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Nonlocal-density approximation for exploring kinetic energy anisotropies
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A general procedure for the extraction of directional kinetic energies and Compton profiles ex-
clusively from tota/ molecular electron densities has been developed within the nonlocal-density
approximation. The estimation of directional kinetic energies and Compton profiles requires the
computation of an average electron density p(r). However, the kinetic energy anisotropy can be
evaluated easily by integrating simple functions of electron density and their partial derivatives.
The procedure has been tested for the H2 molecule, where good agreement is found with the re-
sults obtained directly from the corresponding wave functions.

I. INTRODUCTION

Several studies emphasizing the significance of the ki-
netic energy and its directional components in the
molecular bonding process' have been reported in the
past 25 years or so. In 1962, Ruedenberg' presented ar-
guments to substantiate his claim that chemical bond
formation may be interpreted as a result of the lowering
of kinetic energy, utilizing the "promotional state" of
atoms as a reference. Bader and Preston criticized this
approach for its use of "unreal and imprecisely defined
state of a system. " Alternatively, they introduced an en-
tity termed kinetic energy density K(r) for assessing the
role of kinetic energy T in the bond formation and dis-
cussed its physical meaning,

K(r)= ——,'V p(r)+ —,
' g ~

Vp, (r)
~

/p, (r),

f K(r)dr=T,

where the electron density p(r) has been expressed in
terms of natural orbitals I P;(r) I
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where n is the number of orbitals, D the orbital density
matrix (not necessarily a unit matrix due to nonortho-
gonality of the orbitals involved), and t = ——,'V . They
concluded, using Hz as a test case, that T'" plays a cru-
cial role in bonding. More recently, Rama Rao and
Chandra" examined the bond formation in the weakly
bound excited states of HeH+, and vindicated the state-
ment by Hurley that the behavior of kinetic energy pro-
vides a touchstone for the formation of a molecule.

The momentum space offers a more natural ground
for the study of the kinetic energy, since the latter is
simply the second moment of the electron momentum
density y(p):

instead of the most general expression

p(r) = g (5(r —r, ) ), (4)

X being the number of electrons. They compared the
cases of H2 and He2 focusing on the role played by the
kinetic energy during the bond formation. Further stud-
ies in this direction were taken up by Wilson and God-
dard who christened the nonclassical part of the kinetic
energy as the exchange kinetic energy T":

Coulson, in his pioneering works, presented a
comprehensive study of the chemical bond in momen-
tum space. He showed that the electron is more likely
to move perpendicular to the bond axis with higher ve-
locities. Though this conclusion was reached by simple
molecular orbital (MO) —and valence-band (VB)—
theoretical considerations, its generality has been verified
through numerous studies employing more elaborate
computations. Some exceptions to this general observa-
tion have recently been noticed by Rawlings and
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Davidson who pointed out that the reverse may be the
case for o. bonds based on p orbitals. A series of sys-
tematic investigations on kinetic energy anisotropies has
been carried out by Thakkar, Koga, and co-workers. '

Koga et al. studied the connection between the
momentum-space anisotropy and bond polarity for dia-
tomics. Sharma and Thakkar analyzed kinetic energy
anisotropies in first- and second-row diatomic hydrides
and found that nonbonding w orbitals give a large con-
tribution to the anisotropy. A further systematic investi-
gation on kinetic energy anisotropy was recently report-
ed by Thakkar, Sharrna, and Koga for the first-row ox-
ides, fluorides, and homonuclear diatomics. They
presented detailed tables of orbitalwise breakup of the
kinetic energy anisotropy parameter a = ( T, —T ) /T.
(In the present work, T, and T denote the parallel and
perpendicular components to the bonds axis, respective-
ly, and hence the total kinetic energy T is 2T +T, .)
However, they failed to find definite correlations between
a and some familiar molecular properties except for an
empirical relation between a and the difference of the
numbers of p and p electrons.

Surprisingly, very few direct attempts have been re-
ported for establishing links between the electron densi-
ties in position and momentum spaces, although the
Hohenberg-Kohn theorem guarantees that the ground-
state momentum density is a functional of the corre-
sponding position density. Some earlier works used an
approach inspired by the semiclassical phase-space con-
siderations. Such an approach leads to a reasonably
good estimation of gross properties in the conjugate
space. However, it suffers from some important draw-
backs. (i) The momentum density thus obtained has a
singularity at low momentum value as well as a wrong
long-range behavior. (ii) This procedure yields only
spherically averaged momentum density, viz. ,
y'(p)=(1/&n) fy(p)dip. The former defect has been
remedied by "grafting" the Fourier transform of the
square-root of the position density onto the semiclassical
momentum density, though it is useful only for spheri-
cally symmetric or averaged distributions. Despite these
shortcomings, the advantage of the semiclassical ap-
proach is that it assumes the knowledge of the electron
density only. Other approaches' proceed via the
Fourier transformation of the Kohn-Sham (KS) orbitals.

A novel attempt for the density-functional calculation
of Compton profiles of atoms and molecules was recently
reported by Parr, Rupnik, and Ghosh. " They intro-
duced a phase-space distribution function f (r, p) which
yields a given p(r) as well as the correct kinetic energy
density t(r, p), and obtained its explicit form via the en-

tropy maximization as

f (r, p)=exp[ —a(r) —P(r)p /2] . (7)

Orbitalwise densities and an assumed form for kinetic

They further introduced a concept of local temperature
T(r) defined in analogy with the ideal-gas expression for
kinetic energy by

p(r3)kT(r) =t(r,p) .

energy density were additionally utilized to construct the
directional and spherically averaged Compton profiles.
They obtained good agreement with the direct results
from the Hartree-Fock (HF) wave function (from which
the density data were derived). The momentum density
extracted from Eq. (7) showed an incorrect asymptotic
decay as was the case with the semiclassical method.
Nevertheless, the work of Parr et a/. represents a bold
attempt for the construction of directional Cornpton
profiles from the position density.

The aim of the present work is to employ a purely
density functional model for the determination of kinetic
energy anisotropies. The approach presented here
demands only the knowledge of total electron densities
of atoms or molecules (or solids). No reference to either
HF or KS orbitals is made. The background for the
present study is provided by the recent application' of
the nonlocal-density approximation' ' (NLDA) to
atomic systems, as outlined in the next section. In Sec.
III the theory of kinetic energy anisotropies is presented
within the NLDA. A special case for two-electron sys-
tems is also discussed and tested for the Hz molecule
(Sec. IV) followed by concluding remarks (Sec. V).
Atomic units are used throughout this paper.

II. NONLOCAL-DENSITY APPROXIMATION

In what follows, 4'( [ r; ] ) and P( [ p; ] ) denote, respec-
tively, the many-electron wave functions in position and
momentum spaces. The corresponding first-order re-
duced density matrices are designated by I (r r') and
I (p

~

p') and the one-electron densities by p(r) and y(p).
The first-order reduced density matrix in position

space may be written as' '
I (r

~

r')=[p(r)p(r')]' G(r, r'),
where G (r, r') satisfies the condition that

(9)

G(r, r')=1 . (10)

Note that this factorization of I (r
~

r') [Eq. (9)] is exact
apart from the problem of the determination of explicit
form of G(r, r'). A determination of G(r, r') is possible
by expanding 1 (r

~

r') and p(r) in terms of plane
waves' ' which leads to

I (r, r'
~
r, r')=p(r)p(r') ——,'I (r

~

r')I (r'
~

r),
and used the definition [analogous to Eq. (9)],

I'2'(r, r'
~

r, r') =p(r)p(r')[1+C„(r, r')],

(12)

(13)

C„(r,r') being the correlation factor, known for the case
of a homogeneous electron gas,

6 (r, r') = 3ji(y)/y,
where j„(y) is the spherical Bessel function and

y =[3m'p(r)]'~
~

r —r'
~

Another approach to connect I (r
~

r') and p(r) was
developed by Alonso and Girifalco' who wrote the spin-
less second-order density matrix within HF theory as
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C„(r,r')= —
—,'[j,(y)/y]' . (14) turn densities. B (R) is defined as

Thus, the relation between C and G is furnished [by
comparison of Eqs. (11) and (14)] by

G (r, r') = [ —2C„(r,r') )
'~

Relations (9) and (13) with appropriate substitution of G
and C from Eqs. (11) and (14), respectively, form the
basis of the local-density approximation (LDA). Here it
is assumed that the above treatment can be extrapolated
to the inhomogeneous electron gas. However, such a
choice leads to greatly overestimated values for the ki-
netic energy, viz. ,

B(R)= f I (r~r+R)dr, (22)

which can be constructed, within the NLDA, via Eqs.
(9) and (11). Thakkar et al. ' have shown that

(pJ ) = B"(—O, O, Z)
i 2 0, (23)

where the prime means differentiation with respect to Z.
Equations (22) and (23) along with the NLDA provides a
solution for the kinetic energy anisotropy. From Eqs.
(22), (9), and (11), one obtains

B (O, O, Z) =3 f [p(x,y, z)p(z, y, z +Z)]'~2

~[p]= ~w[p]+ ~o[p] (16)
&& [J,(y ) /y ]dr, (24)

~w[p]= —f [ l
Jp(r)

I
'/p(r)]«

and To the Thomas-Fermi contribution,

To[p]= 3, (3m )
~ f [p(r)]'~ dr .

(17)

(18)

where T~ is the well-known gradient or Weizsa. cker
term, where y =Z[3~ p(x, y, z)]' . Now employing the Leib-

nitz rule for successive differentiation, one obtains

B"(O,O, Z)=3 f [p(x,y, z)]' [a "b +2a'b'+ab" ]dr,

(25)

where
Yet another serious drawback of the LDA is that it de-
scribes the exchange charge density incorrectly. This
has been rectified' by Alonso and Girifalco and Gun-
narsson et al. by the introduction "average" density,
p(r), which satisfies the normalization of the exchange
electron density,

a =[p(x,y, z +Z)]'~, b =j&(y )/y .

It can be readily found that for the limit of Z =0,

a=[p(r)]' ',
a'=-,'[p(r) '~ ][~3P(r)/Bz],

(26)

(27)

p r' C'" r, r' dr'= —1,
where, analogous to Eq. (14),

(19) a"=——,'p [~lp(r)/Bz] +( —,')p '~ [8 p(r)/Bz ], (28)

C'-"(r r') = ——'[J i(y )/y]', (20)

III. KINETIC ENERGY ANISOTROPIES
AND NONLOCAL-DENSITY APPROXIMATION

A. Formalism

As noted above, the autocorrelation function provides
a crucial connection between the position and momen-

with y =
~

r —r'
~

[3m p(r)]' . Equations (19) and (20)
with the above definitions of y constitute the basis of the
nonlocal-density approximation (NLDA). The kinetic
energy within this approximation estimated from atomic
HF electron densities turns out to be comparable to the
corresponding true one, ' ' and is given by

T[p]= —,
' f [ ~

Vp
~

/p]dr+ —,', f [(3' p) p]dr . (21)

Gadre and Chakravorty' employed Eqs. (19) and (20)
and estimated p for some atoms only from the given
electron densities, in contrast to earlier treatments'
where the pointwise kinetic energy density t(r) was also
required. They' developed within the NLDA and algo-
rithm for the computation of the autocorrelation func-
tion B(r), which is known to be useful for analyzing
Compton profiles and provides a link between position
and momentum spaces, and used it to extract spherically
symmetric momentum densities and Compton profiles
from the given p(r) alone

b'=0,
b"= —

—,', [3m. p(r)] ~

Combination of Eqs. (23), (25), and (27) —(30) yields

(p, /2) = —,', f p(r)[3' p(r)) ~ dr

+ —,
' f [Bp(r)/Bz] /p(r)dr

—
—,
' f [i3 p(r)/Bz ]dr .

(29)

(30)

(31)

This equation provides an approximate method for com-
putation of directional kinetic energy and is valid for
molecules and solids as well. The last term on the
right-hand side (rhs) vanishes for atoms and molecules
for which 5 and il p/i3z ~0 as

~

r
~

~ ao. The estimates
of (p„/2) and (p /2) may be similarly obtained by
substituting x and y, respectively, in Eq. (31). The most
interesting aspect of Eq. (31) is that the directional kinet-
ic energies are made up of two parts: a Weizsacker-like
anisotropic term and a Thomas-Fermi —like isotropic
term. In general, an estimation of the kinetic energy
components requires the determination of the average
electron density p via the normalization of the exchange
electron density [see Eq. (19)]. However, the kinetic en-

ergy anisotropy, defined by AT=T, —T, can be ap-
proximated by using only the knowledge of p(r); the cal-
culation of p(r) is no longer needed. From the experi-
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ence on atomic systems, it is hoped that the total kinetic
energies are predictable within the NLDA with a typical
error of about 3%. The relative contributions of the
Thomas-Fermi —like and Weizsacker-like terms are typi-
cally 40% and 60% for atoms (4&Z & 10). These trends
are expected to be retained v ithin the NLDA estimation
of kinetic energy anisotropies as well. In this section,
the autocorrelation function has been employed as a con-
necting link between the kinetic energy anisotropy and
electron density in position space. However, the entire
algebra could be transcribed in terms of I (r

~

r') as given
by Eqs. (9) and (11), leading to the same results.

B. Anisotropic kinetic energy densities, rigorous
inequalities, and simplification for two-electron

systems

It has been shown in Sec. IIIA that the kinetic energy
components are made up, within the NLDA, of two

parts: an isotropic one and a directional one. The cor-
responding directional kinetic energy densities are fur-
nished by

t,' = —,'„[3~'p(r)]' 'p(r) (32a)

and

t,'= —,'[(Bp/Bz) /p] —
—,'(t) p/Bz'),

such that

(32b)

t,' r +t,' r dr=T, , (32c)

where the superscripts i and a stand, respectively, for
isotropic and anisotropic terms. The second derivative
term in Eq. (32b), on integration, does not contribute to
T, for atoms and molecules (see Sec. III A).

A rigorous inequality can be derived on the direction-
al kinetic energy density. Starting with the definition

~

t)p/c)z
~

=N lt*(r, r2, . . . , r~)g(r, rz, . . . , rz)dr2 . dr~.
Bz

=4N f 2
g'(r, r2, . . . , rv )[Bg(r, rz, . . . , r~)/Bz]dr& dr~ (33)

and employing the Cauchy-Schwarz inequality for the
rhs, one obtains

for such systems, the z component of the kinetic energy
is estimated by

(34) T, =-,' f [(ap/az)'/p]dr ,' f (c) p/—Bz—)dr . (37)

where

t, (r) =(N/2) f ~

Bg(r, rz, . . . , r~-)/c)z

X d r2dr3 dr&. (35)

(36)

is the "true" kinetic energy density. Similar results can
be obtained for the x and y components of the kinetic
energy density. Addition of these results, followed by in-
tegration, leads to the well-known result derived by the
Hoffmann-Ostenhofs ' that

The second term on the rhs of Eq. (37) vanishes for
atoms and molecules. It may be noted here that Eq. (37)
(along with its x and y analogues) offers an exact treat-
ment' for two-electron systems within the molecular or-
bital (MO) framework.

A general formalism for the estimation of kinetic ener-
gy anisotropies has so far been presented. The method is
general and could be applied to molecules as well as
solids. Detailed studies of this type are possible for
larger systems. However, a benchmark test of such a
formalism is offered by the Hz molecule. This shall be
presented in Sec. IV.

where T is the true (total) kinetic energy. What has
been shown in the present work is that cornponentwise
bounds to kinetic energy, e.g. , T, ) ( —,

'
) f [(c)p/Bz) /p]dr

as well as pointwise bound to directional kinetic energy
densities, expressed by Eq. (34), do as well exist.

Further simplification in this treatment is possible for
two-electron systems wherein a particular solution to Eq.
(19) is provided by the choice p(r)=0 for all r. Hence,

IV. KINETIC ENERGY ANISOTROPIKS
FOR THE Hg MOLECULE

The NLDA method for two electron has been put to a
test for the Hz molecule. Since the formulation is exact
for the ground states of two-electron systems within MO
theory, it was examined using the densities computed
within three different models that go beyond the simple
MO framework

A. Weinbaum density (Ref. &7)

p(r) = [(1+2cS+c )(p, +pt, )+2[2c +S(1+c )p, pb]] /[(1+c )(1+S )+4cS], (38)
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FICJ. 1. Contours of the directional kinetic energy densities (a) [(Bp/Bz) /p] and (b) [(Bp/Bx) /p] for the Hz molecule within
the Weinbaum model. See text for details. Successive contour values (starting from the innermost contour) are 2 a.u. for
m =0, 1,2, . . . , 8.

where P, and Pb are hydrogenic Is atomic orbitals
(AO s) with exponent g, c is the weight of the ionic term,
and S is the overlap of the AO's. The values (in a.u. ) of
the parameters employed were R =1.42, /=1. 193, and
c =0.256. The values of the kinetic energy densities
[(Bp/Bz) /p] and [(Bp/Bx) /p J were generated from
p(r) given by Eq. (38). Figure 1 displays the contours of
these two entities in the positive quadrant of the xz
plane (the nuclei are assumed to be located on the z
axis). A remarkable fact is revealed by a comparison of
these two contour maps, viz. , the electron density accu-
mulated in the internuclear region makes very small con-
tribution to T„but contributes significantly to T . The
contributions of this region towards T, and T are 0.012
and 0.226 a.u. , respectively, the corresponding "exonu-
clear" values being 0.263 and 0.202, bringing out slow
variation of p(r) with respect to z in the internuclear re-
gion. This is yet another way of visualizing Coulson's
momentum space picture of bond formation referred to
in Sec. I. For a comparison, a contour diagram of
[(Bp/Bx) /p] when an H atom is placed at the nuclear
position on positive z axis is depicted in Fig. 2. It may
be noticed here that the x component of the molecular
kinetic energy density (Fig. 1) shows a close resemblance
to Fig. 2. The z component for H atom is obtainable by
a 90' rotation of Fig. 2. This component is markedly
different from the corresponding molecular one (see Fig.
1) which is a reflection of the lowering of the parallel
component upon bond formation stressed in the earlier
literature. ' The results of total contributions to T,
and T along with the respective true values computed
directly from the respective wave functions are shown in
Table I. It may be noticed from this table that the com-
ponents T, and T„are underestimated within NLDA by
about 5%%uo and 0.2%%uo, respectively, when compared to
their true values in conformity with the bounds dis-
cussed in Sec. III B. The relative error in T, —T value
predicted by the NLDA is about 11%. What is indeed
remarkable is that 89% of the total kinetic energy an-

isotropy for the Hz molecule is picked by the simple
method offered in the present work. The total kinetic
energy is underestimated by about 1.6% by the present
approach in accordance with the bound (36) due to the
Hoffmann-Ostenhofs. '

B. Wang density (Ref. 18)

This is also a valence-bond model slightly inferior to
the Weinbaum one in that the ionic terms in the latter
are absent here. Thus, Eq. (38) holds good here as well
with the choice c =0. The optimized values of the orbit-
al exponent and R are 1.1661 and 1.414, respectively.
Contour plots of the kinetic energy density components

2. 0

1 5

1.0

0. 5

0. 5 l. 0

z(a. u. )

1.5 2. 0

FIG. 2. Contours of [(Bp/Bx) /p] for the hydrogen atom,
centered at the nucleus on the positive z axis. See text for de-

tails. Successive contour values, starting from the innermost,
are 2 a.u. for m =0, 1,2, . . . , 8.
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TABLE I. The directional and total kinetic energies, T„T, T = T, +2T„, and the kinetic energy
anisotropies AT = T, —T„ for the H2 molecule within the NLDA along with the corresponding wave-
function counterparts (all values in hartrees a.u. ).

Density NLDA True NLDA True

—AT
NLDA True NLDA True

Wang'
Weinbaum'

Stewart

0.269
0.275
0.283

0.306
0.291

0.414
0.428
0.426

0.417
0.429

0.145
0.153
0.144

0.111
0.138

1.097
1.131
1.136

1.140
1.149
1.174

'Using the optimized equilibrium values for the VB-type wave functions with and without ionic con-
tributions from Refs. 17 and 18. See text for details.
Employing the electron density from Ref. 19. See text for further details.

show features similar to those exhibited by Fig. 1. The
typical errors in T„T,, and T (as predicted by the
NLDA turn out to be about 12%%uo, 0.7%, and 0.4%, re-
spectively (see Table I).

C. Stewart-Davidson-Simpson density (Ref. 19)

p(r)=(1/2n)(2/R) exp( —ag) g ak/g r)
k,j

(39)

This density has been obtained by some rearrangement
of an earlier natural spin-orbital expansion due to
Davidson and Jones. Here, g and q are the usual con-
focal elliptical coordinates. The results of our NLDA
calculations are displayed in Table I. However, no
wave-function counterparts were found in the literature
for a direct comparison. The total kinetic energy is un-
derestimated here by about 3.2%%uo. The features exhibit-
ed by Fig. 1 are also shared by this sophisticated density.

The most elaborate (and accurate) electron density ex-
amined in the present work is due to Stewart et al. ' and
bears the form

D. Repulsive state

We present here, for a comparison, the plots of the
NLDA directional kinetic energy densities for the repul-
sive X+ state, within the Wang model, in Fig. 3. Op-
timal parameter values used here are R =1.414 and
(=0.9353. It may be seen that there is a sizable contri-
bution to T, from the internuclear region, though the x
component does not differ from that for the singlet
bonding state within the Wang model (see Fig. 1). How-
ever, the NLDA formalism cannot be directly applied to
this case since Eqs. (11) and (12) are derived under the
assumption of doubly occupied HF orbitals. Though the
modification of the theory is not difficult in the present
case, we omit the discussion and numerical results. Nev-
ertheless, the comparison of Figs. 1 —3 brings out the
significant difference of the z component for the attrac-
tive and repulsive states.

V. SUMMARY AND CONCLUDING REMARKS

In the present work, the nonlocal-density approxima-
tion has been employed for estimating the kinetic energy

2. 0 2. 0

1 5" 1.5 ~

1 0 .

0. 5-- 0. 5

0. 5 1.0

z(a. u. )

(o)

2. 0 0. 5 1.0
z(a. u. )

1.5

FICx. 3. Contours of (a) [(Bp/Bz) /p] and (b) [(Bp/Bx) /p] for the repulsive triplet state of the Hq molecule within the Wang
model (refer to text). Contour values are as in Figs. 1 and 2.
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anisotropies. The crucial link between the position and
momentum spaces is provided here by the autocorrela-
tion function B(r). Directional kinetic energy T, within
the NLDA has two ingredients: an isotropic one, viz. ,

—,', (3m. ) f [p(r)] 'p(r)dr,

and an anisotropic one, viz. ,

—,
' f [(tip/Bz) /p]dr ——,

' f (t) p/t)z )dr .

Any directional kinetic energy could thus be estimated
by suitable three-dimensional numerical integrations in-
cluding those required for the computation of p(r). A
particularly pleasing situation arises for two-electron sys-
tems, for which p(r)=0, assuring the exactness of the
NLDA within MO framework. Pointwise bounds to
t, (r) as well as to its integral T, have been rigorously de-
rived in the present work. A numerical investigation of
the formalism for the case of H2 molecules employing
densities outside the realm of MO theory reveals that it
can predict the directional kinetic energies as well as the
anisotropies fairly well. Further considerations on the
correlation hole are expected to improve the results.
The plots of [(t)p/Bz) /p] and [(t)p/t)x) /p] bring out
the regionwise contributions to T, and T are assured to
be at least equal to those predicted by the NLDA.

The highlight of the present work for X-electron sys-
tems is that the kinetic energy anisotropy AT = T, —T
can be predicted by numerical quadrature of the simple
functions of the electron density and its partial deriva-
tives: the evaluation of p(r) is not required. For isolat-
ed molecules, the second derivative term does not con-
tribute, while for solids it does. Thus, the electron den-
sity maps obtained by x-ray methods could be utilized
for a calculation of the kinetic energy anisotropies. In

fact, the entire autocorrelation function B(r) can be
determined from an experimental p(r) map. This indeed
represents a significant development, since, the Compton
profile which can be measured directly via the x-ray, g-
ray, and synchrotron-radiation scattering experiments, is
simply the Fourier transform of B (r).

The treatment outlined in this paper does not require
the knowledge of orbitalwise densities. Also, the elec-
tron momentum densities extracted from p(r) within the
NLDA are guaranteed to show proper limiting
(

~ p ~

~0) as well as asymptotic behavior due to the in-
clusion of the %eizsacker term. Such proper behavior is
shown neither by the Parr approach" nor by the earlier
semiclassical treatments. The formalism developed in
the present work can be used in the reverse direction as
well, enabling an estimation of diamagnetic anisotropy
susceptibilities (yet another experimentally measurable
quantity) from three-dimensional B (r ) or momentum
density maps. The NLDA approach, with correlation
hole conditions grafted on, if required, thus seems to
offer an interconnection between the electron densities in
position and momentum spaces.
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