&ss'

That is, for each alternative spin coupling, the wave
function of an escaping electron would have the r ~ 10
a.u. form (aside from normalization),

for S= —,', —,'. Here f =(2/mk )'~ sin(kr )

g = —(2/vr)' cos(kr ) are regular and irregular s-wave
radial solutions, respectively, analytic in the energy, as
described in Refs. 4 and 9—11. Because I( s s" is smooth,
it can even be regarded as energy independent over the
range considered in this paper.

In fact the ground state of sulfur is split into three
fine-structure levels P, with j=2, 1,0. The first frame
transformation, from region I into region II, accounts
for this complication by noting that each alternative ar-
rangement S(j)+e represents a different fragmentation
channel. Clearly the electronic wave vector at infinity k~
depends on this quantum number j. The region-II wave
function is accordingly characterized by a nondiagonal
(analytic in F., smooth) reaction matrix IC~~' ", for each
total angular momentum J and component MJ,
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(JM~ )
Here A denotes antisymmetrization while P con-
tains the wave function of Pj sulfur and the spin and or-
bital degrees of freedom of the photoelectron, all cou-
pled to form a total J,MJ. The frame transformation
theory 9 " derives K&I&'' "(J) in terms of the as by in-
troducing the orthogonal recoupling matrix element, '

V2s'=((L, S, )js, I
L, (S,s, )S)' ' . (5)

Considering photodetachment from an initial JQ ———,
'

state, the final-state angular mornenta are J= —,', —,', —,'.
Close to the lowest threshold (j =2), however only J= —,

'
and —,

' contribute since J=j+s, must be satisfied. Two
channels (j= 1,2) are therefore involved for J= —', , while

only j=2 contributes to the J=—,
' final state. In the case

of J=—,', the closed j =1 channel must be "eliminated"
in the sense of quantum defect theory (QDT), '

by forc-
ing its wave-function component to vanish at infinity.
This elimination replaces the J= —,

' reaction matrix by a
single phase shift,

g(O, II) K (O, II) [K(O, II) ]2 y[1+ K(O, II)
] (7)

In Eq. (5) L, =1 and S, =1 are the orbital and spin an-
gular mornenta of ground-state sulfur, s, = —,

' is the pho-
toelectron spin, S is the total spin of the final state S
and j is the total angular momentum of the atomic resi-
due. The region-II reaction matrix is then independent
of Mi

(6)

transformation from
I
JMz ) to

I jm/, s, m, ) is accom-
plished by the Clebsch-Gordan coefficients

(~~ )X ~ 2 (j——mI, s, m,
I
JM2) . (12)

The region-III (analytic) reaction matrix becomes

K' "" (M ) = ~ X ' tan6' '"'X
j e' j e J j e'

(13)

K(III) (M ) k )/2K(O, III) (M )k I/2
1! J II J (14)

[If any of the k; are imaginary for a specific final-state
energy E, then the ith channel must also be eliminated
by a generalization of Eq. (7). The expression required is
Eq. (11) of Ref. 13, except that tan/3 must be replaced by
)c '.] Thus the final matrix K' "' has indices associated
with open channels only. The eigenvalues of this reac-
tion matrix will be denoted tan5 and the orthonorrna1
eigenvectors T;z, so that

K,',' '= g T, tan5 (T),' . (15)

The calculation of cross sections now utilizes the reac-
tion matrix E'' ' ' in a base set of energy-normalized
comparison functions (f;,g;). The general connection to
(f;,g; ) usually involves parameters A, and P; charac-
teristic of the long-range potential in the relevant chan-
nel i =(m~, m, ). For an s wave in zero field, appropriate
here throughout region III, P, =0 and /I, is simply
k / =[2(E E& )]—'/ if the final-state total energy is

E Th.en f, =k f, and g, =k; '
g, and the energy-

normalized reaction matrix is

E =E +a(g~m2+2m, )

in terms of the magnetic field parameter,

(9)

a =B /( 4.69 X 10 G ), (10)

which is half the cyclotron frequency in atomic units.
The final atomic state (j=2) and initial ion state
(Jo ———,

'
) gyromagnetic ratios are

gf 2 gQ 3

and the initial state of S has Zeeman sublevels
EJ ~ —EJ + (xg QMQ With the magnetic field nonzero,
J is no longer a good quantum number for the final con-
tinuum state, and the cross-section calculation must be
performed separately for each (MO, Mq). The next frame

In terms of the atomic sulfur energy levels Ej,
~2=[2(E/ E)]' . Th—e corresponding eigenphaseshift
for J= —,

' is given in terms of the quartet scattering
length by

tan6J '
gyp = —

Q&
(0, II )

As the detached electron propagates outward to the
vicinity of re z„,„, the phase kr of its wave function be-
gins to differ depending on the combined Zeeman sublev-
el of the sulfur atom S(jmI ) and the photoelectron spin
e (s, m, ). This Zeeman sublevel structure for the final
state takes the form, for j =2,

Our calculation requires also the dipole matrix e1e-
(MJ )ments connecting the ground state to our final state
&P

which can be obtained by a linear transformation from
the "analytic" eigenchannels characterized by J to the
"energy-normalized" eigenchannels characterized by p.
First of all, the Wigner-Eckart theorem isolates the MJ
dependence of the "J"matrix elements,

d~
' ' =(A~,"

I

&-r
I gi, M, )

= [(Jll~"'ll Jo)/'(2J +I)'"1(JMz
I
JoMo, i~ )

(M~)d =D3~~

X g X q 2/2k T cos|2
(MJ )

m, m
(17)

We will abbreviate the quantity in square brackets
[ . . ] by Dz, and note that it is nonzero for J=—,', while
it vanishes for J=—,

' since the latter requires the total
electronic spin to be S=—', in the final state. We will also
regard D3/p to be essentially constant over the energy
range considered, within a few cm ' of the j =2
threshold(s). (If desired over a larger energy range, its
energy dependence could be found in terms of a region-I
reduced dipole matrix element as discussed by Rau and
Fano. ) The final transformation to the energy-
normalized matrix element is now given by Eqs. (3.4)
and (3.5) of Ref. 14,

( T~MJ
I
JpMp lg )

cos6( '")
3/2
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B. The transformation from spherical
to cylindrical coordinates

At this point we have only accounted for the linear
Zeeman term in the magnetic field Hamiltonian. The
term quadratic in B becomes important only at electron-
ic distances approaching 10 bohr radii, but its effect on
the spectrum is dramatic, quantizing the motion orthog-
onal to the magnetic field and permitting escape to
infinity along the field axis only. Asymptotically the
field imposes a cylindrical symmetry on the system, in
contrast to the spherically symmetric escape of the pho-
toelectron through regions I—III. On the other hand,
the electron is a free particle throughout most of its
motion, which permits separation of its wave equation in
either spherical or cylindrical coordinates. This fact per-
mits us to account for the asymptotic cylindrical symme-
try by a third frame transformation which will describe
the manner in which a spherical outgoing wave projects
itself among the assorted Landau channels which are
available. Unlike the preceding two transformations
which produced the region-III wave function, however,
this involves a local, nonorthogonal frame transformation
very similar to the transformation theory developed by
Harmin to describe the nonhydrogenic Stark effect.

Equation (17) is a dipole matrix element connecting
the ground state to a final-state collision eigenchannel
having the following form in region III:

'p~=Ar ' g iI);(c0)[f,(r)T; cos5 g, (r)T; s—in' ] .

(18)

Here the number of independent solutions %z equals the
number of open channels at a given E and MJ, which is
in turn equal to the number of indices i. The evolution
of this wave function through region IV to infinity re-
quires a local frame transformation ' between the regu-
lar, energy-normalized solutions appropriate in the
small-r (spherical) and large-r (cylindrical) regimes. The
regular spherical solutions in zero field are the familiar

fi (r) =(2m. )
'

1Vt e' ~P(m( cos9)(2k /tt)' j t(kr ) .

(19)

The regular cylindrical solutions in zero field have
different forms depending on the parity in z,
m; =1t, ,( —1), and as usual tt„,=( —1)' is the total par-
ity:

qB =0( ) (2 )
—1/2 impJ [(k2 2)1/2 ]

cos(qz), tt, =+1
X(~q) '/2X

sin(qz), n, = —.l.
(20)

The z component of the electron wave vector is q, which
ranges from 0 to k. The complementary sets of separ-
able solutions (19) and (20) are interrelated by a transfor-
mation matrix U which can be extracted from an in-
tegral tabulated in Ref. 15,

gB= (r)= g U 1= (m)fi (r),
1

(21)

where

U,', -'(m) = 2l+1
kq

1/2
(l —m)!
(1+m)!

1/2

1 )[(1—1 —m)/2]p (q /k) (22)

In the phase factor ( —1)( l here, [x] denotes the small-
est integer greater than or equal to x. The summation in
(21) should include only the even or else only the odd
values of l, depending on ~„,. This transformation is an
orthogonal one in the sense that

k /2
I 2 B —0fi (r)= J d( —,'q )P

= (r)U 1

= (m) .
0

(23)

The generalization of this transformation to nonzero
magnetic fields closely follows the Stark treatment of
Ref. 5. To begin with, the exact cylindrical solutions in
the presence of a magnetic field B generating a cyclotron
frequency 2a are well known,

2 cos(q„z ), 1t, = + I
qB ( ) (2 )

—1/2 imp~
—ap /2( 2) m /2L ( m )(ap )(~q )

sin(q„z), tt, = —1. (24)

The normalization coefficient is'

N„= [2an!/(n +
~

m
~

)!]'/ (25)

The values of the momentum q„along the field axis
which are allowed at any energy —,'k are now quantized
because of the Landau-level structure in the continuum,

proximation. Multiplying the zero-field result (22) by
this proportionality factor and by the factor 2a needed
to convert integrals over d( —,'q ) into summations over

n, we obtain the transformation coefficient,

U„i(m) = Uz 1= (m)(2a)' [n!/(n +
~

m
~

)!]'

=E„' '+ —,'q„—=a(2n +m +
~

m
~

+1)+—,'q2 . (26) X[—,'(2n +m +
~

m
~

+1)] (27)

The key consideration needed here is the fact that for
the typically weak fields available in the laboratory, the
diamagnetic term —,'n p in the Hamiltonian is negligible
at small distances. Consequently the B =0 and the B&0
solutions must be proportional there, to a very good ap-

(r)= g U„,(m)fi (r) .
I

(28)

This matrix element relates the spherical and cylindrical
solutions (at small r «a ' only),
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A key element emphasized in Ref. 5 is that the matrix U
is not orthogonal for 8&0, so that the inverse transfor-
mation will just be written formally as

max

H = g (U)(nUn(, =. g(U~()
n=0

(34)

max
The total photodetachment cross section is then simply

f, (r)= g (U '),„g„(r) .
n=0

(29) o = (4~ co/137 ) g dpD pp d~ (35)

The summation over n includes all Landau levels for
which E„' & —,'k . The nonorthogonality of U arises be-
cause g„and f( do not satisfy the same Schrodinger
equation everywhere, in particular at large distances.
Accordingly these transformations are only valid locally,
unlike the zero-field result (21) which holds everywhere.

The same matrix U also allows us to relate the solu-
tions irregular at r =0, because the cylindrical and
spherical principal part Green s functions must coin-
cide. The irregular spherical solution g, (r), which lags

f( (r) by 90' at large r, is given by Eq. (19) with j)(kr)
replaced by n((kr). Similarly the irregular cylindrical
solution P„(r) which lags (t)„,„(r) by 90' in z, is given by
Eq. (24) with cos(qz) replaced by sin(qz) for ~, = +1 and
sin(qz) replaced by —cos(qz) for ~, = —1. Since there is
no potential barrier between z =0 and

~

z
~

~ cc, the pa-
rameter cscy in Eq. (50) of Ref. 5 reduces to unity for
the present problem. This reflects the ability of sin(qz)
and cos(qz) to maintain their 90' phase difference at both
small and large

~

z ~, unlike the parabolic continuum
functions of Ref. 5. The relationship between these ir-
regular solutions can then be expressed as

The matrix inversion of ()p %' } in Eq. (32) is of dimen-
sion 2&2 for each Mz, while the H; and H; ' are in fact
scalars here.

Figure 2 shows the single channel modulating factor
H for a 10.7-kG magnetic field, for three different partial
waves. In the experiments performed to data, a near-
threshold electron is ejected predominantly into the l =0
partial wave owing to the %'igner threshold law. In this
case the magnetic field is seen [Fig. 2(a)] to induce a
quasiperiodic modulation of the photoelectron density of
states, oscillating about the mean value H = 1. Note
that, whereas the factor H diverges at each Landau
threshold, the relevant element of the density-of-states

(o) 8 =o, m=o
I I

H

X'„(r)= y(U)„, )g, (r), —

I

(30a)

max

n =0
(30b)

(b) 8 = ), m=o

The region-III solution P thus evolves into a region-
IV solution of the form

f~= 3 g P;T; [g„(r)cos6 (U ')& „
I, n

H

1.5—

—X„,„(r)sin6 (U)(„] . (31)
0.5

The quantum numbers l, and rn; are in fact zero here
close to the detachment threshold, owing to the domi-
nance of s waves at threshold, though we leave them ex-

plicitly in Eq. (31) for generality. Note also that the ma-
trix U depends on the i index through its wave vector k;
in addition to l;. Calculation of the overlap matrix
()t~

~
)t~ } as in Ref. 5 leads to the density-of-states ma-

trix for a multichannel problem,

p

D,', =[(0~@'}—']„,
where

(32)

(+ + ) = g [cos6 T;H; 'T; cos6 ~ 4 6
E(cm '}

10

+ sin6& T&, H; T; ~ sin6 ], (33)

and with the field effects contained in the "modulating
factor, "

FIG. 2. Dimensionless modulating factor for a 10.7-kG
magnetic field, containing the main effect of the external field
on the photoelectron density of states. Three partial waves are
shown: (a) (Im)=(00), {b) (Im)=(10), (c) (Im)=(11).
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Figure 3 shows the predictions of Secs. II A and II 8
for the S detachment cross section in the presence of a
6-kCs magnetic field. The incident light is taken here to
be linearly polarized along the field axis. The spectrum
displays many of the same features shown by BIL.
First of all, the (E —E,h)

' behavior is seen to dom-
inate the visual appearance of the spectrum close to each
Landau threshold E,h, even though this divergent behav-
ior does not apply all the way down to threshold. As
discussed in Sec. II 8, the usual Wigner behavior
(E—E,h)' applies in the immediate vicinity of each

4.0—

0 ~
C:I~ - 2.0

Co
Co ~
O~

0.0—
0

L

2

E-16755 (cm ')

FIG. 3. Predicted photodetachment cross section for S
ground-state ions in a 6-kC» magnetic field. The incident light
is assumed to be polarized linearly along the field axis.

matrix D approaches in that limit a constant plus a
term rising in proportion to the usual Wigner threshold
factor (E-E,h )

' . This agrees with Clark's analysis.
But if all eigenphase shifts vanish identically, corre-
sponding to no electron-atom interaction, then D
diverges at each threshold as expected from BIL. See
also Refs. 17 and 18 for further discussion of this point.
This last limit is nearly realized very close to a (zero-
field) detachment threshold, where again the eigenphase
shifts are small because of the %'igner threshold factor.
In this energy range the BIL treatment is thus reason-
ably sound.

Figures 2(b) and 2(c) show that when an l =1 photo-
electron is ejected, as in H, the density of states de-
pends very strongly on the light polarization e. For
1 =1, I =0 (f parallel to B), the strong modulation of
the cross section practically disappears. This makes
sense physically because the photoelectron is ejected
mainly along the field in a cos 0 distribution, and is un-
likely to range outward to large p values. Consequently
a negligible amount of electron Aux is projected into the
highest, newly opening Landau channel near that Lan-
dau threshold. For l =1, m =1, on the other hand (e
perpendicular to B), the modulations are somewhat
stronger than for 5 waves because the electron is prefer-
entially ejected at right angles to the field and is much
more likely to emerge in the highest accessible Landau
channel.

C. Results for S Photodetachment

threshold. In the example of Fig. 3, however, the energy
range over which the Wigner law holds is extremely
small, approximately 10 cm '. The analysis of BIL
(Ref. 2) is apparently satisfactory here, a result of the
fact that the zero-field scattering phase shifts are them-
selves extremely small in this near-threshold energy re-
gion. In fact, the threshold peaks shown are not con-
sistently given to their actual height, since in most cases
the peak heights would dwarf the scale shown. The rel-
arive strength of successive threshold peaks is correctly
depicted, nevertheless. The dominance of a single pair
of degenerate Zeeman transitions [Mo=+=,' to
(m~, m„) = (+2, +- —,

'
) ] follows from simple angular

momentum coupling factors, as is clear from Fig. 3 of
BIL.

An obvious conclusion from these results is that ignor-
ing the zero-field electron-atom interaction [as done by
BIL (Ref. 2)] is a good approximation close to any zero-
field detachment threshold. That approach should fail,
however, if a zero-field shape resonance lies just above
threshold, or in the vicinity of any prominent resonance
features. In these situations and those for which s waves
are excluded by symmetry close to threshold, the ap-
proach of Secs. II A and II 8 should prove to be more
generally applicable.

III. TREATMENT OF Rb PHOTODETACHMENT

The preceding results have demonstrated that
quantum-defect theory successfully describes negative-
ion photodetachment in a weak magnetic field. I turn
now to a more complicated situation in which the nega-
tive ion possesses doubly excited autodetaching reso-
nances. Extension of the Sec. II 8 local frame transfor-
mation to closed channels is nontrivial and will not be
faced here. However, most resonances are localized at
comparatively small radii and accordingly their "closed-
channel" component is hardly affected by the weak mag-
netic field. At this level the only effect of the resonance
is to induce a strong energy dependence in the phase
shift of the continuum wave functions. Beyond this, no
substantial modification of the Sec. II treatment is re-
quired.

As an application consider Rb photodetachment
near the first excited thresholds 5p, /23/p of Rb. Here
the enormous static polarizability of Rb (5p) (a~~ =840
a.u. ) plays a crucial role, in contrast to the S example
of Sec. II. In particular, this long-range polarization
field causes a strong energy dependence of the zero-field
reaction matrix K, quite distinct from resonance efI'ects.
The cleanest theoretical method for incorporating this
strong energy dependence into the formulation follows
Ref. 19, which utilizes a reaction matrix relative to two
independent (Mathieu function) solutions (f~,g~) of the
Schrodinger equation in a polarization field. In this
"generalized quantum defect" representation the reac-
tion matrix varies more smoothly with energy than in
the "zero-field" representation.

The zero-field photodetachment spectrum of Rb has
been studied in detail in two high-resolution experiments
by Rouze and Geballe and by Frey et al. ' Reference
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20 in particular has fitted the polarization-based QDT
(Ref. 19) to the spectrum and extracted the reaction ma-
trix E near the P&i2 and P3/2 thresholds. Since they
found that a single fit with energy-independent parame-
ters is insufficient to reproduce the fine details at both
thresholds, they tabulated slightly different parameters
at each threshold. This energy dependence complicates
our analysis somewhat, although it is not that surprising
in the case of Rb since the splitting of the fine-
structure levels of Rb(5p) is over 200 cm '. To test
whether the fits of Rouze and Geballe are sensible, we
first calculate the photodetachment spectrum which is
predicted by a linear interpolation between the parame-
ters they tabulated at the two thresholds. [In fact the
eigenquantum defects ~p were interpolated rather than
the tan(sr' ) given in Ref. 20.) As shown in Figs. 4 and
5, the spectrum predicted by this interpolation repro-
duces the data well throughout this energy range, both
the total cross section and the branching ratios. Accord-
ingly this zero-field MQDT fit seems reliable, and we will
use these interpolated parameters to predict the detach-
ment spectrum in the presence of a magnetic field.

0.6-

I I

Rb + h& -Rb(5 P ) + e
(, a)

0
o 0.4-
C

O
~ 0.2

0 t i

l6400 l6600 16800
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o 0.4-
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o 0.2-

0 I

16400 I6600 l6800
photodetachment energy (cm )

FIG. 5. Branching ratio o.(5p)/0. (total) is shown for Rb
photodetachment in zero external field. (a) Experimental re-
sults of Rouze and Geballe (Ref. 20) (open circles) and of Frey
et al. (Ref. 21) (smooth curve) [from Rouze and Geballe (Ref.
20).] (b) Present results using polarization MQDT, with linear
interpolation of parameters fitted by Ref. 20.

l0

g (totpI)

(b)
The parameters which characterize the small-r solu-

tion (region I) are a 2X2 reaction matrix K~ "I for the
'P' final state and another for the P' final state. The
channel labels on these matrices are 5sep for c7=1, 5pes
for can=2. Since we will ultimately be interested in the
separate Zeeman-split channels we will regard the
region-I reaction matrix (for q =0) as a single 8X 8 reac-
tion matrix,

«rz, SMsLM,
l

l~ I' 'I
l

rz', S'MsL

0 I

16300 I6500 I 6700
I

I 6900
pho tode tachrnent energy (cm ')

FIG. 4. Zero-field cross sections for Rb photodetachment
near the Rb(5p) fine-structure thresholds: (a) The smooth
curves are the experimental total and partial cross sections of
Frey et al. (Ref. 21), while the dashed curve is an MQDT fit by
Rouze and Geballe (Ref. 20) at the Sp3/2 threshold. [From
Rouze and Geballe (Ref. 20).] (b) Present calculated MQDT
spectrum predicted using a linear interpolation between the pa-
rameters fitted by Ref. 20. Rb(5s, iz, m, )+e (s, = —,', m, ;L =1,ML ), (36)

which is block diagonal in 5 and Ms. Here only L =1 is
allowed, and Ms+~L =q =Ms+~L» a ~onsequ~nce
of angular momentum conservation. Rather than going
first to a jj-coupled region II (as done in Sec. II for 5 ),
it is simpler here to make a single frame transformation
into the Zeeman-structured region III. The i fragmenta-
tion channels of region III are of a different nature for
5sep and 5pes. For 5sep, ignoring the spin-orbit interac-
tion for the outer p electron, the Zeeman channel struc-
ture looks like
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subject only to m, +m, +ML ——Mz ——q. Thus i =
I m, ,

m, , ML I for 5sep. For 5pes the structure is different be-
e

cause of the atomic spin-orbit splitting, namely,

= 0.02

Rb(5p P~ )+e (s, = —,', m, ;I, =0), (37) O

X,. = ( —,
' m, , —,

' m,
~

SMs ) (38)

for the 5sep channels (i = 1 —4, c7=odd), and

whereby i =
I jm&, m, l for all 5pes. channels. The trans-

formation coe%cient X,. can be derived using straight-
forward angular momentum algebra, giving

W P.ol

(/)

OZ
-8 -4 0 4 8 l2

ENERGY RELATlVE TO 5 Pjl THRESHOLD (cm ')

X,. = g (s,m„jmj
~

JMJ )
J

X (s, (s,L )g
~

(s,s, )SL )' '( JMJ
~
SMs, LMI )

(39)

= 0.02,

O

O

+ Q-010
o
LLI

I I I I I I

(b)

for 5pes (i =5—8, a=even). Then the region-III analytic
reaction matrix is

(40)

O
CC

ENERGY REl ATIVE

Tr polorization

I I I I

0 4 l2

TO 5 Plj THR ESHOLD (c m
'
)

The transformation to an energy-normalized reaction
matrix K' 'I now involves parameters A; and g; for the
polarization potential as tabulated for s electrons in Ref.
19. [As in Ref. 19, the polarization solutions were not
actually used to describe the p electron in the 5sep chan-
nel since the 5s polarizability induces no rapid variations
with energy close to Rb(5p). ] At each energy now the
N, closed channels are "eliminated" to give an No&NO
open-channel K matrix which can be diagonalized to
yield the 6 and T; of Sec. II. Similarly, the 'P' dipole
matrix elements in region I can be transformed to give
the desired d . Now the last frame transformation into
region IV is accomplished, defining the density-of-states
matrix through Eqs. (32) and (33). Equation (35) at last
produces the total photodetachment cross section, as
shown in the figures near the P&&2 threshold.

Figure 6 shows the resulting spectrum of Rb predict-
ed by this analysis. Note that a major inhuence of the
magnetic field is its Zeeman splitting of the j= —,

' chan-
nels of Rb+e, which divides the narrow window reso-
nance below threshold into two resonances. The Landau
substructure is also significant, but above the Rb(5p)
threshold only. In fact, some Landau structure associat-
ed with the 5sep continuum is present just below the
5p&&2 threshold also, but it is extremely weak for the
present case with the incident light polarized linearly
along the field axis, as this leads predominantly to the
1 =1, mi ——0 partial wave for the photoelectron [see Fig.
2(b).] The continuum Landau structure just below
Rb(5p) becomes much more visible, on the other hand, if
the incident radiation is circularly polarized along the
magnetic field.

O

O

(c)
Landau substructure
included

O
l Q.O I-
bJ
CA B = l0.7 kG

polarization

o I I t

2
t I I I

4 6 8

ENERGY RELATIVE TO 5 P THRESHOLD (cm ')
Ij

FIG. 6. Predicted Rb photodetachment cross section near
the 5pl&2 threshold with (a) the magnetic field absent, (b) only
the linear Zeeman effect of the field included, and (c) the full
field effect included. The field strength used in (b) and (c) is
10.7 kG and the incident light is taken to be linearly polarized
along the magnetic field axis.

IV. LIMITATIONS OF THE FORMULATION

In Harmin's treatment of the nonhydrogenic Stark
effect, the problem of dealing with closed channels never
arises since all channels are asymptotically open in the
presence of the electric field. The present paper has not
faced this problem either, although it is much more
relevant here in the context of negative-ion photodetach-
ment in a magnetic field. In fact, whenever the binding
energy of a zero-field resonance becomes comparable to
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the Landau-level spacing, the preceding theoretical de-
velopment has questionable validity. Even the applica-
tion to Rb photodetachment shown in Fig. 6 has some-
what borderline validity for a 10.7-kCx magnetic field. It
seems plausible to expect that the local spherical-
cylindrical frame transformation can be suitably general-
ized to incorporate this essential physical element, but
this task will be left to subsequent investigations. Relat-
ed difficulties are discussed for the Stark field treated in
Ref. 7. In any case, the present approach should pro-
vide a correct description of nonresonant photodetach-
ment in a magnetic field, and of resonant photodetach-

ment in the vicinity of resonance structures which are
much broader in zero-field than the Landau-level spac-
ing.
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