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We give a detailed presentation of Hartree-Fock calculations of atoms and molecular chains in
10' G magnetic fields, as are supposed to exist on the surface of neutron stars. These calculations
are the first self-consistent ones treating exchange properly for atoms heavier than helium in high
fields. We find that the isolated atom is energetically favored over molecular chains for Z &2 at
fields greater than 1&&10' G and for Z &4 at fields greater than 5&10' G. These results indicate
that matter on the surface of neutron stars is bound very weakly, if at all.

I. INTRODUCTION

The state of matter in the presence of strong magnetic
fields (8 = 10' —10' G) is relevant to neutron star stud-
ies, ' apart from its intrinsic interest. Particularly im-
portant is whether the surface of a neutron star is a solid
or a gas. The optical properties of such a star, and the
heating of its surface, are related to this question.

In this paper we present a detailed discussion of varia-
tional Hartree-Fock calculations for matter in strong
magnetic fields, following a summary of our results.
We calculate the single-particle and binding energies of
both isolated atoms and single linear chains of atoms.
The latter largely determine the structure of the solid
phase, as we discuss below.

Our calculations are the first self-consistent ones treat-
ing exchange properly for atoms heavier than helium in
high fields, and are therefore particularly important for
neutron star surfaces, where the dominant material is be-
lieved to be iron. Within our approximations, we find
that for elements with atomic number Z & 2 at B &2

——I

(and Z &4 at B&2 ——5), the isolated atom is energetically
favored over the molecular chain (here, and in the fol-
lowing, we use the convention 8,2=8/10' G). This is
because in strong fields all electron spins are oriented
along the field. The Pauli principle implies a totally an-
tisymmetric spatial wave function, which in turn means
that the predominant zero-field bonding mechanism,
where two atoms bind together in a spin-singlet spatially
symmetric state, will not be effective.

Our presentation is organized as follows. In Sec. II
we give a qualitative discussion of atomic structure in
strong fields and introduce the relevant parameters. In
Sec. III we justify our ansatz for the isolated-atom wave
function: the Hartree-Fock wave function in the adia-
batic approximation. From this wave function, we
derive the one-dimensional Hartree-Fock equations in
Sec. IV, and explain their solution. In Sec. V we explain
the chain approximation for three-dimensional matter
and discuss different choices for the Bloch wave func-
tions. Section VI is analogous to Sec. IV: We derive the

II. BASIC CONCEPTS

The Hamiltonian of a neutral atom in a uniform mag-
netic field can be written as

H =H~+ V z+ V„
2

p+ —A, +g B S, —Ze'g—
2M ' c ',. Mc ',. r;

1+e
i j IJ

(2. 1)

where the index i labels the electrons, Z is the nuclear
charge, and p, r, and S are the momentum, position, and
spin, respectively. The electron's mass and charge are M
and —e, respectively, while A is the electromagnetic po-
tential of a uniform magnetic field,

A= —,'B&r . (2.2)

We neglect the motion of the nucleus, incurring er-
rors of the order of the electron-nucleus mass ratio.
These are too small to affect our calculations of the
cohesive energy, but since the binding energies are very
large in strong fields (see below), the energies associated
with the motion of the nucleus are much higher than
when B =0. Indeed, these splittings may reach several
eV and the corresponding modifications of the opacities
strongly change the radiation spectra, since neutron star
surface temperatures are in the 1 —100-eV range.

Hartree-Fock equations for one-dimensional chains. The
extension to infinite chains introduces complications,
some of which are dealt with by the standard method of
Fourier transform, while others require analytical ma-
nipulations. Numerical results are presented in Sec. VII,
along with comparisons with previous calculations. For
the convenience of the reader, we separated the presen-
tation of all approximations that require physical
justification (Secs. II, III, and V) from the presentation
of the solutions of equations (Secs. IV and VI).
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Our discussion in this section is qualitative and we
neglect the electron-electron repulsion. This latter is, in
fact, dominated by the nucleus-electron attraction and
we include it in Sec. III below via the mean field it
creates. Our many-electron wave function is thus a
Slater determinant of single-electron orbitals.

The structure of the single-electron orbitals is deter-
mined by the relative strengths of the magnetic and
Coulomb interactions. When the magnetic field is very
small, the Zeeman-split hydrogen atom is recovered.
Our interest, however, is in the opposite extreme: strong
magnetic fields perturbed slightly by the Coulomb in-
teraction. To study this limit, we first neglect the
Coulomb interactions and consider only the magnetic
Hamiltonian.

The magnetic Hamiltonian is separable into three
parts:

Ze
( V,z)-

P
(2.9)

This condition can be shown to be equivalent to
B &Z Bc, where

e'"'~f„(z),
z „zdz=6

(2.10)

Bc——2. 3&10 G .

For iron the critical field strength is 10' G; for higher
field strengths, n is a good quantum number, and the
wave function is separable.

The nuclear Coulomb attraction localizes the electrons
in the direction along the magnetic field. The plane
wave is replaced by a real, localized function

H~ ——H, +Hi+Hs- (2.3)

Here H, (=P, /2M) governs the motion parallel to the
field, Hz the motion perpendicular to the field, and Hz
the spin degree of freedom.

The Hamiltonian Hz has an infinitely degenerate,
discrete harmonic-oscillator spectrum

Ei ——,'irico(n ——m +
~

m
~

+1), n )0 (2.4)

where

4co = 11.5 keV XB )2 . (2.&)

The integers n and m label the eigenfunctions of HJ,

itj „(p,P) = W „(p)e (2.6)

where we have introduced the usual cylindrical coordi-
nates (p, P, z) and the Landau functions W „. We will
be interested only in the form of the lowest-energy
(n =0) Landau functions

W o(p)=
1

&2ir~m ! 2

m
/

2
e p /4 (2.7)

&mks = ~mo(p)e (2.8)

The perturbing nucleus-electron attraction breaks the
degeneracy of m, since lower-m orbitals lie closer to the
nucleus. However, the z component of the orbital angu-
lar momentum, 1., (= —maori) is conserved by the spheri-
cally symmetric attraction, so that orbitals with different
Landau indices, m, are not mixed. The spin projection S
also remains a good quantum number.

The nuclear Coulomb potential can be treated as a
perturbation as long as its matrix elements are much
smaller than the excitation energy of orbitals with n & 1,

These are peaked at p =p~2m +1. Here, and in the
following, the unit of length is the Landau radius

p=(Pic/eB)'~ =2.S)& 10 ' cm)&B,q'

The one-body eigenfunctions of Hz are products of
eigenfunctions of H„H~, and Hz,

where the index v labels the number of nodes. In the
following, we omit the index n from f„„asonly n =0
states are considered. Higher-n orbitals have large ener-
gies () fico) and are not populated at the ground state.
The Hamiltonians Hz and H, are affected differently by
the perturbation since the former has a discrete spec-
trum.

It can be shown that in very strong fields the energy
required to put the electron in a higher node state
(v&0) is larger than the energy required to put it in
higher Landau orbitals, m & 0. ' Hence, the electrons of
a general atom in strong fields will occupy the states
[m =0, . . . , Z —1;v=OI. For intermediate-strength
fields, the inner Landau orbitals are populated by several
electrons, each with different v quantum numbers. For
example, the first six Landau orbitals of iron at 10' G
are each occupied by two or more electrons.

Although the ansatz (2.8) is strictly valid only for very
strong fields, we can use it to calculate the cohesive ener-
gies, even at moderate field strengths, B-Z B&. The
Coulomb perturbation will mix higher-n states only for
the inner-m orbitals. These, however, are close to the
nuclei and will be largely unmodified when the atoms
join together to form a chain, so that their contributions
to the cohesive energy (as a function of separation) will
almost cancel. For the same reason, we can ignore rela-
tivistic effects, which are much smaller than naively ex-
pected because the relativistic wave function is also se-
parable to perpendicular and parallel components.
Rather than being proportional to Ace/Mc, the relativis-
tic corrections are proportional to v,z/Mc, where v,z is
the attraction of the nucleus felt by a single electron.
From Eqs. (2.7) and (2.9) we deduce that even for the in-
nermost orbital of iron, m =0, the corrections are less
than 4%%uo for B =10' G, with much smaller corrections
for the other electrons.

III. THE ANSATZ FOR ISOLATED ATOMS

Our main goal is to calculate the cohesive energy-
the difference between the binding energy of isolated
atoms and the maximum binding energy of atoms in
crystals. As these two energies are comparable, a mean-
ingful calculation of their difference (or at least its sign,
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(+IH Ie)
(e Iq &

=0. (3.1)

Of course, this determinant does not include dynamical
electron-electron correlations, and the interelectron
repulsion is included only through the mean field. In
strong fields, the one-body orbitals are separable [Eq.
(2.8)]; the only unknowns are the one-dimensional func-
tions f „(z). The Hartree-Fock equations therefore
reduce to a set of one-dimensional (coupled) equations

indicating whether or not crystals are bound) requires
that errors in our calculations of the binding energies be
smaller than the cohesive energy. Experience with
zero-field calculations leads us to expect that, if the
atoms are bound, the cohesive energy is a few percent of
the total energy. Our nominal goal in the binding ener-

gy calculations is therefore 1%. Indeed, in the event
that we find no binding with calculations of this accura-
cy, then the crystals are probably not bound by more
than this uncertainty.

We use a Hartree-Fock approach in our calculations,
less restricted (and hence more accurate) than a previous
variational calculation. ' This problem has also been
studied using a density-functional formalism with the
form of the exchange energy taken from studies of uni-
form zero-field electron gas. " ' This is questionable
since electron densities for strong fields are localized
near the nucleus, and the presence of the magnetic field
modifies the exchange correlation. Indeed, we later (Sec.
VII) compare the Hartree-Fock and density-functional
results and find that the latter overestimate the exchange
energies by more than 30%%uo, or 2% of the total binding
energy.

In the Hartree-Fock method, the wave function is ap-
proximated by a Slater determinant of single-electron or-
bitals. The optimal set of these latter is determined by
solving the variational equation

5
5f (z)

&@IHIP'&

(eIe) (3.2)

Most of the error in zero-field Hartree-Fock calcula-
tions is associated with symmetrization of the spatial
wave function of electrons in a spin-singlet state. In the
exact solution, the electron-electron repulsion depletes
the wave function for small relative distances (Coulomb
hole), while naive symmetrization of the orbitals causes
the opposite effect. For electrons in a spin-triplet state,
antisymmetrization of the spatial wave function creates a
hole that imitates this Coulomb effect. In strong fields,
all spins are aligned antiparallel to the field, so that all
electron pairs are spin triplet and the Slater determinant
reduces to a totally antisymmetric spatial determinant.
The error is therefore expected to be significantly smaller
than the 1% value characteristic of zero-field calcula-
tions.

As is usual in Hartree-Fock, our calculations use an
approximate wave function but leave the Hamiltonian
intact. By the variational principle, first-order errors in
the wave function induce only second-order errors in the
variational energy (H). Moreover, successive improve-
ments in the energy can be calculated systematically.
This is clearly an advantage over those methods that ap-
proximate the Hamiltonian. While the parameters in
these latter can be fixed by fitting to zero-field experi-
mental data, no such calibration is possible for strong
fields.

IV. CALCULATIONS FOR ISOLATED ATOMS

E =&H &=(H, &+( v„&+(v„),
where

(4.1)

The expectation value of the Hamiltonian (2.1) in the
Hartree-Fock determinantal wave function [composed of
orbitals (2.8)] is

g2
&H, ) =&H, ) = y f If' „(z) I'dz,

m, v

Z 2

(v,z)= — y f v (z)If (z)I dz,
P m, v

(4.2a)

(4.2b)

P m, v, m', v'
J D (z —z')

I f (z)
I I f .(z')

I

E,(z —z')f —(z)f ~ .(z')f, (z)f * (z') dz dz' .

(4.2c)

In these expressions the nuclear, direct, and exchange kernels are

I

Iv 0(p) I

' —p /2 2m+1
V (z)= f pdpdp= f P dp,

p +z 2 m! p +z
—[(p +p' )/2] 2m +1 i 2m'+1

mlm1 ~ —~ 2+ z

e —[(p jp' )/2]g++i )m '+ m + 1e —i (m —m ')(tj|' —qS')
, dP dP'

2 + m!m '!+(p —p') + (z —z') 2' 2'

(4.3a)

(4.3b)

(4.3c)
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and we used the fact that for the n =0 orbitals,
(H, &= —(H, &.

The Hartree-Fock equations for the ground-state or-
bitals, (3.2), are equivalent to

5(+iH i+) 5(% ~%)
5f ' (z) 5f * (z)

where the Lagrange multipliers ensuring the orthogonal-
ity relations (2.10) are the single-particle energies Ie
The explicit form of these equations follows from
(4.1)—(4.3):

where L„ is the Laguerre polynomial, L„' ' is the associ-
ated Laguerre polynomial, and we can assume m') m
with no loss of generality. (These relations are estab-
lished in Ref. 7.)

From the definition of the Laguerre polynomials, it is
easy to show that the Fourier transform of the nuclear
kernel is

V (q) =—f ™e'~'V (z)dz

m+& e dy
(y+q /2) +'

Ze2 e2
V (z)+ K (z) —e „ f,(z)m m mv mv +2m!

2
(4.8)

e (z), (4 5)
P

(4.6a)

where the direct and exchange potentials are

(z)—= g f D (z —z')
~ f (z')

~

dz',
m, v

where U is the Whittaker function, and the last equality
follows from Eq (13.1.33) in Ref. 14. For small q we
evaluate the Whittaker function from its expansion in
q "lnq; ' for larger q we integrate (4.8) numerically, by a
change of variables,

& ,(z): g f .(z—) f E (z z')f* .(z')f—„(z')dz' .
m', v'

(4.6b)

y~t=
y+y ., (4.9)

2

V (.)= q (4.7a)

The Hartree-Fock equations (4.5) are nonlinear and cou-
pled. We solve them by iteration: The direct and ex-
change potentials K and J are calculated from the "old"
wave functions, and the equations (4.5) are then solved
for the "new" wave functions.

We expect the orbitals to decay exponentially for large
z, so that we replace the line ( —co, oo ) by a large cell
[ —I, I] and demand that the orbitals vanish on the boun-
daries of this cell. We find that l has to be at least as
large as 50p for convergence. The differential equations
and the quadratures are discretized in a uniform mesh
spanning the cell. Typically, a few hundred points are
sufficient for convergence. We note that the energy is
invariant with respect to reflections through the plane
z =0, so that the orbitals have a definite symmetry under
z~ —z. The wave functions t f I for the isolated atom
can be chosen to be real, in contrast to those of a crystal,
which must satisfy the intrinsically complex Bloch con-
dition f (x +a) =e'"'f (x).

We evaluate the convolution integrals in (4.6) by
Fourier transforms. Direct numerical evaluation of the
kernels in momentum space is complicated by their 1/z
falloft; so that we have instead used the analytic expres-
sions

1
y MRX

2

+ 1 +2mq
2

1/2
2

2

(4.10}

We evaluate the direct and exchange kernels in
momentum space by expanding the products of the poly-
nomials in (4.7b) and (4.7c) as sums of Laguerre polyno-
mials,

L —Lm 2
m'

m+m

s=0
d, (m, m')L, (y), (4.1 la)

m! y
m'! 2

m' —m 2

I m' —m y
m

m+m'

s=0
g, (m, m ')L, (y),

(4.11b)

where the d's and g's are constant coeKcients (i.e., in-
dependent of y). The direct kernels are then

m+m'
D (z)= — g d, (m, m') V,&2, , ' ' ' &2

m +m'
D (q}= g d, (m, m') V, (q&2),

(4. 12a)

(4.12b)

where y,„ is the point where the integrand reaches its
maximum

(z)= f" m' —m

q
2

Lm' —m q
2

Ze q e ~ ~'idq

2D(z)=f LL ~ e~e&'dq
2

L

(4.7b)

(4.7c)

with a similar expression for the exchange kernels. The
expansions (4.11) are essential for the calculation of the
chain energy given in Sec. VI.

We calculate the coefficients d and g by the Cxram-
Schmidt procedure. This involves delicate cancellations
between difterent terms, and so can be subject to nurneri-
cal instabilities. To overcome this problem, we recast
(4.11) in the form
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2mL
m

2m'L 3'
m

m +m

s=0

where

L (y) =m!L (y) =e~~d (y e ~)

d, (m, m ')L, (y),

(4.13)

(4.14)

(less than 1% of the binding energy). With the curves of
energy versus spacing used in Ref. 12, this attraction will
bind iron weakly. However, our curves presented below
are much stiffer, and this attraction will therefore bind
iron very weakly, if-at all.

Our variational wave function for electrons in a chain
is similar to the isolated-atom ansatz described above.
We assume a Slater determinant composed of single-
particle wave functions. In the adiabatic approximation
the single-particle orbitals are

d, (m, m') —=
2 + (m +m')!'d, (m, m') .s! (4.15) (S»4 z) =-~ o(p 0)f,~(z)

i
~, =-,' &, (5.1)

These polynomials have integer coefficients, and their
leading coefficient is +1; it follows that the d's and the
g s are integers, and that the Gram-Schmidt reduction of
(4.13) involves only integers. We evaluated exactly all
coefficients with indexes m, m' &50, s & 100 using a code
written in integer arithmetic.

To begin the iterative solution of the Hartree-Fock
equations, we took initial wave functions of the form

/k
/

&
m v~

(5.2)

where we introduced the band-occupation index 0
The periodicity imposes the Bloch condition

where the node index v is supplemented by the continu-
ous quasimomentum index k. These latter fill continu-
ous bands

f ccz'exp( —a
~

z
~
), (4. 16) f,g(z +a) =f g(z)e'"' (5.3)

as were assumed in previous restricted variational stud-
ies. ' '' We used the parameters (a,, ) as given in Ref.
16 but checked that our converged solutions were insens-
itive to wide variations in these parameters.

As we do not know a priori which Z one-body states
are occupied in the optimal Slater determinant, we had
to calculate the single-particle energies of a large number
of states at each iteration and then occupy those with
lowest energy. In our calculations of atoms through
iron, Z & 26, it is sufficient to include all zero-node states
with 0 & m & Z —1, together with one- and two-node
states for m & 10. We verified that the converged results
are not affected by the choice of initially occupied orbit-
als. The occupied orbitals in the optimal solutions for
various field strengths are presented below in Sec. VII.

V. THE ANSATZ FOR MOLECULAR CHAINS

mv'/c' mvk z dz

J f~,;k (z)f~,k(z)dz
-—a/2

=0 if k~k'mod 277
(5.4)

but we must impose orthogonality for k =k'mod(2~/a).
We adopt the "plane-wave" ansatz,

We must, of course, specify the k dependence of f
compatible with the orthogonality of different orbitals.
As a corollary of the Bloch condition, two orbitals with
quasimornenta k, k' that differ by noninteger multiples of
2~/a [tk&k'mod(2n/a)] will be orthogonal naturally:

f~,,g (z) =f „(z)e'"', (5.5)
In this section we describe our ansatz for the structure

of matter in strong fields. We follow earlier approaches
in assuming linear chains of equispaced stationary nuclei
(charge Z, spacing a ), oriented along the magnetic
field ' the equilibrium spacing is found by minimizing
the energy per atom as a function of a. As explained in
the Introduction, chains are isolated from one another
by Pauli repulsion, as electrons are constrained to stay in
the Landau orbitals. Thus, electrons move freely along
the field, but are localized in the transverse directions.
In other words, matter in strong fields is a conductor
along the field lines but an insulator perpendicular to the
field, like a classical plasma in a magnetic field.

Since the chain-chain interaction does not significantly
perturb the structure of the chain, it can be calculated
with the wave functions of an isolated chain. The nu-
merical study in Ref. 12 shows that the additional at-
traction associated with this interaction is very small

f f*, (z)f (z)dz =6„,—a/2
(5.6)

In addition, we must impose

—J. '

—a/2

if (k —k')=, n~o, (5.7)
2n~

which is most simply done by ensuring that the condi-
tion on the right will never be satisfied, i.e., by choosing

where the f are k-independent periodic functions with
period a, to be determined by the variational equations
(Sec. III). As in the isolated-atom case, the functions
must be orthogonal over the unit cell
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&mv&1 . (5.8)

An alternative choice for the k dependence of the or-
bitals that allows the use of high quasimomenta, 0. ~ 1,
is a "modified plane wave"'

(5.9)

To satisfy the Pauli principle, we allow only one k-
independent function, f „, for each Landau orbital. In
the ground state, all these functions have zero nodes,
v=0, and we omit the v index.

The two alternative phase factors ikz and
ika f ~

f dz have the same variation across a unit cell
a. The modified phase varies most rapidly in the region
of largest amplitude, unless f is constant (in which case
the phase factors are equal); consequently, the kinetic
energy associated with it is higher. ( V,z ) and ( V„)
depend only on the amplitude of the wave function, and
therefore do not depend on the choice of phase.

The two choices of k dependence correspond to two
different physical pictures. For large internuclear spac-
ing, the z-dependent wave functions should approach the
isolated-atom wave functions; in that case the plane-
wave ansatz (5.5) is appropriate. Note, however, that for
very large spacings the Bloch-wave ansatz is not ap-
propriate. Lower kinetic energy is obtained by replacing
the z in the phase factor with any function that varies
only in the region where f is very small:

f .~(z)=f „(z)e' "', g(z+a)=a+g(z),
dg /gz &0 only if z —na +a /2,

n =0,+1,+2, . . . (5.10)

In this ansatz, the kinetic energy associated with g is

proportional to

f (dg/dz)
~ f,(z) dz —

~
f „(a/2)

~ f (dg/dz) dz,

and so decreases exponentially with a, rather than as a
power.

The modified plane-wave choice seems more natural as
an extension of a uniform matter picture (f constant):
Higher nodes are replaced by high quasimomenta and
the spectrum is continuous. In the uniform density lim-

it, the phase factors are equal, but for slight perturba-
tions from uniformity, only the modified plane waves
can naturally accommodate the Pauli principle without
artificially restricting the maximum band occupation
o. to be less than 1.

Only the plane-wave choice (5.5) allows a tractable
calculation of the exchange term, and so we could not
investigate the alternative. However, the latter is unlike-

ly to give a lower energy. At every spacing, only the
inner cores (low m) have high occupations, o. & 1. Un-
less the spacing is small, the core orbitals in a chain will
be similar to those of isolated atoms and the plane-wave
choice more appropriate. For the high-m orbitals the in-

corporation of high quasimomenta in the modified
plane-wave ansatz is irrelevant, as even the zero-node

band is not filled, o. p& 1. Without the advantage of in-
corporating high k, the modified plane-wave choice is
clearly inferior, as it induces higher kinetic and ex-
change energies.

VI. CALCULATIONS FOR MOLECULAR CHAINS

The Hamiltonian of a chain is the periodic extension
of (2.1):

H =Hg+ V z+ V + Vzz

where Hz, V„, and V,z are now

2

H~= g p;+ —A;
C

B.S;,
mc

(6.1)

(6.2)

(6.3)

oo
1V„=—Z"y

r; —naz
(6.4)

a is the internuclear spacing, and the index i labels all
electrons in the chain. The new term Vzz accounts for
the repulsion of different nuclei

Z e 1

2 „„, ~n'a na ~—
(n&n')

(6.5)

2m. 4m mv2N

Na
' Na

' '
Na

(6.6)

where the definition of the occupation factor (5.2) im-
plies N =No. /2.

With our plane-wave ansatz, the various terms in the
total energy are given by

The Coulomb interactions V,z, V„, and Vzz separately
have an unphysical logarithmic divergence as the length
of the chain becomes large, but since the chain is neu-
tral, their sum is finite and nonzero.

We regularize the divergence associated with the
long-range Coulomb interaction by truncating the
Coulomb interaction at a range Na/2 and assuming that
the electron wave functions have period Na, where N is
large and the limit N~ ~ is taken at the end of the cal-
culations. An alternative regularization would be to as-
sume a finite chain with N atoms. Both schemes give
the same total energy in the large N limit, but give
different (divergent) values for each of the three com-
ponents, V,z, V„, and Vzz. The divergences in each
term are independent of the regularization scheme, but
an inconsistent evaluation of the finite parts will produce
an error. This was apparently the case in Ref. 18, which
obtained an erroneously large cohesive energy.

As a result of the periodic boundary conditions, the
range of the z integrals analogous to (4.2) is restricted to
—Na /2 & z & Na /2 and —Na /2+ z & z '

& Na /2+ z.
Similar restrictions hold for the summations over nuclei.
In addition, the Bloch momenta are discrete:
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g2 T

k~+ f if' (z)i dz
m, v, k I

z
I

&Na/2

f V (z)if „(z)i dz,
p m v k Iz I

&Na/2

2

(V„&= g f. . . [ (z —z')
i f (z) i'i f, (z')'

P m, v, k
I

z —z'
I

&Na/2
m', v', k'

—G (z —z')f . (z)f (z')f * (z)f', (z')e '" " "' ' ']dz dz',
XZ'e' ~"

1

ap

(6.7a)

(6.7b)

(6.7c)

(6.7d)

with the nuclear, direct, and exchange kernels as defined in (6.1). From the periodicity of the wave functions and
from (6.6), it follows that the energies per unit cell are

2
fiE~=(H~&/A'= go — + f if~ (z)i dz

m, v

Z 2

Ez ——— ger f V (z)if „(z)i dz,
p m, v

(6.8a)

(6.8b)

E„=
p m, v, m', v'

cr o. ~ D ~ z —z' z 2
~ ~

z'

—G (z —z')f .„.(z)f (z')f ', (z)f* (z')]dz dz', (6.8c)

(z) =
n = —N/2

(z„ ), (6.9a)

where all integrals are now taken over the unit cell

[—a/2, a/2]. The modified kernels are

N/2

where

g (z):—g o ~ ~ f D (z —z')if, (z')i d ',
m', v'

(6.11a)
N/2

D (z) = g D (z„),
n = —N/2

G „ (z)

(6.9b) J „(z)=—g cr f, (z) f G, .(z ')f'. ( ')—
m', v'

&(f (z')dz' . (6.11b)

sin(o ~„vr/a) sin(o. ,z„m./a)
G (z„ ),o. ~„m./a o. ~ z„a/a The occupation numbers are determined by the varia-

tional equations

(6.9c) BE
EF = =6F )

rn v Bo
(6.12)

2
d j. ~mv~+
dz 3

Z 2—
V (z)

p
2

E (z) —e f(z)= J (z), .
p p

(6.10)

where z„—:z —na, and the modified exchange kernels de-
pend on the nodes v, v' through their dependence on the
occupation numbers. For large z, the Bloch factor in
(6.9c) falls as z, so that the sum is convergent; we re-
place its limits by +X/2 by + ao.

As in Sec. III, we obtain the Hartree-Fock equations
by variation of the total energy. It is easy to show that
the resulting equations are

where the Fermi energy eF is the Lagrange multiplier as-
sociated with the electron-number constraint

ger =Z.
m, v

(6.13)

F )Cmvmv
(6.14)

The energy of electrons at the top of the Fermi sea is eF,
while that of electrons at the top of the m v band is eFmv

In our ansatz (Sec. V) the occupation numbers do not
exceed 1, so the Fermi energy of fully occupied orbitals
(0. =1) is below ez.

The maximum energy in a band is higher than the
minimum energy of that band,
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Gz (z) = g cos(o ~„vr/a)

sin�(

cr,;z„vr /a )

o,g„a/a

the difference being in the kinetic energy and the ex-
change kernels. From (6.9c) and (6.12), the Fermi ex-
change kernel is

f V(z)
I f (z) dz = —g f V(q„)

I f (z)
I

e
' "'dz

n (~0)

+ —V(q =0),1
(6.20)

gence in the q =0 part, and eliminates the dependence of
the divergence on the wave function:

~G (z„) . (6.15)

We determine the occupation numbers by iteration.
We separate the single-particle Fermi energy into the
plane-wave kinetic energy term and the remainder:

2

with a similar expression for the direct kernel. Here
q„=2~n/a. The Fourier sum converges rapidly, but the
sum of the divergent terms must be done before the limit
N~ oo is taken.

For the nucleus-electron interaction, the q =0 part is

Omv~
CFmv

(6.16)

E.z(q =0)=—Z 2 go, , f V (q=O) f I

dz
gp —a/2

g o. g f V (z')dz',
gp —Na/2

During each iteration of the wave functions (Sec. IV), we
calculate the remainder in (6.16) using the old occupa-
tion numbers and then find by subiteration the new oc-
cupation numbers that solve (6.12), (6.13), and (6.16).

The chain equations generalize the isolated-atom equa-
tions (the latter are a special case, a = oo ). The integro-
differential equations for the wave functions are solved
similarly, except for some technical complications that
occur for finite spacing, as we now discuss.

The large cell [ —l, l] defining the z coordinate is re-
placed by the unit cell [—a/2, a/2] and the boundary
conditions are replaced by

(6.21)

where

E,= f'" f .(z) 'dz=l . (6.22)

Note that F must be included explicitly as it contrib-
utes to oE/of (z) and therefore to e . However, we
will occasionally omit it from the equations for brevity.
From the representation of the nuclear kernel (4.3), we
evaluate the integral. For large N,

f' „—=0, v even

af, — =0, v odd.

(6.17a)

(6.17b)

y cVa—+ e y ln dym! o v'2y

= 2 ln( Xa ) —g( m + 1 ), (6.23)

h(z)= gh (z„),
n

(6.18)

the transform is simply

The summation over cells is best handled by Fourier
transform. For a periodic kernel of the form (6.9), where y—:p /2, and P(m) is the logarithmic derivative

of the I function. The last two equations imply that

2e Z 1E,z(q =0)= — In(Na) — g cr ttj(m + 1)
ap m, v

h (q) = f e'~'h (z)dz ~h (q),
z = —Na/2

(6.19) (6.24)

with the exception of q =0, where the integral diverges.
This transformation to Fourier space isolates the diver-

The q =0 part of the direct interaction is evaluated simi-
larly:

eE„(q =0)= o o ~ ~ f D (q=O)I f „(z)I dz
I f ~ (z')I dz'

e2
o oF~,; g d~(m', m') V&(q =0)

e Z 1Va
ln

Qp
2

m, v, m', v'
~m v~m'v' +mm' (6.25)
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where
m+m'

Y ~
—= g di(m, m')P(l +1),

I

(6.26)

and we used both the expansion (4.12) and the sum rule
for the d coefficients

which is the total potential energy of a chain of electrons
that are distributed uniformly along the z axis
[f (z) =const). Numerical comparisons show that this
expression agrees with the expression that Refs. 10 and
18 obtained by a difFerent method.

A careful inclusion of the F factors shows that the
q =0 contribution to the single-particle energies is

g di(m, m')=1,
I

(6.27)

which is a special case (y =0) of the definition (4.11).
The internucleus repulsion also contains a divergent

term independent of the electronic wave functions, so
that we must add to the q =0 part of the energy

Ze
e =e (q&0)+

Qp
—21n(2)+1((m + 1)

1

X am'v'Ymm'
m', v'

(6.30)

Z2 N/2

Ezz =
ap~ ) J

Z2

ap

N
ln —+y

2
(6.28)

with an identical contribution to the Fermi energy.
The Bloch factor modifies the Fourier transform of

the exchange kernels:
where y is the Euler constant, 0.577. . .

The finite sum of the divergent terms [Eqs. (5.24),
(5.25), and (5.28)] is

„(q)= I B (q')G (q —q')dq',1
(6.31)

2e 2

E(q =0)=
ap

1

2Z 2 + amm'Ymm' (6.29)

1—ln(2a)+y+ —g o „P(m +1)
m, v

B(z)=
sin(cr ~~/a) cr(cr, .zm/a)

o. ~ir/a o. ~ zm. /a

and its Fourier transform B (q),

where we introduced the Bloch factor B (z),

(6.32)

acr, a
~ q ~

/sr&(cr „cr —)~
B(q)= a(o. +o. „.—a

~ q ~

/~), (o „—o. , ) &a
~ q ~

/~&(o, +a' „)
0, (o +cr ~ ~ )&a ~q ~/rr.

(6.33)

With no loss of generality, we assume o. &o. ~ . The
modified kernel thus can be written in the form

G ~ ~ = ggl(m, m') a f VI(q')dq'
I

+P f VI(q')q'dq' (6.34)

where the coefficients (a,P) and the integration limits
are functions of q, cr, and o. ~ ~ that are easily deter-
mined from (6.33). In our numerical work, we first cal-
culate the integrals

~l q dq qVl q dq (6.35)

for a sufficiently find grid of p's. Then, for each set
[ m v, m 'v', q„ I we determine the integration limits in
(6.34) and interpolate the two functions (6.35). We could
avoid the interpolation by approximating the depen-
dence of (6.34) on cr, by an effective mass. (Although a
similar approximation is often used in band structure
calculations, we avoided it because the errors it induces
in this case are not necessarily small. ) The number of p
grid points that are necessary to reach convergence de-
pends upon the internuclear spacing a; typically, a few
thousand points for each Landau orbital are sufficient.

To reduce computation time, we replace the probabili-
ty density of the outer orbitals with a constant. The pre-
cise balance between the number of z-dependent and z-
independent wave functions depends on the internuclear
spacing. For iron, we found that constant wave func-
tions were good approximations beyond m =35, at least
for internuclear spacings where the outer orbitals are not
empty.

The number of fully and partially occupied orbitals in-
creases as the internuclear spacing is decreased and
eventually grows beyond our numerical capabilities.
However, with the 50 Landau orbitals that we use in our
calculations of iron, the energy at the minimum separa-
tion is much higher than the isolated-atom energy (by
—30%, see Sec. VII). This energy is high enough that
we can be certain that there is no deep minima at small-
er spacings.

VII. RESULTS

Some of our results first presented in Ref. 6 are repeat-
ed here for the reader's convenience. Table I shows our
calculated energies of isolated helium, carbon, and iron
atoms at two field strengths, B&2

——1 and B&2
——5, togeth-

er with a comparison to previous calculations, while
Table II displays some properties of our iron atom solu-
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TABLE I. Absolute values of the ground-state binding ener-
gies of atoms calculated in the Hartree-Fock approximation,
are compared with density-functional (DF) (Ref. 11), density-
functional with correlations (DFC) (Ref. 11), Thomas-Fermi-
Dirac (TFD) (Ref. 20), and restricted-variational (RV) (Ref. 10)
calculations. Energies are given in keV.

0.2

O. I—

i I I i
I

i I 1 I
I

I i 1

Z Bl2 HF

0.575 32
0.958

DF

1.040

DFC TFD RV

0.545
0.913 -O.I—

4.230
7.668 8.03

4.14
7.73

i i i i I i

(b)
26 55.10

106.09
56.1

108.18
56.21 53.13

108.85 105.89 101.7

tion. Our results for helium agree with those of Ref. 7
to five significant digits. We also note that for iron at
B,2

——5, a combination of the Hartree energy (Ref. 11
with the exchange energy from variational calculations

—106. 18yields an approximate Hartree-Fock energy
keV (Ref. 11), in agreement with our result, —106.09
keV. Our binding energies are slightly less than those
from the density-functional calculations. As explained
in Sec. III, we attribute this difference to the use of
uniform-density exchange functionals in the latter calcu-
lations; the Landau orbitals of the present case are well
localized in the plane perpendicular to the field, and do
not resemble plane waves.

Figure 1 shows the energy per unit cell of a chain as a
function of the internuclear spacing. We find that heli-
um is bound in chains, in agreement with Refs. 10 and
11; our binding energies per atom are 25 eV for B &2

——1

and 150 eV for B&2 =5. However, we find that carbon
and iron chains are not bound. Repeating our calcula-
tions orf Z = 3 through 5, we find that atoms with

es of theZ )2(4) are unbound at B i2
——1(5). The shapes o t e

curves agree approximately with the density-functional
results; the differences can again be attributed to the ap-
proximate treatment of the exchange interaction in e .
11.

For large internuclear spacings, the binding energy of
the chain (relative to that of the isolated atom) is dom-
inated by the (a ) repulsion term from the Bloch plane
waves. However, as we explained in Sec. VI, for very
1 the e'"'f (z) ansatz is not appropriate, andlarge spacings e e
a better ansatz gives an exponentially decreasing kinetic
energy. The total energy wi11 therefore be dominated by
the a quadrupole-quadrupole attraction, which dom-
inates the interaction energy of two separated atoms.

( 5—
CD

E
O

1.0—
IJJ

I

QJ

0.5—

I

l
l

l

\

0

l5—

L0—

I

I

'l

\

(c)

5—

0
0 lO

i i I i i

20 30

FIG. 1. The ground-state energies per unit cell of infinite
linear chains of helium (a), carbon (b), and iron (c) are shown
as functions of the internuclear separation for B&2 ——1 (dashed
lines) and 5 (solid lines). The energies are relative to the
isolated-atom values. The unit length is 2.566 & 10

—1/2cm XB I2

The chain-chain interaction may bind matter into
chains even if isolated chains are unbound. The
cohesive energy is estimated to be smaller than 0.5 keV.
However, most physical consequences of such weak
binding are similar to those of no binding. For example,
matter in the crust of neutron stars has to be bound by
at least 3 keV to resist the strong electric field that tries
to tear matter from the surface.

he kinetic, nuclear-electron, direct electron-TABLE II. Ionization and I( -shell energies, and the ine ',
electron, and exchange contributions to the total energy of an iron atom at Bl2 ——1,5. The energies
are given in keV.

B El

0.12
0.25

—7.23
—13~ 86

(Hg )

10.6
19.78

(v„)
—95.4

—181.7

(v„)
direct

32.7
61.3

(v„)
exchange

—3.06
—5.41
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&mv (H, & (U„)
(U„)
direct

(U„)
exchange

TABLE III. The single-particle energies of iron atoms at (a)

B» ——1 and (b) B» ——5, and their various components: kinetic,
nuclear-electron, direct electron-electron, and exchange. The
energies are given in keV.

Z Bi2 0.1 0.5 1.0 5.0

TABLE IV. Absolute values of the ground-state energies of
all atoms through Z =18 at Bi2 ——0. 1, 0.5, 1, and 5. The ener-
gies are given in keV. For the heavier atoms, calculations were
done only for large fields, where the adiabatic assumption is
valid.

0
0
1

1

2
2
3
3
4
4
5
5

6
7
8
9

10
11
12
13
14
15
16
17
18
19

0
0
1

1

2
3
4
5
6
7

9
10
11
12
13
14
15
16
17
18
19
20
21
22
23

0
1

0
1

0
1

0
1

0
1

0
1

0
0
0
0
0
0
0
0
0
0
0
0
0
0

0
1

0
1

0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0

—7.23
—1.38
—3.60
—0.678
—2.36
—0.392
—1.71
—0.241
—1.31
—0.148
—1.04
—0.082
—0.839
—0.692
—0.582
—0.497
—0.430
—0.377
—0.334
—0.298
—0.268
—0.243
—0.219
—0.197
—0.174
—0.142

—13.9
—0.987
—7.23
—0.417
—4.87
—3.62
—2.83
—2.29
—1.89
—1.59
—1.36
—1.17
—1.02
—0.897
—0.795
—0.710
—0.638
—0.578
—0.527
—0.482
—0.443
—0.408
—0.375
—0.342
—0.306
—0.255

(a)

1.79
1.78
0.810
1.01
0.535
0.677
0.399
0.481
0.317
0.347
0.262
0.244
0.227
0.197
0.171
0.151
0.134
0.119
0.107
0.096
0.088
0.080
0.073
0.066
0.059
0.052

(b)

4.24
2.55
2.09
1.43
1.45
1.11
0.901
0.753
0.643
0.558
0.490
0.435
0.389
0.350
0.316
0.288
0.263
0.242
0.223
0.206
0.191
0.177
0.165
0.152
0.139
0.124

B»=1
—12.1

—5.95
—7.30
—4.24
—5.68
—3.42
—4.80
—2.89
—4.23
—2.48
—3.83
—2.12
—3.52
—3.27
—3.07
—2.90
—2.75
—2.62
—2.50
—2.40
—2.31
—2.23
—2.15
—2.08
—2.01
—1.94

B» ——5

—23.9
—8.22

—14.9
—5.97

—1 1.7
—9.99
—8.84
—8.01
—7.36
—6.85
—6.43
—6.07
—5.76
—5.49
—5.25
—5.04
—4.85
—4.68
—4.52
—4.38
—4.25
—4.12
—4.01
—3.89
—3.78
—3.66

3.45
3.06
3.28
2.79
3.14
2.57
3.02
2.36
2.91
2.15
2.81
1.92
2.72
2.64
2.56
2.48
2.40
2.33
2.27
2.20
2.14
2.08
2.03
1.97
1.92
1 ~ 86

6.58
5.08
6.27
4.43
6.03
5.83
5.64
5.47
5.31
5.16
5.02
4.89
4.77
4.64
4.53
4.42
4.31
4.21
4.11
4.02
3.93
3.84
3.76
3.67
3.58
3.48

—0.427
—0.277
—0.387
—0.242
—0.358
—0.216
—0.333
—0.191
—0.312
—0.163
—0.290
—0.128
—0.268
—0.251
—0.238
—0.228
—0.219
—0.211
—0.203
—0.195
—0.187
—0.179
—0.169
—0.157
—0.142
—0.116

—0.809
—0.397
—0.708
—0.302
—0.622
—0.571
—0.535
—0.506
—0.483
—0.463
—0.445
—0.428
—0.414
—0.400
—0.387
—0.375
—0.363
—0.352
—0.341
—0.330
—0.318
—0.305
—0.290
—0.271
—0.246
—0.203

1

2
3
4
5

6
7
8
9

10
11
12
13
14
15
16
17
18

0.0761
0.255
0.516
0.846
1.238
1.678
2.17
2.71
3.36

0.130
0.454
0.944
1.580
2.347
3.22
4.22
5.32
6.51
7.819
9.197

10.72
12.32
14.00
15.79
17.67
19.64
21.72

0.161
0.574
1.209
2.042
3.054
4.20
5.54
7.02
8.63

10.39
12.25
14.23
16.34
18.60
20.95
23.43
26.07
28.82

0.2550
0.9580
2.0760
3.5840
5.4560
7.60

10.20
13.00
16.10
19.57
24.64
27.17
31.35
35.74
40.35
45.22
50.30
55.95

Our interest in this problem was sparked by the can-
fusion over the results of restricted variational calcula-
tions. ' Originally, these calculations predicted large
cohesive energy, but numerical errors were found and
the corrected calculations predicted that chains are un-
bound. However, as Table I shows, even the corrected
calculations underestimate the absolute binding energies
by 5%%uo, which is more than our cohesive energy.

Table III shows the single-particle energies of isolated
iron atoms at 8 &2

——5; also shown are the different com-
ponents of the energies: kinetic, nucleus-electron
Coulomb attraction, direct electron-electron repulsion,
and exchange. Figure 2 shows the single-particle ener-
gies and the Fermi energies of helium, oxygen, and iron
at B&2

——5 as functions of the internuclear spacing.
For completeness, Table IV displays the energies of all

isolated atoms to Z =18 at various field strengths. As
shown in Fig. 3, the energy follows a Z B depen-
dence, in accordance with theoretical studies. ' From

12 0.1 0.5 1.0 5.0

1 —9
10
11
12
13
14
15
16
17
18
26

TABLE V. The number of occupied one-node orbitals in the
ground state of all atoms with Z & 18 and of iron, at various
field strengths.
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0

-0.2 —2.0

—0.4 —4.0

-0.6
CD

E —0.8
0

—l.5

I I I I I I
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j
j /

/

/

I
/ j

/ j

CD

-8.0
0
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I I I ) I

I
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—2.5--

—3.0
0 IO 20 30

(b)
40

-0.8 ——

—1.0
0 IQ 20 30 40

FIG. 2. The Fermi energies (dot-dashed lines) and the single-particle energies of electrons in zero-node states (solid lines), one-
node states (dashed lines), and two-node states (dotted lines), for infinite linear chains of helium (a), carbon (b), and iron (c) and (d).
The energies are shown as functions of the internuclear separation for all occupied orbitals at B~2 =1. Panel (d) is the same as (c),
except that it uses a finer scale, to show clearly the energies of the upper orbitals. The unit of length is as in Fig. 1.

102

(Cl ) B,~= 0. 1

I I I I I I the figure we derive

E ——158 eVXZ B )2 (7.1)

10
CD

0
CU 0J 1 0

CQ

10 I

2
I I I I I I

3 4 5 6 7 8910 20

FIG. 3. The binding energies of isolated atoms in strong
fields are shown as functions of Z for B~2 ——0. 1, 0.5, 1, and 5.
The energies are scaled by B&~, and logarithmic scales are
used to show clearly the Z 'B "dependence.

while in Ref. 19 an approximate bound of —170 keV for
the coeScient was found. This expression holds for
fields that are strong, but not ultrastrong. In Ref. 16 it
is shown that when the magnetic field is very large,
B )2Z Bz, the B dependence is replaced by a loga-
rithmic dependence.

We found that for Z (18 only zero-node (v=o) and
one-node (v= 1) states are occupied. Lists of occupied
one-node states for all atoms up to Z =18 and for iron,
for various field strengths, are presented in Table V.
The calculation breaks down and the Fermi energy in-
creases above zero at very small internuclear spacings, as
a result of the finite number of orbitals included in our
calculations (Sec. VI).

In conclusion, we find that, within the Hartree-Fock
approximation, chains of heavy atoms in strong magnet-
ic fields are unbound. There are, of course, corrections
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that could be applied to refine our results: interelectron
correlations, k dependence in the bands, and interchain
interactions. We have presented arguments above that
any cohesive energy induced by each of these eff'ects are
likely to be very small ( 51% or 1 keV for Fe). While

further refinements in the precision of our calculation
would perhaps be desirable, they are unnecessary to
resolve the nature of the neutron star surfaces, where a
cohesive energy of at least 3 keV per Fe atom is required
to support a solid.
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