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Simple discretization method for autoionization widths. I. Theory
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A description of the theoretical basis is presented for a new method to calculate widths of two-
electron Feshbach resonances, which employs discretization techniques for the continuum projec-
tion of the wave function. New features of our approach are the finite-difterence expressions used

to evaluate the density of states and the inverse interpolation procedure needed to achieve the re-

quired discrete-continuum degeneracy. Two following papers illustrate the use of our method to
calculate resonance widths for atomic and molecular systems, respectively.

I. INTRODUCTION

Doubly excited states with two electrons, being the
most fundamental systems that autoionize, have received
continued attention as being best suited to theoretical in-
vestigation on resonance characteristics, as well as
presenting difficult conceptual and computational prob-
lems. Because of their simplicity, they are used as
benchmark cases for theoretical treatments of autoioni-
zation phenomena; a sample of these treatments is
presented in Refs. 1 —30, for atomic and molecular sys-
tems. From the experimental point of view, those states
are also of great interest in several contexts, such as
electron-impact measurements, ' atomic processes in
fusion plasmas, beam-foil spectroscopy, ' and single-
collision beam experiments.

In a series of papers, ' ' we have proposed a new
method for the calculation of resonance widths. Our
procedure was claimed to be accurate, yet very
simple —as compared, for example, to alternative, very
precise techniques such as the complex rotation
method. Application of our approach to doubly excit-
ed states of He-like systems gave encouraging results,
which warrant a detailed and systematic description of
its fundamentals and computational details, which were
presented in Refs. 25 and 28, in a rather concise and
heuristic manner. This description is the purpose of the
present work.

Starting from well-known Feshbach theory (present-
ed in Sec. II A), our approach uses a discretization tech-
nique for the continuum projection of the wave function;
this will be described in detail in Sec. II B. In Sec. II C
the reasoning underlying our approximation for the den-
sity of states is presented and exemplified. Then the
necessity of using a family of basis sets, rather than a
single one, is pointed out in Sec. II C. Discrete-
continuum degeneracy, needed to apply the golden-rule
formula, is achieved through an inverse interpolation
procedure described in Sec. II D. This is followed by a
summary of the basic steps of our method.

Our goal is to develop a procedure that is sufficiently
simple to be applicable, without great computational
effort, to the calculation of autoionization widths of

molecular systems, as a complement to the research car-
ried out by our group on molecular resonance ener-
gies. ' Nevertheless, since it is for the atomic case
that there exists a wealth of accurate data with which re-
sults of any proposed method should successfully com-
pare, we present in a following paper an explicit com-
parison of our results for positions and widths of reso-
nances of the He isoelectronic series with those of other
published work. As a further step towards our goal, in a
third paper of this series we extend our techniques to
the calculation of molecular resonance positions and
widths in the region of small internuclear distances
where one-center expansions of the closed-channel wave
functions are appropriate. Atomic units are used
throughout.

II. METHOD

A. Use of golden rule

We shall first recall, following the theory of Refs. 44
and 47 —50, the basic definitions of the Feshbach formal-
ism that are needed to describe our implementation of it.
We write the wave function g representing an autoioniz-
ing state of a two-electron system as the sum of two
components describing open and closed channels:

P(ri r~)=PO+Q0

where P is the projection operator having the property
that Pg has the same asymptotic form as ttj when either
of the two electronic coordinates r&, rz tends to infinity,
and Q = 1 P. As is wel—l known, in general the
definition of these operators is, to some extent, a matter
of choice, but in the two-electron case an appropriate
expression is readily inferred. ' For example, for
Feshbach resonances below the n =2 threshold of He-
like systems, one can take

Q=QiQ2,
where Q; is the projector on the subspace spanned by all
excited target states.

Inserting (1) in the Schrodinger equation yields the
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coupled equations

(Hgg E—)QQ=HgpPQ,

(Hpp E—)PQ =Hpg Q P,
(3)

(Hpp+ V, , E)P—it=0,
where V pt is the generalized optical potential

V,p, Hpg(E ———Hgg ) 'Hgp .

For E close to an eigenenergy of H~~, say, E &,

(Hgg E", )QQ—, =O .

Equation (4) can be written

(4)

(6)

H,
I
y„&(y„ IH, EPg-EI

Hpg lbi&&4i IHgp
PP . (7)E1

Hpp+
n&~1j

= (H' E)Pg = ——

Then, letting 7E be a solution of the homogeneous equa-
tion

(H' E)PXp ——0—, (8)

we solve Eq. (7) in terms of the corresponding
(standing-wave) Green's function for Eq. (8), and com-
pare this solution to the Breit-Wigner resonance formu-
la. The expression for the resonance width

I 2n
I (pi Hgp IXE) (9)

then follows, with E =E i in Eq. (8), and a normaliza-
tion:

(X IX, ')=5(E —E'). (10)

Also, the resonance position is given by

E„,=E, +hi E, +((5,
I
Hgp(E H'——) 'Hpg

I
Pi)—,

where the standing-wave form of the Careen's function is
assumed.

Equation (9) is formally identical to Fermi's golden
rule. ' In applications, except when very accurate values
for the resonance parameters are needed, the nonlocal
part of H', and the energy shift 6, which are quadratic
in the interaction Hamiltonian H~p, are neglected, so
that Xz is approximated by the solution of '

where, in a standard notation, Hgg =QHQ, Hpp =PHP,
Hpg =Hgp =PHQ. The projected Hamiltonian Hgg has
a discrete spectrum below the excitation threshold, and
the interaction Hgp permits the decay of Q1( into Pp.

Equation (3) can be formally uncoupled by solving the
first equation for Q1( and inserting it in the second:

B. Discretization procedure

In our approach we aim at obtaining a good approxi-
mation to the resonance width I, rather than solving the
scattering problem (12). Then we realize from Eq. (9)
that the form of LF is only required in the region of
configuration space where Pi is non-negligible, so that
we can employ an L -integrable representation of 7E in
this region.

To obtain such a representation, powerful discretiza-
tion techniques, involving a considerable computational
effort, have been developed. Here we shall simply
diagonalize Hpp in a finite basis of L -integrable wave
functions belonging to the orthogonal complement of the

Q subspace, and covering (taking non-negligible values
in) a domain D containing the region of configuration
space where (t i is also non-negligible. To show that the
wave functions obtained in the diag onalization pro-
cedure provide the sought-for representation of the
open-channel functions gz, we shall follow Macias and
Riera's approach in their work on the basis of the sta-
bilization method.

As in Ref. 57, to avoid mathematical complications
related to the fact that 7E does not belong to a Hilbert
space, we first enclose the whole system in a very large
box, or any other suitable device, so that the new eigen-
functions of Hpp henceforth called Xz, are identical to
XE inside a very large domain X) of configuration space,
and are made to vanish quickly (either exponentially or
abruptly) outside 2). In this respect, it is worth pointing
out that, since tables and figures always have a finite pre-
cision, if so desired the box can be taken to be of macro-
scopic size so that there is no practical difference in the
spectrum of Hpp when the boundary conditions change
at the bounding surface of 2).

We are then left with a projected Hamiltonian whose
spectral resolution is given by

Hpp= g IXz &E;&Xz
I

(13)

and we have also, by construction,

that is, a sum over densely packed energy intervals of
width O(e), where e is extremely small.

When considering an expression containing gz which
is a function of E, substituting the quasicontinuum func-
tion XE for the continuum one 7& replaces that function
by an histogram, which will appear in practice as a con-
tinuous function. It is then more convenient to use a
continuous interpolation function of the histogram. For
example, the normalization condition (10) now reads

&X~
I
X~ &=5,(E,E ), (14)

where the interpolating function 6, is a member of a 6
family (straightforward generalization of a 5 sequence ).
As usual, it is convenient to choose the area below this
6, function such that

J dE'5, (E,E')=1 (15)

(Hpp E)PXp ——0 . —
5,(E, ,E ) =0 when

I
E; E—

(12) so that

(16)
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&ig
I
Yg ) =5,(E;,E, )=O(e ') . (17)

Let us now diagonalize Hpp in a basis set of I, -

integrable functions

{gi;j=0, 1, . . . , NI (18)

~ 5, ' (E„,E„)Xg
N~ oo

so that Eq. (21) holds

(23)

&x„ lf & —5, '"(E.,E„)5 "(E,E. )&&; I&& &

N~ oo

=5, ~ ](Ez„,E„)5, ]~ (E,E )5,(E„,E )=5„
(24)

since
I
E„E

I
) e for n&—m. Hence, the normaliza-

tion (23) is correct, and corresponds to the intuitively
obvious fact that the amplitude of the S-normalized
wave function 7„must become progressively smaller
when the basis set is enlarged. Then, we can see that the
Heisenberg transform of 7„, which is given by the over-
lap

&X, IX„& —5 ]"(E„,E„)&X. IX,— &

N~ oo n

=5;„5,'i (E„,E„), (25)

covering a domain D of configuration space of atomic or
molecular dimensions and which becomes complete in P
space as N~ co. In practice, we shall have D C C2),
and the spectrum of the matrix Hpp given by the solu-
tion of

HppC=SppCE C SppC= I (19)

where Spp is the overlap matrix in the representation
(18), is formed by a discrete set of eigenvalues E„,
separated by energy dift'erences which are much larger
than e (save for degeneracies).

Next we must establish the relationship between each
wave function:

X„(r],rp) = y cl„g,(r], rz) (20)
J

formed from the eigencoefficients of Eq. (19), and
fulfilling

&x„ lx. ) =5„. , (21)
and the corresponding quasicontinuum one gE of the

n

same energy, normalized according to Eq. (14). This is a
basic question, since at first sight it is not clear that they
should be similar even inside the atomic domain D.

To answer this question, in Ref. 57 we first considered
the formal limit of a complete basis set [N~ oo in (18)]
and then passed on to the realistic case of a finite basis.
Now the advantage of the small-grained discretization
reached by the introduction of the box of size 2) be-
comes clear: The eigenfunctions PE of Hpp belong to
the Hilbert space of P functions and can be expanded in
the complete set:

{g,;j=0, 1, . . . , ~I . (22)

Then, in the limit X~oo the eigenfunctions 7„and
XE must coincide up to a normalization factor

n

becomes completely concentrated about E, . In other
words, for large basis sets, 7„has a maximum overlap
with the continuum wave function 1E . That this also

n

holds to a good approximation for smaller basis sets was
explicitly shown by Macias and Riera: Provided that
Hpp presents no resonance structure, the Heisenberg
transform turns out to have a peaked structure with a
maximum value for E close to E„. This is equivalent to
saying that one has

X„(r],rz)=p ' (E„)Xz (r, , r2) for r„rzED,
n

where the normalization factor

(26)

p(E„) ~ 5,(E„,E„)
N~ oo

(27)

increases indefinitely in the limit of a complete basis set,
and can be formally assimilated to a density of states.

Substitution of expression (26) in Eq. (9) yields the
golden-rule formula:

I =2~p(E. )
I & y] I Hgp I

&. &
I

'

for E„=E&.

(28)

C. Density of continuum states

We have just seen that the coarse-grain discretiza-
tion of the spectrum of Hpp achieved by its general-
ized diagonalization in a finite basis set (18), provides ap-
proximations to the wave functions XE, hence to LE, in-
side the domain D of configuration space covered by that
basis set. As a consequence, it provides an approxima-
tion to the Feshbach projection operator P:

I'= 2 I &E; ) &+E, I
+ f dE

I
&E) &+E

I
(29)

taking the form

P= y Ix„&&x„
I

(30)

n

(E (E )

I ~,— & &~,—
I
+ g p- (E„)

I ~,— & &~,— I,
n

(E„&E j

(31)

where E is the ionization threshold, and the projector
in Eq. (31) is to be bracketed, to the left or to the right,
by & r, rz I, with r] rz CD. It is important to carefully
distinguish this coarse-grain discretization, valid only in-
side D, from the jtne grain discretiza-tion, of Eq. (13),
which is exact for all practical purposes.

To examine the nature of the quadrature ' provided
by (30) for the integral operator in (29), it is convenient
to define an interpolating function p(E), fulfilling

(1) p(E„)=n,
(2) dpldE continuous and monotonic .

(32)

Each such function p can be used to define a quadra-
ture operator for P:
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(a)

n

(E„(E )

n

(E )E j E„

(33)

15—

Comparison of (31) and (33) shows that, when bracket-
ed by &r), rz

~

with r, , rzED, the former is a special case
of the latter, with

10

dE
=p(&„) . (34)

7 (

In fact, Eq. (34) provides a very useful way to approxi-
mate the normalization factor in Eq. (23), since, as will
be seen below, it is not difficult to obtain finite-difference
approximations to the left-hand side in that equation,
when the basis set (18) is judiciously chosen.

In practice, those approximations can be reached in
an empirical way, by inspection of the behavior of the ei-
genvalues as functions of the index n [see Eq. (32)].
However, it is interesting to consider the reasoning un-
derlying their use, which we now outline.

To be specific, let us suppose we wish to describe a P
state consisting of a bound electron, of energy F. , and
an unbound one which is represented by a standing
wave. To reproduce this wave inside the D domain, we
can employ an even-tempered set of Slater (STO) or
Gaussian (GTO) orbitals, whose exponents are in a
geometrical progression:

n tEI

]

—10

(b)

l

—5

I

10
a; =a+', i =0, 1, . . . , N (35)

[j,(rl); j=0, 1, . . . , N I (36)

depending upon a parameter g such that the orbital se-
quence is of the form

(g) a(0)yg aug+( t 0 (37)

Each value of g then yields a different basis set, and a
different secular equation (19). To a good approxima-
tion, the corresponding eigenenergies of this secular
equation are of the form

where P defines the density of the basis set. For such an
orbital basis, one always finds that the eigenenergies of
the secular equation (19) for the &z p operator present a
clear exponential pattern as functions of the index n

[Fig. 1(a) illustrates this behavior]. To explain this
empirical finding, we can work as follows.

Let us define a family of configuration bases con-
structed from even-tempered sequences of STO's or
GTO's: r„(g)=r„(0)f3 ~= (r0) "e, (39)

with a =21nP. In other words, for a fixed index n the ei-
genvalue E„(g) behaves exponentially as a function of
the nonlinear parameter; an illustration of this fact is
presented in Fig. 2(a).

Next, we shall assume that the basis set is not outra-
geously small, so that incorporating a new orbital with
exponent a, or a,v+) [following the sequence (37)], or
eliminating the first or last orbital with exponents uo,

respectively, yields the same eigenvalues E„ for
1 «n «X. Then we notice that

FIG. 1. Exponential behavior of the eigenvalues of Hpr, E„
of B +, as a function of the index n for (a) an even-tempered
sequence of exponents [Eq. (35)], (b) a generalized sequence of
exponents [Eq. (49)] (notice that the figure shows the inverse
function, which is then logarithmic).

E„=E'+r„(ri), (38)

that is, a sum of a bound electron energy and the kinetic
energy of the "continuum" electron, which will depend
on the basis set used, i.e. , on the parameter g. Then, be-
cause of the homogeneous property of the kinetic-energy
operator, we shall have, from (37),

(40)

which, according to our assumption, should yield the
same eigenvalues E„as the basis set (36), for g=0, and
1 «n «X. %'e must then obtain
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E„(q= 1)=E„+,(rI=O),

that is,

r„(1)=r„+t(0) .

(41)

(42)

or

(0)=r„(0)e

E„+ = r„(0)e +E

(44)

(45)

r„(m)= r„+ (0) .

Taking Eq. (39) into account, one then has

(43)

n=1 S

This procedure can be repeated m &&X times, yielding that is, an exponential behavior of the eigenvalues E„as
functions of the index n, for a given value of g, i.e., for a
given basis set (36). The accuracy of Eq. (45) can be
gauged from Fig. 1(a) and 1(b) by checking that the
value of the gradient in a semilog fit of the eigenenergies
versus n coincides with a=21nP.

From the preceding reasoning, and taking into ac-
count that p is an interpolation function for the index n

[see Eq. (32)], it is clear that a good approximation to
the left-hand side of Eq. (34) is

E ~ ( Q.LI.) dp 1

E„a(E„E)— (46)

Ei

and we can employ a straightforward interpolation pro-
cedure, involving the nodes E„],E„, and E„+&

to
evaluate the density of states p(E„) in the golden-rule
formula (28). In fact, for P &2, an extremely simple cen-
tral difference expression ' ' is sufficiently accurate
for most purposes:

2
p(E„)=

E„+]—En —i

(47)

+a.u.}

n=] Q
n-9

n —8

since

E„+i E„ i
——r„(—0)(e —e ) =2(E„E)a . (48)—

We notice that the use of Eq. (47) as an approximation
to the density of states in Eq. (28) rests on the assump-
tion that, inside the domain D, the basis set (18) is
sufficiently close to completeness for P =P of Eq. (31),
and for Eq. (41), to hold. To test the accuracy of this as-
sumption, two simple tests can be performed.

(a) Results obtained with two different basis sets
{g~(g)I, {gj(i)+I)] or indeed with {g~(il') I should be
the same to a good precision. This test will be elaborat-
ed upon in Sec. II D.

(b) Convergence of I with the size of the basis set N
in Eq. (18) should have been reached, to the desired pre-
cision. In other words, further increasing the basis
should modify the wave function [Eq. (26)] and the den-
sity of states [Eq. (47)] so as to leave the width [Eq. (28)]
invariant. An illustration of this convergence is present-
ed in Table I.

0 1 2 3 0 5

FICx. 2. Behavior of the eigenvalues of Hpp, E„ofB +, as a
function of the nonlinear parameter: (a) g defined in Eq. (37)
for an even-tempered sequence of exponents [Eq. (35)], (b) y
defined in Eq. (54) for a generalized sequence of exponents [Eq.
(49)].

Incidentally, this second test brings forth a possible
formal objection that can be raised, regarding the special
kind of basis set chosen to illustrate our procedure,
which is a point worthy of consideration. The objection
is that even-tempered bases, though widely used in quan-
tum chemistry, are known to be incomplete ' in the limit
N~ ao in Eq. (35). It is easy, however, to overcome this
formal difficulty.

For this purpose, we can generalize the even-tempered
exponent sequence (35) in many ways. A possible one is
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TABLE I. Invariance test for the first 'P resonance of B'+
regarding the size of the [g;] basis. Numbers in square brack-
ets indicate power of ten.

TABLE II. Invariance test for the first 'P resonance of B'+
regarding the nonlinear parameter g. Numbers in square
brackets indicate pov er of ten.

E] ———5.373 54 a.u.
p(E„) (P) H X. ) I (eV) I (eV)

18
28

10
15

0.200 492
0.218 717

4.9208[-2]
4.7313[-2]

8.30[-2]
8.37[-2]

9.884
9.367
8 ~ 851
8.337
7.821

13
14
15
16
17

0.216 930
0.218 112
0.218 717
0.218 237
0.217 239

4.7531[-2]
4.7392[-2]
4.7313[-2]
4.7342[-2]
4.7419[-2]

8.38[-2]
8.38[-2]
8.37[-2]
8.36[-2]
8.35[-2]

(49)

which has an accumulation point as M~ ap ..

a„=ag'" (50)

homogeneous property of the kinetic-energy operator
[see Fig. 2(b)].

D. Inverse interpolation procedure

In our proposed application of Eq. (28) to the evalua-
tion of resonance widths, there still remains a last prob-
lem to be solved. It is that, in general, none of the ei-
genvalues of Eq. (19) coincides with E i t whereas this de-
generacy is a requirement for Eq. (28) to hold.

Our way out of this difficulty ' ' is to employ, in-
stead of a single basis set (18), a family of bases Ig~(i)) I

or Ig~(y)], with STO or GTO exponents as defined in
Eqs. (37) or (54). Then all matrices in the secular equa-
tion (19) are functions of the nonlinear parameter rI (y),
and the i) (y) dependence of the eigenvalues can be used
to impose that E„=E&, for any index n, by inverse inter-
polation, and to any desired precision. This is illustrated
in Fig. 2(a) and 2(b) for several values of n.

Finally, we note that the very existence of several
indexes n, n', . . . such that E„(i))=E„(r)')=. . . =Ei is
fulfilled permits us to gauge the accuracy of our approxi-
mation for the density of states, in the sense that neigh-
boring values should yield the same final width —thus
providing an implementation of test (b) proposed in Sec.
II C. An illustration of this test is presented in Table II.1 —(1 —e)' 1 —(1 —e)'

+(1—e)'(j i)—(51)

The STO or GTO sets with the exponents in the se-
quence (49) become complete in the limit M~ co, ac-
cording to Klahn and Bingel's theorem. The geometri-
cal sequence (35) is recovered from its generalization (49)
in the limit c. =O. In fact, for ic «1, the new and old
orbitals, with exponents (49) and (35), respectively, are
indistinguishable from each other; and for Nc « 1 in Eq.
(35), the even-tempered basis can be considered as a sub-
set of the complete set with exponents given by (49) with
M = oo. This removes the objection.

Finally, it is worth pointing out that generalization
(49) of the exponent sequence is not only of formal value
as providing a justification for the use of even-tempered
bases. As will be seen in the following papers, we have
used to advantage in our calculations the fact that linear
quasidependences between diffuse orbitals of the even-
tempered set appear for larger values of f3 than for the
generalized basis. For this generalized set, the density of
states can be evaluated, making use of the fact that, for
(j —i)e «1,

and therefore III. SUMMAR Y

(52)

with

(53)

Thus, for small c. the new sequence is geometrical in a
wide neighborhood of any given index I. . As in the pre-
vious case, we can define a family of basis sets g(y ) with

(54)

for the discretized continuum orbital. As functions of
the index n, the eigenvalues of Eq. (19), E„, fulfill Eq.
(45) to a very good approximation [see an illustration in
Fig. 1(b)], and Eqs. (46) and (47) can likewise be applied
for the new generalized basis of STO's or CANTO's. In-
cidentally, as can be expected from Eqs. (38) and (54),
the eigenvalues E„(y) as functions of the parameter y
behave parabolically (proportional to y ), because of the

Before passing on in the following papers to applica-
tions of our method, it is useful to summarize the main
practical steps of our procedure.

(1) Taking O' Malley and Geltman's form (2) for the
Feshbach projection operator Q, we solve the eigenvalue
equation (6) (in a finite representation). This yields (ap-
proximations to) the discrete wave function P, and (to)
its energy E, .

(2) We define a finite basis (18) of L -integrable func-
tions, all of which are orthogonal to P, , covering a
domain D of configuration space that contains the region
where P, takes non-negligible values. Solving the secular
equation (19) yields L -integrable approximations to the
continuum wave functions XF of Eq. (12) inside D.

(3) A nonlinear parameter is varied in the basis set (18)
of step (2) so as to achieve, by inverse interpolation, the
degeneracy condition between discrete and continuum
wave functions E„=E],for a chosen value of n (Fig. 2).
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(4) Provided that the discrete spectrum E„obtained in
step (2) is such that a function p, (E) with the properties
(32) can be defined (Fig. 1), a density of states p(E) is
evaluated with a finite-diff'erence expression such as (47)
[or (46)].

(5) The approximations for P&, XE, and p are intro-
duced in the golden-rule formula (28). Overall checks
are obtained by choosing neighboring values of n in step
(3) (Table II), and increasing the discrete and continuum
basis sets (Table I); in both tests the same final results
should be reached to the desired precision. In practice,
and somewhat paradoxically, in the application of our
method ' ' we have always found the convergence
test to be considerably more straightforward for the con-
tinuum than for the discrete wave function.

Finally, some words may be appropriate with regard
to the restrictions of the proposed method. Obviously,
since it is an implementation of Feshbach's theory, the
well-known difficulties of this formalism apply. In par-
ticular, extension to systems with more than two elec-
trons ' ' is nontrivial, and the O' Malley-Geltman

form [Eq. (2)] for the Q operator is not immediately gen-
eralizable to targets with more than one electron.
Also, as is well known, construction of this g operator
for shape resonances is not straightforward, and to treat
these resonances, perhaps our method should be imple-
mented in the framework of the constrained variational
approach of Macias and Riera ' ' rather than of
Feshbach's. Since, in our case, all tests refer to two-
electron targets, the validity of the fit (46) [or (47)] for
the density of states remains to be checked for systems
with more than two electrons.
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