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Two-color ionization with an intense low-frequency field
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We formulate a gauge-invariant approximation for treating the ionization of a one-electron
atom by two lasers, one intense and of low frequency, the other weak and of high frequency. We
have applied the approximation to hydrogen and obtained an intensity-dependent structure in the
photoelectron angular distributions.

i hdU(t, t ')/dt =H(t )U(t, t ') . (2)

We introduce Ut (t, t'), the time-development operator
which would be appropriate if VH(t ) were turned off:

i lt d Ut (t, t ') /dt = [T+ IV+ VL (t )]UL (t, t ') . (3)

In this paper we develop an approximation for treating
the ionization of a one-electron atom by two lasers, one a
weak laser of relatively high frequency AH, and the other
an intense laser of low frequency coL. During the course
of the analysis we clarify the important role played by the
gauge of the radiation field. We have applied our approxi-
mation to the two-color ionization of hydrogen, and we
present results which reveal intensity-dependent structure
in the photoelectron angular distributions.

We consider an electron initially bound by a spherically
symmetric potential W in a state represented by I (();(t)&
= I(|);)exp( —iE;t/6). Denoting the interactions of the
electron with the high- and low-frequency lasers by VH(t)
and VL(t), respectively, the full Hamiltonian for the elec-
tron is

H (t ) =T+ IV+ VH (t ) + VL (t ),
where T:p /2p is th—e kinetic energy operator, with p the
electron mass. The evolution of the state vector I ~(t )) of
the electron is governed by the time-development operator
U(t, t'). Assuming that the lasers are turned on at time
t =0 we have'

I
%'(t)) =U(t, O)

I p;), where U(t, t) = I and

where I Zf(t )) is the state vector for the electron to scatter
from W in the presence of the low-frequency laser and
emerge in the state represented by I pf (t )). We have

I Zf(t)& = lim UL(t, T) I pf(T))
OO

(7)

We describe the electric fields of the two lasers classically
by the spatially independent vectors (assuming linear po-
larization)

FH(t ) =FH cos(roHt ), FL (t ) =Ft cos(rot. t).
We assume that (FL/a)L)» (FH/o)H). Immediately after
the atom ionizes, the electron emerges with a mechanical
momentum which oscillates owing to the oscillation of the
electron in the low-frequency field. The mean mechanical
momentum hkf of the emergent electron differs from its
instantaneous mechanical momentum by h k(t )= (e/c )AL (t ), where e is the electron charge and AL(t ) is
the vector potential for the low-frequency field:
AL (t ) - —(c/rot. )FL sin(coL t ).

In the Kroll-Watson low-frequency approximation
we replace Izf(t)) by

I x"w(t ) & =e ((r )
I )irx( )) (8a)

where I yx(i)& is the wave vector (satisfying outgoing-
wave boundary conditions) for an electron to scatter from
the potential W, in the absence of radiation, and emerge
with momentum

Using the integral equation

U(t, t') -UL(t, t')
—(i/h)„dt "[U, (t",t)]tV (t")U(t",t'),~r'

we have, putting t '=0 and t =T- ~, (4) ) t

&(t) = dt 'K'(t '),
2p "o (8c)

AK(t) =h[kf k(t)l, (8b)
which becomes the instantaneous mechanical momentum
in the presence of the field. The phase g(t) in Eq. (8a) is
defined as

I e(T)) UL(T, O) I (t;&

f+ T—(i/h)„dt[U (tt, )T] V (t) I+(t)) . (5)

At the time T the amplitude Af;(T) =((/)f(T) I%'(T)),
for the electron to be found moving freely through the
field in the continuum state characterized by the mean
mechanical momentum hkf and represented by I ())f(t)),
is, using Eq. (5),

Af;(T) =(xf(O) I ((;) —(i/lt) dt(xf(t) I vH(t) I e(t)&,
(6)

with K(t) =
I K(t) I. It is important to note that in writ-

ing down Eq. (8a) we have assumed the length gauge for
the low-frequency field; in this gauge we have

VL (t ) = —ex' Ft. (t ), (9a)
where x is the electron coordinate. In the velocity gauge,
the interaction has the form

Vt. (t) —(e/pc)p AL(t)+e At (t)/2pc . (9b)

The wave function in the velocity gauge difI'ers from the
wave function in the length gauge by the highly sig-
nificant phase factor PL(t) =exp[ik(t) x], assuming that
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that we have assumed that one high-frequency photon is
sufficient to ionize the atom. If Np high-frequency pho-
tons were required to ionize, we would approximate

~
+(t)) through (Np —1)th order in VH(t). We make the

rotating-wave approximation and thereby replace VH (t )
by —(e/2)(x FH)exp( —iroHt). Evaluating the integral
of Eq. (8c), ignoring an insignificant constant, and
defining Ef =

jest k1/2p, we have

g(t) =(Ef+P)t/h, +g(t), (1 ia)
P =e F /(4jjjto ) (i ib)
j",(t ) = —(ekf .Ft /p toL )cos (toL t ) —(P/2 6 tot )sin (2tpL t ) .

(i ic)
It follows that

(xK (t)i VH(t)iy;(t))=e' '+ "" '""M(t), (12)

where M(t) is periodic in t with period 2jr/coL and is given
as

M(t) - —e '&"(yg(, ) ~
(e/2)(x FH) I yj) .

We Fourier-decompose M(t) as

M(t) =+M„e '""', (14)
n

and substitute the right-hand side of Eq. (12) into the in-
tegrand of Eq. (6), noting that (Zf(0)

~ i';) =0, to obtain'
for T-~

Afj (T) = —itr g 8(Ef —Ef„)Mg (is)
n

where Ef„=nAmz+AcuH+E; —P. The 6' function ex-
presses energy conservation: The amount of energy re-
quired to ionize the atom is P —E;, where P is the pon-
deromotive shift in the continuum threshold. So, after ab-
sorbing one high-frequency photon and n low-frequency
photons, the electron emerges, still in the laser fields, with
energy Ef„. Note that Ef is the final mean energy of the
electron relative to the shifted threshold. We have
neglected the Stark shift of the initial atomic level. Note
also that the levels Ef„are not lifetime broadened since we
have approximated

~
W(t)) through (Np —1)th order in

VH(t) and have therefore neglected corrections arising
from the depopulation of the initial state. We have treat-
ed VL(t) to all orders, but we have assumed that the low-
frequency laser does not depopulate the initial state; it is
the high-frequency laser which causes ionization. Were
we to include corrections beyond (Np 1)th order in
VH(t), the gauge-transform phase factor for FH(t) would
be significant, and Eq. (6) would hold only if VH(t) were
expressed in the velocity gauge; only in this gauge does

I Zf (t )) represent at asymptotically large distances an
electron unperturbed by VH(t), i.e., an electron whose
canonical momentum is unchanged by VH(t). Following
Kroll and Watson, we can evaluate M„approximately by
noting that if I ekf FL, /ptpL ~

&& 1, the integrand of

M„= J~ (16)
2z'

dt e'""' M(t)

oscillates rapidly over the interval 2tr/tpL because of the
phase j,(t). The main contribution to M„comes from t
near the point of stationary phase tp. Assuming that

VH (t) is expressed in the length gauge.
We make the further approximation of replacing

~
0(t)) on the right side of Eq. (6) by its unperturbed

form
~
jt;(t)). As far as the weak high-frequency field is

concerned, this approximation is justified. The coupling
strength of the low-frequency field to the initial atomic
state is, in the length gauge, aj = (eaFL/&F-;), where a is
the characteristic radius of the initial state, and AF. ; is the
distance of the nearest atomic energy level from the initial
one. We therefore require a& «1. In the velocity gauge
the coupling strength is (evFL/toLAF. ;), where v is the
characteristic speed of the electron in the initial state.
This latter parameter is not small at low frequencies mz.
Indeed, this parameter is effectively the exponent of
PL(t). Hence if we use the velocity gauge we must ap-
proximate

~
e(t)) by Pt (t)

~ jti;(t)), rather than by
~ p;(t)); we must also multiply the right-hand side of Eq.
(8a) by PL, (t) since, as noted already, Eq. (8a) was
presented in the length gauge.

Note that, in the length gauge, ~ZP (t)) is an eigen-
vector of (T+8') with positive eigenvalue jest K (t)/2p
and is therefore orthogonal to

~
jtj;(t)), which is also an

eigenvector of (T+ W) but with negative eigenvalue E;.
This orthogonality is preserved in the velocity gauge since
Pz*, (t)Pz. (t) =1. A gratifying consequence is that, in ei-
ther gauge, the approximate ionization amplitude Af; (T)
is independent of any spatially independent function of t
which we may add to the Hamiltonian H(t). This is re-
quired on physical grounds, and indeed any such function
can be transformed out of the Hamiltonian and absorbed
as an insignificant phase factor into ( 9'(t)). One may re-
call an analogy in Wick's observation that the integrated
cross section for the excitation of an atom by a heavy par-
ticle should not change if we add to the Hamiltonian any
function that depends only on the coordinate connecting
the centers of mass of the two collision partners. We note
further that Af; (T) is, up to a correction of order
(toL/AH ), independent of the gauge chosen for VH (t )7.

Some remarks on the validity of the Kroll-Watson form
of the low-frequency approximation to the scattering wave
vector are in order. A necessary condition is that the
phase of the low-frequency field does not change
significantly during the time the electron scatters from 8'.
Since the collision duration is roughly h,/Ef, with Ef the
final mean electron energy, we require a2=h, rot. /Ef « l.
Numerical calculations indicate that the Kroll-Watson
approximation is remarkably accurate. However, the ap-
proximation breaks down even if a2«1 when Ef differs
from the discrete energy of an atomic bound or resonance
state by n Amz, with n an integer, since the electron can
then be captured by 8' for a rather long time, during
which the field phase changes. Therefore, we cannot ap-
ply our approximation to the two-color experiment recent-
ly performed by Muller, van Linden van den Heuvell, and
van der Wiel.

We now derive an expression for the ionization rate Pf;
to a group of states fwith density p'(Ef) in the energy in-
terval (Ef,Ef+dE). We have

Pf P (Ef»E
I Afi(T) I

'
dT (io)

We simplify this expression using the length gauge. Note
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The factor multiplying the Bessel function is just the usual
matrix element for an electron to be ejected with momen-
tum hK(to) by a single photon of energy (h /2p)IC (to)—E; =hcoH If.

~ ekf FL/pcoI. ~
&&1, the electron can ab-

sorb a large amount of angular momentum through virtu-
al absorption and emission, and the Bessel-function factor
significantly effects the angular distribution even in the
n 0 channel, where no real low-frequency photons are
absorbed.

Observing that

deaf;(T)/dT= —(i/It )+exp[i(EI —Ef„)T/h]M„,

0 vr/4

8 (radians)
FIG. 1. Photoelectron angular distributions in the plane

defined by the two laser polarizations, which are assumed to be
perpendicular, with 0 the angle between the photoelectron
momentum and the CO2 laser polarization. These curves are for
the channel where one low-frequency photon is absorbed. In the
limit where the CO2 laser intensity IL is weak, the photoelectron
carries away two units of angular momentum and the angular
distribution has the form sin28cos28, obtained when VL(t) is re-
tained only in lowest order. Significant departures from this
form are seen above about IL 3X10 W/cm . The solid curve
is the result obtained in lowest order in VL(t) for It. 1.4X10
W/cm2. The dotted curve is the "exact" result at the same in-

tensity. The dot-dashed curve and the dashed curve are the "ex-
act" results for It. 9.0x 108 and 2.3X109 W/cm, respectively,
where the first peak of each of these curves is magnified by the
factor indicated. Note that dPf, ,;/drt nearly vanishes at the
zeros of the Bessel function of Eq. (17) of the text. Note also
that g„dPI„,;/d rt is approximately independent of IL (and is ap-
proximately just the angular distribution for ionization by the
high-frequency photon) so that Pf„; diminishes as It. increases—the ionization signal is shared between an increasing number
of channels.

aq=P/htoL is negligible, to is given by kf k(tp)
=npcoL/h. Putting t =to in the more slowly varying part
of the integrand we obtain

M„= —J„(ekf FL/p toL )( tir~(t, ) I (e/2) (x ' FH ) I 0 ) (17)

and using Eqs. (10) and (15), the rate for ionization to the
channel where n low-frequency photons are absorbed is

Pf, ,; = (2tr/It )p'(EIn )
~ M„~ . The total ionization rate is

an incoherent sum of the partial ionization rates Py„;,. the
sum is incoherent because interference terms arising from
the absorption of different numbers of photons vanish
when the signal is averaged over a macroscopically small
volume. We have applied our approximation to the cal-
culation of the photoelectron angular distributions
dPI„;/dfl for ionization of ground-state hydrogen by a
CO2 laser (A. c0L =4.4X10 a.u. ) and a high-frequency
laser (htoH = 0.65 a.u. ). The results, a sample of which is
shown in Fig. 1, reveal interesting intensity-dependent
structure in the angular distributions. Similar structure
was reported earlier by Reiss" in the case of one-color
ionization by a CO2 laser. For very intense fields the an-
gular distributions are rendered isotropic by ponderomo-
tive scattering in the beam waist, ' an effect we have ig-
nored. Ponderomotive scattering is expected to be
insignificant if a4=P/Ef «1. The parameters at, a2, a3,
and a4 are all small in the intensity region of Fig. 1.

Note added in proof Other approxim. ations for treat-
ing two-color ionization with an intense low-frequency
field were recently brought to our attention. See E. Fior-
dilino and M. Mittleman, Phys. Rev. A 28, 229 (1983),
and references therein. However, these approximations
are not gauge-invariant.
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We assume that the lasers are turned on slow enough for the
fields to be regarded as monochromatic, but fast enough so
that the atom is not disturbed from its initial state during the
turn-on period. We can assume that the turn-on time is large
compared to an atomic orbital period, so that the atom
responds adiabatically to the increasing intensity.
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