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Simple discretization method for autoionization widths. III. Molecules
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We apply a new method to calculate widths of two-electron Feshbach resonances, which was de-
scribed in detail and applied to atomic systems in preceding articles (this issue}, to molecular and
quasimolecular autoionizing states. For simplicity in the programming e8ort, we restrict our cal-
culations to the small-R region where one-centered expansions are sufficiently accurate to describe
the wave functions. As test cases, positions and widths for the H2, He2 +, HeH+, and LiHe'+ res-
onances of lowest energy are computed for R & 0.6 a.u. The advantage of using block-
diagonalization techniques to define diabatic resonant states instead of generalizing the Feshbach
formalism is pointed out.

I. INTRODUCTION

An ab initio treatment of processes such as Penning
ionization, ' electron impact, electron detach-
ment, ' dissociative recombination, " ' dissociative at-
tachement, ' and atomic collisions involving molecular
autoionizing states at low impact energies' requires
knowledge of lifetimes of electronic molecular reso-
nances. This has stimulated theoretical work, which has
concentrated on two-electron molecular systems, as suit-
able benchmark cases for this type of calcula-
tions. ' However, published work in this field is
more scarce than for atomic systems, mainly due to the
difficulties in the determination of the open-channel
wave function describing an outgoing electron; more-
over, one finds that most publications deal with homonu-
clear systems where treatment is simpler —actually, we
are aware of only one calculation for a heteronuclear sys-
tem.

We present in this paper an extension to two-electron
diatomic molecules and quasimolecules of a method pro-
posed by Macias and Riera, ' used by these authors in
Refs. 32 and 33, and whose fundamentals have been ex-
plained in detail in a preceding article, hereafter called
paper I. In a following article, henceforth called pa-
per II, we have presented a systematic application of the
method to doubly excited states of the He isoelectronic
series, compared our results with published accurate
data whenever available, studied the accuracy of the ap-
proximations involved, and exemplified the use of
different analytical forms of the basis employed to ap-
proximate the open-channel wave functions and of
different exponent sequences. A summary of the main
steps of our procedure was given in Sec. III of paper I.

For a molecular or quasimolecular system the two ex-
treme regions of the correlation diagram, namely, the
united-atom (UA) and separated-atom (SA) regions, cor-
respond to clear situations where we test our method
first, since in both exact limits R =0 and R = ao (with R
the internuclear distance), the corresponding values of
the resonance widths (I ) are known with good precision,

because of the atomic character of the system. In this
paper we shall deal with the small-R region where
single-center expansions provide good approximations to
the closed-channel electronic wave functions, because
this requires only moderate changes in our programs
developed for atoms. In particular, we shall treat 'X res-
onant states which are correlated for R —+0 to the
'P(2s2p) state of the united-atom limit. As suitable
model systems we have chosen two homonuclear mole-
cules (H2, He2 +) and two heteronuclear ones
(HeH+, LiHe +).

From the practical point of view, further interest of
our results comes from the fact that there is an almost
complete lack of published values for resonance widths
in this small-R region. Indeed, most of the calculations
reported in the literature ' have been carried
out for values of R greater than 1 a.u. , and, in this sense,
our results are a complement to these calculations.

Before presenting our results (in Sec. III), however, it
is worth dealing with a characteristic of molecular
resonances —absent in the atomic case —which is that
their positions, as functions of R, can pseudocross.
At the pseudocrossing region, it may happen that the
usual Feshbach treatment breaks down, because of over-
lapping of the resonances. While extension of this treat-
ment to the case of overlapping resonances is possi-
ble, the difficulty can be very easily overcome by us-
ing diabatic states instead of adiabatic ones to describe
dynamical processes. Since this point is not clear in the
bibliography, a description of the analysis carried out in
Ref. 36 will be presented in Sec. II. Throughout this pa-
per we use the notation (I.n) and (II.n) for equations n of
papers I and II, respectively. Atomic units are used un-
less otherwise stated.

II. AUTOIONIZING DIABATIC STATES

Before presenting our results for the resonance posi-
tions and widths of molecular systems, it is convenient
to draw a distinction between general autoionizing states
and the special case of autoionizing diabatic states, espe-
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so that the projected Hamiltonian H&& can be written

'H ( 1~1 )

H(2, 1)

H(3~) )

H(], 2)

H (2~2)

H (3~2)

with HIIg
——Q "HQ'1'.

Let us now consider two eigenfunctions of H&&' and

H~~
' of the same symmetry, fulfilling

cially since this distribution does not arise for atomic
systems.

In a series of pioneering articles, ' ' O' Malley ar-
gued that in order to describe electronic recombination
(the inverse of autoionization) processes, one should not
use the exact, adiabatic eigenstates of the Born-
Oppenheimer Hamiltonian, but instead bound electronic
states imbedded in the ionization continuum; he then in-
troduced a special version of Feshbach theory in which
the energy shift [see Eq. (I.ll)] vanishes, to define those
bound states as being represented by the eigenfunctions
of the projected Hamiltonian H&~. Similarly, the treat-
ment of phenomena such as charge-exchange and excita-
tion processes in atomic collisions is often greatly
simplified through the use of bound states imbedded in
the ionization continuum. ' '

For neutral and positively ionized systems, the spec-
trum of the projected Hamiltonian H~~ [Eq. (I.12)] is
discrete below the ionization threshold, and continuous
above it. The discrete spectrum corresponds to one, or
more, Rydberg series converging to a parent ion state,
and for molecular systems it is formed by energy curves
lying parallel and converging to the ionization threshold.
Since these Rydberg series are projected out by the Q
projection operator, some eigenvalues of H&& can cross,
as functions of the internuclear distance R, both the ion-
ization threshold and the energies of the Rydberg series,
since the noncrossing rule does not apply to the crossing
between an eigenenergy of H&& and one of Hpp. Since
this behavior corresponds precisely to that of diabatic
states as introduced by Lichten, ' O' Malley conclud-
ed ' that his proposal yielded an exact definition of
Lichten's qualitative reasoning.

However, in their general analysis oo the definitions
and characteristics of diabatic states, Macias and Riera
pointed out that O'Malley's definition could [and in fact
did (see Ref. 26)] yield resonance energies presenting
sharp pseudocropsings, thereby violating a usual require-
ment on diabatic states.

To explain this point in more detail, we shall employ a
generalization of Landau and Lifshitz's treatment of
the Wigner-Von Neumann noncrossing rule. To span
the Q space, we use a basis of configurations, which we

group according to their symmetry, and to their type or
character (like og, cr„, etc.). To each such set corre-
sponds a projection operator Q '), and we have

Q yQ(i)

(H()~1) ~D )Q(1)yD p

(H(2~2) ED )Q(2)yD p
(4)

and having energies E1 E2 that cross as functions of the
internuclear distance R. Then, the corresponding
eigenenergies of H&&,

(H(M E", )Q—p) =0,

(Hgg E2 )—QP2=0

avoid crossing because of the nonvanishing interaction
term ((t,

~
QHQ Pz ). This will happen irrespectively

of whether the states are imbedded or not in the ioniza-
tion continuum, showing that, to yield diabatic states,
O'Malley's definition must be generalized to account for
the (not uncommon) situation of avoided crossings be-
tween the eigenenergies of H&&.

In this respect, it was pointed out in Ref. 36 that,
whenever applicable, the block-diagonalization pro-
cedure introduced by Mac&'as et aI. ' to define diabatic
states is equivalent, in the present context, to the re-
quired generalization of the Feshbach treatment (see pa-
per I). We can write

H(1, 1) H()~2)

H(2 1) H(2 2)
Q

rr (1)
~ PLQp

rr (&)
~ Hgp

III. ONE-CENTER CALCULATIONS

As in paper II, lifetimes of autoionizing states for
two-electron molecular systems were obtained through
an approximate calculation of the golden-rule formula:

(1) (2)
Hpg Hpg . . . Hpp

in an obvious notation, and the eigenfunctions of the di-
agonal operators H&&) [as in Eq. (4)] can be used, instead
of the eigenfunctions of Hg(2 [as in Eq. (5)], in the vicin-
ty of sharp avoided crossings between the energies of the
latter operator. A further advantage is that this
definition is trivially extended below the ionization
threshold.

Thus the diabatic states introduced in Refs. 45 and 46
provide a nondiagonal representation of the electronic
Hamiltonian H, being coupled between themselves
through the operators of H"~' type and, above the ion-
ization threshold, to the background continuum through
those of type Hgp ~ Moreover, they present the advan-
tage that the Feshbach theory, and our implementation
of it presented in paper I, can be directly applied to
them, whereas an extension is required for overlap-
ping resonances corresponding to the pseudocrossing
eigenenergies of H&&.

Then, since the [p(, $2I and [$, ,$2 ) sets, spanning
the same manifold, provide entirely equivalent represen-
tation to describe any physical process, whenever ap-
propriate we have chosen the latter representation in
this paper, and we have used the theory of paper I to
calculate the resonance positions and widths of the cor-
responding autoionizing molecular states.
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I k
——2 p(E„)

~ (P» H&
~
X„)~—:2 p(E„)V, (7)

which defines the interaction term V. For notation, see
papers I and II.

Just as in the atomic case, we have chosen the projec-
tion operator P according to O'Malley's definition:

P =PI +P2 —P)P2,

Qg;(l&, l2, l;m &, mz, m )

C(l&, l2, l;m1 m2 m )IIQiei, -,Q2@i,
mi, m&

(12)

where C(l &, l2, l;m &, m z, m ) are the corresponding
Clebsch-Gordan coefficients, and

where Qk'Pl (k) (1 Pk )Pl (13)

P/, ——
~

iso (k) ) ( iso'(k)
~

(9)

The extension to molecules of the techniques em-
ployed in the atomic calculations reported in paper II is
considerably simplified if the atomic character of the or-
bital entering the definition of P„ is preserved. Since, for
small internuclear distances, a good approximation to
the 1so molecular orbital is provided by the correspond-
ing UA 1s atomic orbital, in the calculations reported
here we have made use of this approximation. We stress
the point that this is only made for the sake of
simplification of our programming effort, and it is
inessential to our approach and, in particular, to the
theory developed in paper I. Obviously, this approxima-
tion can be eliminated with the help of some additional
programming effort through the introduction of a pro-
jection operator Pk defined in terms of the exact 1scr
molecular orbital.

As indicated in the Introduction, in the present paper
we restrict our calculations to the region of short inter-
nuclear distances where the use of a one-center basis to
expand the discrete component pk of Eq. (7) is useful.
The validity range of this one-center expansion depends
on each particular system, and calculations carried out
by Salas indicate that for "reasonably" sized Slater-
type orbital (STO) basis sets this range follows the
empirical rule

C)—

E p (a.u) nd2 n=1 &

n —9

n —8

Q 1 2

3

where y~ (k) are Slater-type orbitals (STO's) centered at
the common origin C.

The open-channel wave function is approximated as
[see Eq. (1.20)]

(Z„+Z~)R &3 a. u. (10)

for molecular orbitals (MO's), and is somewhat shorter
for two-electron wave functions. In practice, the accu-
racy reached with one-center expansions obviously de-
pends upon the chosen center C, which, in our ap-
proach, we identify with that of the 1s orbital involved
in the projection operator Pk of Eqs. (8) and (9). In the
homonuclear case, the choice is clear: The midpoint be-
tween the nuclei is the position required to preserve g
and u symmetry. In heteronuclear systems there is no
a priori privileged origin, although the intuitively most
reasonable choice would seem to be the center of nuclear
charge.

In our approach, therefore, the closed-channel wave
function pk is approximated as

Pk=Xdk QW;

0—

—4
0

10

where the coefficients dk; are calculated by solving the
secular equation for the H~~ matrix in the Qg; repre-
sentation:

FIG. l. Exponential behavior of the eigen values of
Hpp E ( g ) as a function of the nonlinear parameter g for (a) a
homonuclear case (He2 + for R=0.25 a.u. ), (b) a heteronuclear
case (HeH+ for R=0.3 a.u. ). This figure can be compared
with Fig. 2(a) of paper I.
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(14)

where each configuration g; is built from a set of STO's
centered at C and the c„; coeScients are obtained by
solving the secular equation for the Hpp matrix [Eq.
(I.19)].

For the sake of consistency, we have used in our cal-
culations the same basis of STO's [yt l [Eq. (II.9)] and
configurations as those employed in paper II for the cal-
culation of positions and widths of the corresponding
UA ['P(2s2p )] resonant states (see Table II of that
reference). Accordingly, the set [g, I has been taken to
be of the form

ll lsE;p ll
and the nonlinear parameter r)

varied to achieve the resonance condition E„(t))=Ek is
defined as in Eq. (II.12).

When a one-center expansion is employed to construct
(11) and (14), there only appears a new kind of integral
which must be evaluated in addition to those required in
atomic calculations (paper II); they are of the type:

N8

6.044
5.487
4.936
4.384
3.828

p(E„)

0.450 67
0.486 04

p(E„)
0.441 34
0.449 30
0.45067
0.446 87
0.435 57

4.9040[—2]
4.7607[—2]

(b) N'=8
&y„ lH lx„&

4.9579[—2]
4.9089[—2]
4.9040[—2]
4.9434[—2]
4.9963[—2]

r (eV)

0.1853
0.1883

r (eV)

0.1855
0.1851
0.1853
0.1867
0.1859

'N is defined in Table II of paper II.

TABLE I. Invariance tests for the first 'X+ resonance of
He, '+ regarding (a) the size of the [g;] basis and (b) the non-
linear parameter g. Compare with Tables I and II of paper I.

(a)

&v. l

—z « —za «a
l q. & (15)

(a)

15—

n(E)

10

7

—8-0 —4 0

15 —
t b)

n (E)

l

4-0
I

LO
I

12.0 E (a. U. )

where C refers to expansion center. These integrals were
analytically calculated following Roothaan's algo-
rithm. ""

Just as in the atomic case (paper II), we have per-
formed, for both homonuclear and heteronuclear sys-
tems, the tests proposed in paper I to check the validity
of our assumptions.

(1) Exponential behavior of the eigenvalues of Hpp,
E„(tI) [Eq. (I.45)], as function of rI and n. This is illus-
trated in Figs. 1 and 2, respectively, which can be com-
pared with Figs. 1(a) and 2(a) of paper I. Since we have
used a value of the scaling parameter 13=1.6~2, the
central difference expression (I.47) is used to calculate
the density of states p(E„).

(2) Results obtained with two different basis sets
fulfilling the resonance condition E& =E„(t))=E„.(rI')
are the same to a good precision [see Table I(a), to be
compared with Table II of paper I].

(3) The convergence of our calculated value of I with
the size of [g; ] has been reached to the precision desired
[see Table I(b), to be compared with Table I of paper I].

IV. RESULTS

A. Homonuclear case

—4-0 —2. Q

I

2.Q

]

4. Q

I

6-Q 8.Q E ( a.u. )

FIG. 2. Exponential behavior of the eigenvalues of
Hpp, E ( g ) as a function of the index n for (a) a homonuclear
case (He2 +, corresponding to g=4.9358 and R =0.25 a.u. ); (b)
a heteronuclear case (HeH+, corresponding to g=4.4155 and
R =0.3 a.u. ) ~ This figure can be compared with Fig. 1(a) of pa-
per I.

Table II presents our results for energies and widths of
the first 'X+ state of H2 and He2 + for values of the in-
ternuclear distance up to 0.5 a.u. Although we have
found no results in the literature for either positions or
widths of this state for R &0.5 a.u. , Hara and Sato
have reported values for the Hz molecule for R ) 1.0
a.u. , obtained with a three-center expansion of contract-
ed Gaussian-type orbitals (GTO's) to describe the
discrete wave functions and a close-coupling expansion
for the continuum orbital, where the couplings between
different partial waves were neglected. Figure 3 presents
our calculated resonance positions, together with those
of Hara and Sato, which we have corrected by adding
the energy of the ionization limit (E„)reported by the
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TABLE II. Energies and widths for the first resonant 'X+
state of (a) H~ and (b) He2'+ molecules in the region of small
internuclear distances.

I (eV)

0-75—

R (a.u. )

H~
E (a.u. ) r (eV) 0.5-

0.0
0.1

0.2
0.3
0.4
0.5

(a) H,
—0.692 125
—0.691 255
—0.689 754
—0.688 980
—0.689 590
—0.691 748

0.037 44
0.039 66
0.045 92
0.056 38
0.072 41
0.096 95

0.0
0.1

0.2
0.3
0.4
0.5

(b) He2'+
—3.314 115
—3.296 573
—3.282 705
—3.294 580
—3.329 103
—3.376 594

0.073 82
0.089 26
0.138 61
0.261 16
0.640 84
1.3290

same authors in Ref. 53. It can be seen that both sets of
values join very smoothly. Even more significantly, our
results for I also join very smoothly to those of these
authors, as shown in Fig. 4. In this figure we have ex-
tended the calculations presented in Table II up to
R=0.7 a.u. , to illustrate the fact that, while the repre-
sentation of the lscrg orbital in Eq. (9) by a ls atomic or-
bital with UA exponent, a=2.0, becomes inadequate in
the present case for R ~0.5 a.u. , when the exponent of
this 1s atomic orbital is optimized to better reproduce
the 1so.

g orbital for this range of internuclear distances
(a=1.85), the values obtained for I smoothly merge
with those of Hara and Sato.

The variation of I with R for the first 'X+ resonance
of He2 + is plotted in Fig. 5. As indicated above, no
data have been reported in the literature for this state; it

0.2 5-

0.0
0 0.5 1.0 1.5 R( a.u.)

FIG. 4. Variation of the width of the first 'X+ resonant
state of H& with the internuclear distance. Values of I for
R &0.5 a.u. from this work; values of I for R ) 1.0 a.u. taken
from Ref. 30. ~, values of I obtained with the UA exponent
for the 1s orbital in Eq. (9) (see text).

may be remarked, however, that our results are of the
same order, and present the same increasing behavior, as
those calculated by Hara and Sato for the first 'Xg+ res-
onance of the same system. On the other hand, this
comparison should not be carried out too far, because (i)
the characters of the Xg and X„states are di6'erent and
(ii) while the first 'X+ resonant state does not present
avoided crossings„because the next resonance of the
same symmetry is quite separate in energy, Hara and
Sato's 'Xg+ resonance positions do present pseudocross-
ings in the small-R region. As explained in Sec. II, in
the latter situation it is necessary either to use diabatic
wave functions for the closed channels, or to use a gen-
eralization of the Fesbach formalism for the case of
overlapping resonances; otherwise, the values of I ob-
tained by a naive approach using the golden rule of Eq.
(7) are of doubtful physical significance in the pseudo-
crossing region.

It can be seen in Figs. 4 and 5 that for both H2 or
He2 + systems the width of the first 'X+ resonance in-

E( a.u.j

—0.6—

1.5—
I" (ev)

1.0—

—0.7—

0.5—

-0.8—
I I I I I I 1

0 2 OA 0-6 0 8 1.0 1.2 1.4
R (a.u. j

FICJ. 3. Energy position, as a function of the internuclear
distance, for the first 'X+ resonant state of H&. For R (0.5
a.u. , values calculated in this work; for R ) 1.0 a.u. , values tak-
en from Ref. 30.

Q. I 0-2 0 3 0.4 0.5 R(a.u. )

FICJ. 5. Variation of the width of the first 'X+ resonant
state of He2 + with the internuclear distance.
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creases considerably with R. This can be heuristically
understood by analyzing the shape (see Fig. 6) of the cp
orbital which describes the outgoing electron, i.e., the cp
orbital involved in the "continuum" wave function
X„=~~lsep~~ satisfying the resonance condition E„=E&.
Figure 6 shows that, as R increases, the average wave-
length of the oscillations of this orbital increases; this is
an obvious consequence of the fact that, as R increases,
the energy difference between the resonance and the ion-
ization limit decreases rapidly (see Fig. 7), and accord-
ingly, the kinetic energy of the outgoing electron be-
comes smaller, so that the corresponding orbital, cp,
presents less oscillations in the molecular region. Then
one can expect the interaction V [Eq. (7)] between the
open-channel and the discrete wave functions to be the
larger the less oscillatory the orbital that make up the
former.

E(a.u.}

B. Heteronuclear case

While in the homonuclear case, discussed above, the
'X+ resonant state correlated to 'P (2s2p) in the UA
limit presents no avoided crossings, because the next res-
onant state of the same symmetry is well separate in en-

ergy, in the heteronuclear case the absence of exact g-u
symmetry implies that, just as for ordinary bound states,

0 0.1

l I l I

0.2 0-3 0.4 0.5
R (a.u. }

FIG. 7. Variation of the energy of the first X„resonant1

state of He2 + and of He2 + (1scr~) ionization limit as func-
tions of the internuclear distance.

1.5
Fp
(a.u)

1.0

0-

-0.5—
1.5—

Cp
(a.u.&

1.0-

0.5

Z(a.u. }

the first four 'X resonance positions that are correlated
1 2 1 2 1Dto the quasidegenerate UA ones —S (2s ), S (2p „

(2 ), and 'P (2s2p) —pseudocross at small internuclear
distances (see illustration for the L&He quasimo ecu1

in Ref. 54). Therefore, and following the reasoning
developed in Sec. II, we have obtained the positions and
widths of the diabatic 'X resonant state of HeH+ and
LiHe + which correlates, in the UA limit, to 'P (2s2p),
using block-diagonalization techniques. ' In this case,
these techniques are easily implemented by enforcing u

symmetry, i.e., from all possible configurations of X sym-
metry built up from s, p, d, and f atomic orbitals only
configurations of sp, p d, and d f type have been
included.

TABLE III. Energies and widths for the first resonant dia-
batic 'X state of (a) HeH+ and (b) LiHe + molecules correlated
in the UA limit to 'P (2s2p) in the region of small internuclear
distances.

-0.5—
1.0—

Ep
(a.u)
0.5—

R=0.4 a. u

E=-3.3291 a u.

Z (a. u-) R (a.u. )

0.0
0.1

0.2
0.3
0.4
0.5

E (a.u. )

(a) HeH+
—1.753 999
—1.749 146
—1.742 722
—1.741 548
—1.746 736
—1.757 138

I- (eV)

0.060 00
0.066 48
0.084 77
0.11773
0.175 23
0.280 69

0.0 Z(a. u. )

-0.5-

FICx. 6. Evolution with internuclear distance of the shape of
the ep orbital which describes the outgoing electron of the
He2 + molecule.

0.0
0.1

0.2
0.3
0.4

(b) LiHe +

—5.373 545
—5.334 904
—5.318 130
—5.358 254
—5.432 856

0.083 00
0.108 02
0.195 66
0.483 23
1.4027
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The results obtained are presented in Table III, and
the variation of the widths with the internuclear distance
is plotted in Fig. 8(a) and 8(b) for HeH+ and LiHe +, re-
spectively. We have found no published results to corn-
pare ours with, and our values follow the same pattern
as in the homonuclear case, i.e., a resonance width in-
creasing with the internuclear separation.

It may be remarked that inspection of our intermedi-
ate data showed that for both homonuclear and
heteronuclear systems, the contribution of npn 'd and
ndn 'f configurations to both energy positions and
widths is negligible, especially for the latter quantities.
This agrees with our finding (see paper I) that for atomic
'P resonances, sp-type configurations are the main con-
tributors to I .

Finally, we report the conclusions of our tests on the
influence of the origin of the electronic coordinates in
the definition of Pk in Eq. (9) and in the one-center basis
sets used. To study this point, we have chosen the
LiHe + system because accurate calculations on the en-

-5 0-
E(a.u)

—55—

-60
0.0 0.2 0.4

I l I

0.6 0.8 1.0 1.2 1.4
R {a.u.)

FIG. 9. Calculated energy positions for the 'X state of
LiHe + correlated in the UA limit to 'P (2s2p). ———,ori-
gin on Li nucleus;, origin on z=0.28 (z axis coincides
with the internuclear axis);, origin on the center of nu-
clear charge; o, values obtained using a two-center expansion
and a stabilization method taken from Ref. 55.

1.0—

{ (eV)

ergy position of the same 'X resonant state, using a tuo-
center expansion and a stabilization method down to
R=0.8 a.u. , have been reported in the literature. In
Fig. 9 we present our calculated energies using one-
center expansions for three different choices of the origin
together with the stabilization results of Ref. 55. From
this excellent agreement it seems clear that optimum
choice corresponds to the center of nuclear charge
which for R &0.8 a.u. provides even lower energies than
the two-center expansions of Ref. 55.

V. CONCLUSIONS

I

01
I I I I

0.2 03 0.4 0.5 R (a.u. )

{"(eV)

1.0—

I I I

01 02 0 3 04 R(a u)

FICx. 8. Variation of the width of the diabatic 'X resonant
state correlated in the UA limit to 'P (2s2p). (a) HeH+ sys-
tem, (b) LiHe + system.

The third paper in this series closes what may be re-
garded as a formal presentation of a new method to cal-
culate autoionization widths for two-electron Feshbach
resonances (for shape resonances, which play a more im-
portant role in the molecular than in the atomic case,
see our remarks in Sec. III of paper I). This method,
which was briefly proposed by Macias and Riera in a re-
cent publication, ' consists of an implementation of the
well-known Feshbach formalism, involving a discretiza-
tion of the open-channel spectrum, together with specific
techniques to achieve closed-open channel degeneracy
and to evaluate the density of states. In this series we
have presented the method in full detail.

(I) In paper I we have explained the steps involved in
our approach, the fundamentals behind each one of its
approximations, and the tests that can be performed to
gauge their accuracy.

(2) In paper II an extensive application of our method
to atomic benchmark cases yields very good agreement
with published data. Additional information is provid-
ed, in the form of contributions to the widths from
configurations of a given character, of compact fitted ex-
pressions for Z ~2, and of illustrations on the use of
different types of atomic bases to perform the continuum
disc retization.

(3) In the present paper we show that the method is
applicable to molecular systems. For the sake of simpli-
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city in the corresponding programming effort, we have
restricted this illustration to the small-R region where
one-center expansions are sufficiently accurate to de-
scribe the wave functions, and we have treated two
homonuclear and two heteronuclear molecular systems.
From the point of view of testing our method, it is un-
fortunate that the (very few) published results of (quasi)
molecular resonance widths refer to intermediate dis-
tances where one-center expansions are inaccurate (see
Fig. 9). In the absence of a direct comparison with oth-
er published results, we do not claim that our method's
accuracy for the molecular case is as high as for atoms,
and our data may be taken as predictive, to be confirmed
(or not) by other authors. On the other hand, the fact
that for H2 our results merge so smoothly with those of
Sato and Hara, who use a completely different basis set
and treatment of the continuum, is a very good indica-
tion that our method works at short R. As in the atom-
ic case, we have performed, for both homonuclear and
heteronuclear systems the tests proposed in paper I to
check the validity of the method's assumptions. On the
other hand, as could be expected, new features appear in
the molecular case. The most conspicuous one is the
possibility of avoided crossings between resonance posi-

tions, as functions of R, when an unmodified Feshbach
approach is used; then the golden-rule expression may be
meaningless when the corresponding resonances overlap.
From the two possible solutions to this difficulty, which
are the modification of the Feshbach approach (as pro-
posed by Feshbach himself ), and the use of diabatic
wave functions, we have opted for the simpler, second
one, using block-diagonalization techniques.

Once the usefulness of our approach has been demon-
strated, besides applying it to more systems and states
than those hitherto considered, the main practical chal-
lenge (which will be the object of future work) is the
nontrivial extension of our techniques to the region of
internuclear distances where a two-center basis set is
needed to represent the wave functions.
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