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Polarization and electronic excitation in nonreactive collisions: Basic formulation
for quantum calculations of collisions between P-state alkali-metal atoms and H2 or D2
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The inelastic scattering of two structured systems —for example, an excited atom and a
molecule —is considered in the case of nonreactive collisions. Explicit formulas are presented for
cross sections corresponding to transitions between arbitrary eigenstates of the two isolated sys-
tems. These formulas are then used to derive cross sections for polarization transfer and multipole
relaxation in one system when the other system is unpolarized. Both space-fixed and body-fixed
formulations are given. Explicit matrix elements are worked out for interactions such as occur be-
tween model alkali-metal atoms and rigid-rotor diatomic molecules. An effective interaction
method is also discussed and related to an adiabatic-state approach.

I. INTRODUCTION

There is evidence' that in collisions of excited
atoms with molecules, the cross sections for transitions
among atomic energy levels are sometimes sensitive to
the rotational degrees of freedom of the molecule. Thus
transitions between fine-structure levels can be enhanced
by the presence of rotational transitions which are nearly
resonant with the fine-structure splitting. ' Most calcu-
lations of such effect in the past have relied on classical
trajectories in a time-dependent calculation or on com-
putations in which the molecule is treated as a classical
object of fixed orientation with respect to the atom. ' It
has also been suggested that anisotropy effects are often
more important than rotational degrees of freedom.

As realistic potential energy surfaces become avail-
able which include both short-range overlap effects and
long-range correlation for the interaction of excited
atoms and molecules, it is important to calculate the
cross sections in a scattering theory with a fully quan-
tum treatment of both the internal degrees of freedom of
the colliding partners and of their relative motion. The
calculations by Fowler and Launay of fine-structure
transitions in C+ in collisions with Hz are of this type,
although as discussed more fully in a following paper,
they neglected an important part of the interaction. Re-
bentrost and Lester have reported close-coupling calcu-
lations of F( P) collisions with H2 in an adiabatic-state
basis. Like Fowler and Launay, other recent calcula-
tions of the F+ Hz system, and the general formulation
of DeVries and George, ' Rebentrost and Lester direct
their attention to total cross sections summed over mag-
netic sublevels, whereas we need to consider both
differential cross sections and total cross sections for the
multipole relaxation and transfer of atomic polarization,
as well.

To calculate inelastic cross sections for excited atoms
with molecules, we use the time-independent scattering
theory of composite systems in a fairly general form.
The essential concepts are well understood. '" The cou-
pled equations which result from the energy eigenvalue

equation for the system are practical to solve only if ro-
tation and inversion symmetries are exploited to reduce
the coupled equations to blocks of given J, M, and m.„
the eigenvalues representing the total angular momen-
tum J, its projection on the space-fixed quantization axis
z, and the total parity. Two convenient bases in which
J, M, and ir, are eigenvalues are a space-fixed (SF) basis
with eigenvalues j&, jz, j, l, J, M, and m„and a body-
fixed (BF) basis with eigenvalues ji, j2, j, $1, J, M, and

Here j, and jz are the angular momenta of the in-

teracting systems, j is their sum, and 1 is the orbital an-
gular momentum of the relative motion of the two sys-
tems about their center of momentum (CM),

j=ji+Jz=J—& .

The eigenvalue Q is the magnitude of the eigenvalue for
the projection of j onto R, which locates the CM of sys-
tem 2 with respect to that of 1. The SF basis is the nat-
ural choice for investigating collisionally induced transi-
tions between sublevels with magnetic quantum numbers
m &, mz corresponding to the SF projections j& z, jz.z. It
also allows the simplest derivation of the scattering
equations. The BF basis, on the other hand, takes ad-
vantage of the symmetry of the interaction V with
respect to rotations about R and the consequent di-
agonality of the interaction matrix in 0,, but it also con-
tains potentials pitfalls in the proper application of the
commutation relations of j with J when the basis states
are eigenstates of j.R and J z, but not of I .

The scattering theory required is a generalization of
the theories for collisions of P-state atoms with struc-
tureless ground-state atoms or ions as used by Reid' in
an SF formulation and by Mies' in an adiabatic-state,
BF formulation. Furthermore, just as Reid's work was
an extension of an earlier theory of rotational excitation
in rigid rotors due to collisions with structureless
atoms, ' so our theory may be obtained as an extension
of theories for rotational energy transfer between dia-
tomic molecules. ' Launay has presented some of the
theory needed in a BF formulation, ' ~hereas Reben-
trost and Lester have extended the adiabatic-state ap-
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proach of Mies. '

We believe it is conceptually simpler to derive the
scattering equations first in the SF frame and then to
transform them to the rotating BF frame if needed.
However, since the results are fully equivalent to what
can be obtained by the BF-frame derivations of Launay'
and of Rebentrost and Lester, we present (Sec. II) only
a brief summary of the SF-frame derivation and then
give the transformation to the BF frame (Sec. III).
Next, reduced expressions for total cross sections are de-
rived for Inultipole transfer and relaxation when one of
the systems is initially unpolarized (Sec. IV). With the
form of the interaction potential introduced in Sec. V,
results are immediately applicable to rotational transfer
and relaxation between rigid diatomic molecules, to in-
teractions between two possibly excited atoms, each with
a single valence electron (but with spin-spin interactions,
charge exchange, and photon transfer ignored), or to the
problem of specific concern to us, the interaction of such
an atom with a rigid diatomic molecule. Finally, we dis-
cuss calculations in bases of adiabatic molecular states of
the combined system and relate such calculations to a
type of effective interaction approximation.

~

@J& ) = g ~P) Yl (R)X(Plm, aJM), (4)

where a rePresents a&azj, f3 rePresents a~azm ~mz, and
the matrix elements of the unitary transformation are'

X(Plm, alJM ) = g ( —1) '

interacting systems is constrained to satisfy appropriate
boundary conditions. They are most simply derived in a
simple product basis of isolated-system states, with an-
tisymmetrization of electrons to include exchange effects
between systems 1 and 2, if desired

~
a, azm, mz) =A&z

~

a~m ~ }
~
azmz) .

The resulting radial equation, although formally simple,
is impractical to solve because all states and all l values
are coupled together. The matrices involved need to be
reduced to block-diagonal form with blocks labeled by
the conserved quantum numbers J, M, and m, The
reduction is accomplished by a unitary transformation
changing the basis to one comprising eigenstates ofJ, J z, and H, . Thus in the basis of states

II. SCATTERING EQUATIONS IN THE SF FRAME

Consider interacting systems 1 and 2 with internal
coordinates represented by r;, i =1,2, with respect to
their individual centers of mass. Each isolated system i
has a total Hamiltonian H; +P; /(2M; ) where P; and M;
are, respectively, the total momentum operator and the
total mass, and H; is the Hamiltonian of system i in its
center-of-momentum (CNI) frame with eigenstates
~a, m, &:

X [(2j+1)(2J+1)]'"

j& j2
X

rn& m& —n
L

j I J
n m —M

one finds matrix equations

d +k — F (R )= 2@V (R )F (R )

(5)

(6)

H; ~a;m;)=E, a;m;) . (2)

Since we take the isolated systems to be invariant under
rotations and inversions, H; commutes with both the an-
gular momentum operator j; and the parity operator H;,
so that the energy eigenstates can be taken to be eigen-
states also of j;, j;.z, and H;, where z is the SF quanti-
zation axis, with eigenvalues j; (j; + 1), m;, and vr;, re-
spectively, in units with %=1. The energies are indepen-
dent of I; which labels the "sublevels" of the system.
Other relevant quantum numbers (j;, vr;, etc.) are
represented by a;.

The total Hamiltonian of the interacting systems in
the CM frame is

H =P /(2p)+H) +Hz+ V(r), rz, R),
where p =M ~Mz /(M

& +Mz ) and P = —i Va The in. -

teraction potential V depends on the internal coordinates
r] and rz as well as on the separation R of system 2 from
system 1. Of course, H commutes with the total angular
momentum J=j+1=j]+jr+1 and the total parity
H, =H[H2H~, but not generally with the orbital angular
momentum 1 of the two systems in the CM frame.

The scattering equations arise from the eigenvalue
equation (H E)/=0 when the w—ave function 1l of the

for each block of radial wave functions FJ(R). Here k z

and I are the diagonal matrices with elements
k &z

——2p(E E E) a—nd l'(—l'+1), respectively, and
QI QP

the matrix elements of V (R ) are

which from [H, J]=0 are easily shown to be independent
of M for —J &M & J. The matrix blocks are limited to I
values lying in the range

~

J—j ~

&I &J+j and yielding
a given total parity vr, =vr&~z( —1)'.

The differential equations (6) are solved for each J, M,
and m by starting with a square matrix F (R) near R =0
in which each column represents a bounded, linearly in-
dependent solution and numerically integrating outward
and matching the open-channel component (for which
k &z & 0) to the asymptotic form

where j and n are diagonal matrices with elements given
in terms of spherical Bessel functions of the first and
second kind' by k,'z Rj t(k&zR) and k Iz Rn&(k, zR), re-
spectively. The real square matrices 2 and 8 are easi-
ly combined to give the T matrix (or closely related S
matrix)
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T =1 S—=2B (B +i A ) (8)

dQR
crpi), (R, k )

277 g Y(j()Y(k) I —('
I'm ' lm

k12 1, m, l', m'

with matrix elements T, I ——((I)„.( l

T
l

(Ii ( & where,
as above, a represents a, a 2j. From these, one can find
the differential cross section for the transition from SF
sublevel P= ((z (a z m ( m z) to sublevel P' = (a ') a zm ', m z) by
transforming back to the SF product basis:

where a=a(azj and P=a)azmimz.
To use the symmetry in scattering calculations, one

looks for linear combinations of the
l

(I) ( & which are
simultaneous eigenstates of j1, j2, j, j.R, J, J„and H, .
It may be shown' that the unitary transformation

(12)

gives such linear combinations, where l is summed over
the range

l
J—j l

(1(J +j with the restriction that
( —1)'=(sr)~z and the matrix elements of the transfor-
mation are

&& T(f3'1'm '~Plm )

(13)

where k[2 is associated with the initial states,

T(P'1'm '~Plm ) = g X(P'1'm ', a'JM)
j,j', J,M

&& T (. (X*(Plm, aJM ),

(10)

and k and R are the incident and scattered directions,
respectively. If k is chosen as the quantization axis, Eq.
(9) can be simplified by the identity
Y( (z)=5 ()[(21+1)/(4')]'~ .

Note that there are two possible parities ~, =+1 for al-
lowed values of 0 &0, namely, for 0&0 &j, where j
is the smaller of Ij,JI, but only one possible parity
err =rr(rrz( —1) j for the case A=O. When j and J are
half-integral, there are j + —,

' states of each parity,
whereas when j and J are integral, there are j states of
parity err =rr)re( —1) J ' and j & +1 states of parity
err =ir)~z( —1) j. The inverse of Eq. (12) is

(14)

III. TRANSFORMATION TO THE BF FRAME

Calculations of molecular structure are usually made
in a BF frame in which R is taken as the quantization
axis. The symmetry of the interaction V with respect to
rotations of the interacting systems about R, namely,
[V, j R]=0, can be exploited by calculating matrix ele-
ments in the BF basis of states

where 0 is summed over the range 0 (0 &j & .
Matrix elements of the interaction V in the basis

[ l
aQJMvrr & ] are particularly simple, because they are

diagonal not only in J, M, and ~„but also in Q. In
terms of the BF states

l

an &aF defined in Eq. (11),

l
an &aF= y I p&BF( —1) (2j+1)'" (15)

ml, m&

J1 J2 J
X

Vl1 m2

However, the orbital angular momentum operator I is
not diagonal in the basis. As may be shown from Eqs.
(12) and (13), the nonvanishing matrix elements of lz are

(aQJMirr
l

1
l
aQJMrrr & =J(J+1)+j(j+1)—20 —( —1) j '1+5n )zz,

(aOJMnr
l

1
l aQ+1JMirr & = —A, (1+5(zo)' =(aQ+1JMir,

l

1
l
aQJMir, &,

(16a)

(16b)

where

&+=[J(J+1)—Q(0+1)]' [j(j+1)—Q(0+1)]'~

[These matrix elements are in agreement with results of
Launay' except for a fairly obvious error in one of the
Kronecker 5 functions of his equation (A.8).]

The procedure for finding cross sections in the BF
basis I l

aQJMrrr &I is identical to that in the SF basis
[ l

@ ( & I. The sizes of the coupled equations (6) for a
specified J are the same; only the coupling is distributed

differently. Whereas in the SF basis all the coupling
originates in the interaction matrix V, in the BF basis,
many more of the off-diagonal elements of V vanish and
the coupling is transferred to the l matrix. The concept
of rotational coupling is seen to be meaningful only in
BF systems. The T matrices in the two systems are re-
lated by the transformation P of Eq. (12):

TJ gj JT r(gj J)f' (17)

where T represents the matrix connecting states of total
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parity 2r, =2r, 2r2( —1)' in the SF system, with elements
T 1. 1, and T ' represents that in the BF basis, with

Jm
elements T & &. The differential cross sections for any
transition can be calculated by substituting Eq. (17) into
Eq. (10) and then using Eq. (9).

Of course, other unitary transformations besides (17)
may be desirable. For example, one might want to diag-
onalize the interaction matrix V at every R. The result-
ing transformation would then be to the Born-
Oppenheimer molecular basis. It would be R dependent
so that the radial kinetic energy matrix would generally
acquire significant off-diagonal elements and give rise to
radial coupling among the adiabatic states. In his cal-
culation of fine-structure transitions in F( P) due to col-
lisions with protons, ' Mies used an adiabatic molecular
basis but found he could ignore the radial-coupling
terms. (See also Sec. VI.)

IV. TOTAL CROSS SECTIONS
WHEN ONE SYSTEM IS UNPOLARIZED

Results are greatly simplified when total cross sections
are calculated and one system, say, system 2, is unpolar-
ized. First consider the more general total cross sec-
tions. By integrating Eq. (9) over scattered directions 2,
one obtains the total cross section for a fixed incident
direction of relative velocity k:

obtained under conditions of isotropic collisions:

I

T(P'l'm'~Plm )
I

(19)

C7 t t t
Q]Q 2m ]~Q]a2m] =(2j2+1) ' g o p p,

I
m2, m2

(20)

where bars over a2 and az indicate that we have aver-
aged over the initial sublevels and summed over the final
sublevels of the asymptotic states of system 2.

All such cross sections can be conveniently expressed
in terms of the 2'-multipole relaxation (if aI ——a&) or in-
trasystem transfer (if a '& &a, ) cross sections for system 1,
defined by '

(x)
C7

1 2 1 2
m], m]

X J1 X J1

Now, if system 2 is unpolarized before collision, we
can average Eq. (19) over the initial values m2. If in ad-
dition any polarization of system 2 after collision
remains uncorrelated to measurements on system 1, we
can also sum over final values m2, so that the relevant
total cross sections are

—m1 0 m] —m1 0 m1

p p(k)= g g 'I'I (k)
I', m' 12 1 m

X T(P'1'm '~Plm ) . (18)

)C', g ta]a 2m ] a]Q2m]
(21)

If one averages over k, the total cross section for transi-
tions from sublevel p [=(a,a2m|m2)] to sublevel p' is

One can combine Eqs. (5), (10), and (19)—(21) with some
Racah algebra' to express the 0' ' directly in

Q ]a 2 Q]Q2

terms of the SF T-matrix elements:

(x)
t t

Q Q +—Q a 1
1 2 ] 2 k 12 1, 1',J,J'

~ t 'll 'III
J&J tJ

( I )& [(2j + 1)(2j'+ 1)(2j"+. 1)(2j"'+1)]'2J +1 2J'+1
(2j2+1)

X j'
J'

X j
I' J'

J X X
J J

J2
(g'1"'~a1 Ta"'1'~a"1 (22)

where a"=a1a 2j" and a'" =a ', a 2j"', and where the sign factor is determined by

s =j' —j"'—j+j"—I'+ I + j2 —j2+j', —j, . The transformation to the BF basis, Eq. (12), does not simplify the re-

sult further. All sublevel- (or Zeeman-) transition cross sections, Eq. (20), are easily obtained from the multipole cross

sections of Eq. (22) by the inverse of Eq. (21): '

cr. . . =( —1)' ' ' ' g (2x+1)
a', a 2m', a, a2m, x ()0)

X J1
t—m1 0 m1

X J1
(x)0 I t0 m1 Q]a 2 a]a2

(23)

(2J + 1)
1 2 1 2 k . (2j|+1)(2j2+ 1)

J tJtJ
o. ~ =(2j, +1) g

a ]a 2 a]Q2 a]a 2m ]~a]a2m]
I

m], m
1

where the sum over multipoles is limited by the 3-j symbols to x less than or equal to the smaller of j1 and j1. The

total cross section for transitions a &a&~a &a2 is found by averaging Eq. (23) over m| and summing over m &,

' 1/22j1+1
2j1+1

1', 1

(2&)
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From the unitarity of the transformation, Eq. (17), from
the SF to the BF basis, we also note

(25)
(x)

CT a la2 a
1 a2

. I I

( ])I2 2 Jl™1(2 1)

In analogy with Eq. (21), one puts

A similar reduction can be eA'ected in cases of inter-
system polarization transfer. If one starts with system 1

polarized and system 2 unpolarized, and then measures
the polarization of system 2 after collisional interaction,
without correlating the results to the final polarization of
system 1, the relevant cross sections are

X J2 J) X J)
—m& 0 m&

(27)&cTa )a2mp a]a2m]

g a la 2m ~ a
l a2m l

m &m&

(26) and finds

(x)
C7

Q 0 Q 0 J 2
12 1, 1',J,J'

JIJ IJ &J

~ I

X'.,J

2J 1

F2+ 1

r

X
C

J J ) J
J X

J l' J' J
X J&

j ~ II
J

X

J2
a'1', a1 a'"1',a"1 (28)

with s'=j"—j+l —I'+ j)+j2 —j) —j2. If R =z, Eq. (29) can be simplified to

V. INTERACTION MATRIX ELEMENTS

Use of either the SF or BF formulation above requires
the interaction matrix V in the appropriate basis. We
consider here a spin-free interaction depending on only
two internal coordinates r& and r2 and the separation R
of the center of masses of the interacting systems:
V= V(rl, r2, R). This could represent the interaction be-
tween a model atom with a single valence electron and
rigid-rotor approximation to a diatomic molecule, or be-
tween two such atoms or two such molecules. The in-
teraction can be expanded in spherical harmonics. Be-
cause of the symmetry of V under rotations of the entire
scattering system, the expansion takes the form

V(r„r2, R)

k, k2 k3
~klk2k3(rl&r2&R )

k k k q) q2 q3
1' 2' 3'

q&, q&, q3

V(rl, r2, R z) =4mguk k
. (rl, r2, R )

klk2q

X Yk„(rl) Yk, , (r, ), (30)

Uklk2q(rl r2

k~ k3
—q 0

(31)

By inverting Eq. (31) and substituting for Ak k k in Eq.
(29) we find

V(rl, r2, R)

which expresses the interaction in terms of the func-
tion

(29) k), k2, k3, q

(2k3+1)' vklk2q(rl, r2, R )

From the invariance of V with respect to spatial inver-
sion and from the parity ( —1)" of Yk (r), it follows that
Ak k k vanishes unless k&+k2+k3 is even.

1 7 3

XZk k k (rl, r2, R), (32)

where q is summed over both positive and negative
values and

Zk k k (rl, r2, R) =(4w)
k( kq

q —q 0
/'

k) k2 k3

—q q

k( k~ k3

0, j

X g Yk ~ (r, )Yk, ~ (r2)Yk, ~, (R)=Zk k 'k (r, , r2, R) .
ql, q2, q3

(33)
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From Eq. (32), the desired matrix elements of V are easily obtained from those for Zk~'k k .
1 2 3

From the definition, Eq. (4), of the basis states 4& I and assuming j, and j2 have both spin (S; ) and orbital (L, ) parts
j; =S; +L; (of course, S, may be zero), one obtains directly the SF matrix elements

k( k2 k3 k) k2 k3
&K'i

'

l
Zk k k (r1 r2 R)

l

@'.i ~ =-,'~, , &, , () +
l 2 3 q —q 0 —q q

)& [(2k, + 1)(2kz+ 1)(2k3+ 1)(2j, + 1)(2j
& + 1)(2jz+ 1)

)((2j~+1)(2L,+1)(2L', +1)(2L~+1)(2L~+1)

X (21 + 1)(21'+ 1)(2j + 1)(2j'+ 1)]'
T

L, ', k( L, ) L2 k2 L2 l' k3 l
X 0 0 0 0 0 0 0 0 0

Li Li
X

J& Ji Si

L2 k2
~ ~ c ~SF ~

Jz
(34)

where esF is a sum of products of eight 3-j symbols which with Racah algebra can be reduced to the product of a 6-j
with a 9-j symbol, '

l'
1 )g ~ +g2+ j—s& —s2 —J,

SF J

l k3

j' J
J2 J
J2 J ' JJ' MM'.

k2 k3

(35)

The matrix elements of V in the BF basis I l
aAJM7r, ) ) can be found either by unitary transformation with P,

Eqs. (12) and (13), or by applying Eq. (15) directly. Either way, one finds

&a'O'J'M'm',
l
Zkqk, k, (r&, rz, R)

l
aQJMvr, )

k) k2 k3

] 1 2 2

atilt

q —q

k, k2 k3
—q q 0

)&[(2k, +1)(2k2+1)(2k3+1)(2j,+1)(2j ', +1)(2j2+1)(2j2+1)(2L&+1)(2L I +1)

&& (2L2+ 1)(2L2+ 1)(2j + 1)(2j'+ 1)]'
T

Li ki Li
o o o

L2 k~ L2

0 0 0 J) J)

j' k3 k) L2 L2 k2-
—0 0 e „, (36)

where

1)g, +jz+j'+, +s2-
BF

x '

J2 J
J2 J ~Jr'&MM' .

k2 k3

The BF result is in agreement with Launay. '

(37)

VI. EFFECTIVE INTERACTION METHODS

The complexity of the scattering calculation, together
with the fact that it must normally be repeated at many
incident energies and J values and that the computation
time grows roughly as the cube of the size of the basis,
usually means that the number of states employed is
much smaller than for a calculation of molecular poten-
tial energy surfaces. The resultant restriction of the
basis set introduces a truncation error which may be
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severe if important real or virtual transitions are thereby
neglected. The role of real transitions is fairly obvious.
Various dimension-reducing approximations" carefully

JM n. ,divide the invariant spaces 6 ' into subspaces with
only weak coupling among them. Thus the j,-

conserving approximation ignores the nonadiabatic cou-
pling between states of different Q. The role of virtual
transitions is in determining the energies and charac-
teristics of the adiabatic states. When virtual transitions
are ignored, the eigenvalues of the interaction within the
truncated basis may deviate substantially from those of
the true adiabatic energy surfaces in regions which make
a substantial contribution to the transition under investi-
gation.

One approach to the possible loss of real transitions is
to average the interaction over the m levels of the in-
teracting systems to obtain "effective potentials" in a re-
duced basis with only one sublevel for each j& and j2.'
The neglect of virtual transitions can also be corrected
with the use of an effective interaction. The usual sug-
gestion is to use a truncated basis of adiabatic molecu1ar
states as briefly discussed at the end of Sec. III. The in-
teraction V is diagonal in such a basis and the coupling
arises from off-diagonal terms of the kinetic energy
operator. To compute these coupling terms one needs to
express the molecular adiabatic states as a linear com-
bination of SF states. The coupling strength will depend
on the total energy E and total angular momentum J as
well as on the size of the SF basis to which the adiabatic
states are referred. To ensure that the interaction Ham-
iltonian is Hermitian and the S matrix unitary, one gen-

erally restricts the SF reference basis to be the same size
as the adiabatic basis. The result is to approximate the
nonadiabatic coupling and of course to ignore transitions
outside the restricted set of adiabatic states, but at least
the adiabatic energy surfaces and the resultant adiabatic
phase shifts are correct.

A fully equivalent formulation can be carried through
in the SF basis by transforming the adiabatic basis, with
its accurate energy surfaces, back to the restricted SF
basis. The kinetic energy matrix is again diagonal so
that the coupling occurs only through the interaction
matrix. However, this interaction matrix is not the same
as V in the SF basis. Rather, it is an effective interaction
V,g which has the adiabatic potential energies as its ei-
genvalues. In other words, V,z is the interaction which
would have to occur among the restricted set of SF
states in order to reproduce from them the accurate adi-
abatic energies. Although there are generally many
effective interactions V,z which have the adiabatic ener-
gies as eigenvalues, the procedure of establishing a uni-
tary transformation by renormalization of the projection
of the adiabatic states onto the restricted SF basis pro-
duces a unique choice.

The same method can of course be applied in the BF
basis as well. We also refer to this technique, whether
applied to an SF basis or to an R-dependent BF basis, as
an "effective interaction method. " It has been used pre-
viously to calculate fine-structure transitions and depo-
larization in alkali-metal atoms in collisions with noble
gases' ' and molecules.

'On leave from the Department of Physics, University of
Windsor, Windsor, Ontario, Canada N9B 3P4.
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