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Path integrals in multiply connected spaces and the fractional angular momentum quantization
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The homotopy theory of path integrals in two-dimensional multiply connected spaces is used to
reexamine the wave function and angular momentum of a charged particle on a circle in various
configurations. A topological phase factor arising from the nontrivial representation of the funda-
mental group leads to the fractional angular momentum quantization.

I. INTRODUCTION

Homotopy theory is a powerful tool for the study of
path integrals in multiply connected spaces. ' The use
of homotopy theory gives rise to a multivalued function
defined over the group manifold which is characteristic
to the system in question. ' A simple model yielding the
concept of spin is the spherical top, whose group mani-
fold M is of SO(3). It has been shown that the manifold
M is doubly connected. The associated classical paths
fall into two homotopy classes corresponding to the in-
tegral and half-integral spins which are consistent with
the result from the Lie algebra of SO(3).

For the rotation group SO(2) in two dimensions
parametrized by the angle of rotation P, the group mani-
fold M consists of the points on a circle, i.e., a one-
dimensional sphere S which is, however, infinitely con-
nected. The fractional angular momentum (spin) natu-
rally appears if the nontrivial representation of the fun-
damental group of M, which is responsible for a mul-
tivalued wave function, is considered.

The possibility of fractional angular momentum in
two-space has been proposed in a different context.
However, the idea of the fractional angular momentum
for a system consisting of an electric charge and an
impenetrable, current-carrying solenoid gives rise to
much controversy. Jackiw and Redlich have pointed
out that there is a difference between the kinetic angular
momentum and the canonical angular momentum when-
ever velocity-dependent forces apply. The generator of
rotation is the canonical angular momentum prescribed

by Noether's theorem as a conserved quantity. The
canonical angular momentum has conventional discrete
eigenvalues if the requirement of single valuedness is im-
posed on the wave function. Therefore, Aux-dependent
eigenvalues of the kinetic angular momentum do not
lead to the fractional angular momentum quantization.
It has also been pointed out that the difference between
the kinetic and the canonical angular momenta cannot
be removed by a so-called singular gauge transformation,
because such a transformation changes the magnetic
field.

We fully agree with Jackiw and Redlich that the gen-
erator of rotation should be the canonical angular
momentum. Now let us consider quantization of the
canonical angular momentum itself. The SO(2) group

does not give a unique definition for the angular momen-
tum; one may add any arbitrary constant to the angular
momentum eigenvalues. Equivalently, an arbitrary an-
gular phase can be added to the wave function. Nei-
ther completeness of angular momentum eigenfunctions
nor hermiticity of operators is able to eliminate an arbi-
trary common phase of all the eigenfunctions which
would shift all eigenvalues of the angular momentum by
an equal amount. We show in the present paper that
the angular phase factor of wave functions is equivalent
to the nontrivial representation of the fundamental
group in the homotopy theory of path integrals. The
phase factor is indeed well defined according to the sym-
metry of a system under consideration and is physically
meaningful.

In Sec. II, the homotopy theory of path integrals in
two-dimensional multiply connected space is briefly re-
viewed. A method to determine the one-dimensional,
unitary representation of the fundamental group is
given. In Secs. III—V, the wave functions and angular
momentum eigenvalues of a charged particle on a circle
in various configurations are obtained to illustrate our
theory.

II. PATH INTKGRALS
IN MULTIPLY CONNECTED SPACES

The space of our interest M is a plane E. minus a disc

M=A (2.1)

D rt exp I. d~L r~;r~; ~ (2.2)

where L is the classical Lagrangian and A=c= I
throughout. For a free motion

L= r
2

(2.3)

p being the mass of the particle.
The propagator on the covering space of M, denoted

by M*, is well defined. In our case M* is similar to the
Riemann sheets in a complex plane. In the original

The propagator for a particle moving from r'(t') to
r"(t") is given by the path integral expression

IC (r",t";r', t')
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space M the propagator is a linear combination of cover-
ing space propagators, ' '"
K(r ', t ', r, t )= a (f„)K„(r",t",r', t'), (2.4)

where K„, which belongs to the nth homotopy class
I „(r",r'), is the sum over paths which loop around the
disc (n —1) times for n~ 1 (negative n for clockwise
loops). A third class is formed by attaching the heads of
paths in one class to the tails of those in the other.
There is a group structure with this operation and the
group is called the fundamental group' of M denoted by
F The . coefficient a (f„) in Eq. (2.4) should be a one-
dimensional unitary representation of the fundamental
group F,

'a(f„)
~

=1, a(f„)a(f )=a(f„f ) (2.5)

where f„,f EF. In our case F is a discrete group and

a(f„)=exp( —in6) . (2.6)

The arbitrary parameter (but with 0 & 5 & 27r ) is indepen-
dent of r and the winding numbers. There are two re-
sults directly obtained from Eqs. (2.4) —(2.6).

(1) The nontrivial representation (6~0) of the funda-
mental group F results in the multivalued propagator as
well as the wave function. " The proof" is trivial. Ac-
cording to the definition of the winding number, in cy-
lindrical coordinates we have

Using Eq. (2.7) it is easy to show that the propagator as
well as the wave function satisfies the Bloch condition

=exp(i6)K(r", P",t";r', P', t') . (2.8)

(2) The representation reduces to the trivial one (6=0)
if for any line through the center of disc 6 there are
symmetric relations as

K„(ro, t";r', t')=K „&(+r t"O;r', t') . (2.9)

ro and r lie on opposite sides of the disc along the line.
In the cylindrical coordinates, one has that Po —P' = —a,
where $0 and P' are the polar angles of ro and r', respec-
tively.

The proof is also very simple. The propagator can be
written as

K (ro, t";r', t') = g exp[ i ( n+ 1)—6]K—

(2.10)

by changing the index of summation. Replacing K „+&

by K, we obtain an alternative form

K = g a'(f„)K„ (2. 11)

K„(r",P"+2~, t",r', P', t') =K„,(r",P",t";r', P', t') .

(2.7)

a'(f„)=exp[ —i ( —n + 1)6] . (2. 12)

a'(f„) should also be a representation of the fundamen-
tal group. According to the properties of (2.5), we must
have the relation

5 =2Nn, (2.14)

where N is an integer or zero. Since 0(6 (2~, the only
one possibility is 5=0. There is a simple physical argu-
ment" leading to the condition (2.9). If one considers
the diffraction pattern resulting from scattering of a free
particle by the impenetrable obstacle 6, the pattern
should be symmetric with respect to the line ro —r'.
Here we may suppose that the source of particles is lo-
cated at r'.

If a system does not have the symmetric relations
(2.9), then 5 does not have to be zero. The nontrivial
representation may be considered. A physical example
that shows the violation of condition (2.9) is the
Aharonov-Bohm interference, ' ' the pattern of which
is no longer symmetric with respect to the line ro —r'.
The interference fringes shift from the line of symmetry
due to the presence of an inaccessible magnetic Aux. '

The nonzero phase parameter 5 was first used by
Schulman in the literature. ' In the present paper we
show that the phase parameter can be determined only
by the symmetry of space, if the propagator K„can be
evaluated exactly in a moving coordinate frame which
moves along with particle in classical sense. ' For a
quadratic Lagrangian the propagator can be evaluated
directly from the classical action. ' '' The calculation to
determine 6 using the method developed in this paper
may be simple.

III. ANGULAR MOMENTUM AND WAVE FUNCTION
OF A PARTICLE ON A CIRCLE

Let us consider an electron confined on a circle with
radius R which is the simplest example suited to discuss
quantum mechanics in two-dimensional, multiply con-
nected spaces.

The Lagrangian for the electron is

(3.1)

where 0 & P &2' and I =pR . The propagator is

K(P",t",P', t')= g exp( —in6)K„(P",t";P', t') .

(3.2)

K„(P",t ";P', t') can be lifted to the propagator in cov-
ering space M*, which is a line in our case. The rela-
tions between two end points (P",P') of paths in M and
end points (P ",P ') in M* are

exp[ i—( n—+ 1)6—i ( —m + 1)6]

=exp[ —i [—(n +m)+ l]6], (2.13)

for any n and m. Therefore,

where P '„'=P"+2nw,
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and

K„(P",t";P', t') =K(P '„', t";P ', t'), (3.3)

BS,
e xp[iS, ((P „",t";P', t')] .2' (3.4)

Using the Lagrangian (3.1) one obtains the propagator
from (3.4)

1/2

K(P '„', t";P ', t') = I
2&l T exp (b,P„) (3.5)

where T =t"—t' and b.P„=P „"—P '. The propagator
belonging to the nth homotopy class in M then is

1/2

K„(P",t";P', t') = I
27Tl T

iI
exp (P+2n 7r)

2T

where —oo &p & oo and K is a one-dimensional free-
particle propagator in M*. For a quadratic Lagrangian,
the propagator can be evaluated from the classical action
S, via the Van Vleck-Plauli formula, ' '
K(P „",t";P ', t')

En this example the angular momentum is quantized in
standard manner and the energy eigenfunctions of angu-
lar momentum are single valued.

Schulman' has made a generalization of the results
(3.8) and (3.11) including the nonzero phase parameter 6.
To make a possible interpretation of the nonzero phase,
let us suppose that the ring is rotating about the axis
with angular velocity co. In a coordinate frame, which
rotates with the ring, ' the angle and the angular veloci-
ty are given by

p=$ cot, p—=p —co .

The Lagrangian then is

2

L = —(p+co) = —p +Icop+
2 2 2

(3.12)

(3.13)

I
27Tl T

iI
exp (/3+ 2n ~)

2T

The propagator belonging to the nth homotopy class in
the rotating coordinate frame is obtained from (3.6) by
the transformation p=p+~T,

]. /2

(3.6) +i y(P+2nsr)+i T
2I

(3.14)

with P =P"—P' and P') P")0.
Now we determine the phase parameter 5 according

to the symmetry of the propagator. For any line
(r' —r") through the center of the circle we have

(3.7)

The substitution of P= —vr into Eq. (3.6) yields that
K„=K „+1, namely, the condition (2.9) is satisfied.
Therefore, 6 should be zero.

The total propagator (3.2) becomes

where p=p" —p', p=p" —p', T =t" t', and @=I'—o.
For P= vr one—finds that

K „+i
——K„exp[ —i 2y(2n —1)w] . (3.1 5)

6=2~r . (3.16)

The propagator is no longer symmetric. Following the
same procedure as that of (2.10)—(2.13), one obtains the
nontri vial phase

K (P",t";P', t')

I
277l T

where

1/2

(3.8)

Thus the total propagator can be expressed as
1/2I

l 27TT

(3.17)

e3(z,y) —= g exp(imyn +i 2nz) (3.9)
In much the same fashion that (3.11) results from (3.8)
via (3.10), the wave function and the energy spectrum
for (3.13) follow from (3.17);

is the Jacobi e function. On the other hand, the propa-
gator can be written as a sum over energy eigenstates ac-
cording to the conventional quantum mechanics,
K (P",t";P', t')

1
exp(imp+i) P)~27r

(3.18)

(P")P* (P')exp[ iE (t"—t')] . —(3.10)
E = (rn +y)

1 m—exp(im P), E
&2m- 2I (3.1 1)

By virtue of Jacobi's transformation,

ei(z,y)=( —iy) ' exp(z li my)e3(zly, —I/y),
the propagator (3.8) can be reduced to the form (3.10)
with

Our results are straightforward. The two systems, (3.1)
and (3.13), are different only by a constant angular veloc-
ity cu. Classically, the equations of motion for the two
systems are the same in form, but their angular momen-
ta differ by r. In quantum mechanics the two systems
are described by the same Schrodinger equation with
different boundary conditions. The shifts of the angular
momenta and of the kinetic energies are the same as the
classical results. In other words, the correspondence
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Let us suppose there is a flux line, +=+NO, coinciding
with axis of the ring. Here No ——1/e is the fundamental
fluxon and 0(a & 1. The Lagrangian is

L= —P +a/.
2

(4.1)

Since the magnetic flux is time independent, the vector
potential established by the inaccessible magnetic flux
cannot change the angular velocity of the electron classi-
cally.

The propagator can be evaluated by changing the
variable,

(4.2)

and

2

L= —0
2 2I

(4.3)

Lifting to the covering space M*, the propagator be-
longing to the paths of the nth homotopy class is

principle is satisfied.
Notice that the angle P is defined in the region

0& /(2n and the multivalued phase parameter is com-
mon for all eigenfunctions. An orthonormal basis, even
though multiplied by a common multivalued phase fac-
tor, satisfies the orthogonality relation and the complete-
ness condition. From the physical point of view, noth-
ing is wrong with the multivalued wave functions.

IV. ANGULAR MOMENTUM SPECTRUM
OF AN ELECTRON ON A RING IN THE PRESENCE

OF LONG-RANGE MAGNETIC FLUX

5 =2~a. . (4.8)

The total propagator,

K =K exp(iaP), (4.9)

is then multivalued. Here K is the propagator (3.8).
The corresponding eigenfunctions of angular momentum
and eigenvalues of energy are

1—exp[i(m +a)P],
&2ir

(4.10)

E
2I

(4. 1 1)

The eigenvalues of canonical angular momentum are
shifted by a fractional number 0.. However, the kinetic
angular momentum is not changed by the inaccessible
time-independent magnetic flux, because there is no
torque applied to the electron. In the literature the vec-
tor potential of the inaccessible magnetic flux is formally
removed from the Hamiltonian by the singular gauge
transformation' in order to reject the Aharonov-Bohm
(AB) effect. However, the wave functions become mul-
tivalued (4.10) in the new gauge. The multivalued wave
functions (4.10) which incur a phase change under a ro-
tation around the magnetic flux naturally cause the AB
interference. It has been pointed out that an AB in-
terference experiment, which can be used to test the ex-
istence of fractional angular momentum, is easily inter-
preted with the topological phase factor defined on a cir-
cle, that is, the group manifold of SO(2). ' The AB
e8'ect is also studied with path integration by deducing
winding number contributions, where the Aux-dependent
phase is included in each winding propagator.

K(8'„',t";8', t')
t 1/2I lI (~e )2

la T
2~i T 2T " 2I

(4.4)

V. ANGULAR MOMENTUM EIGENVALUES
OF THE ELECTRON IN THE PRESENCE
OF LONG-RANGE, TIME-DEPENDENT

MAGNETIC FLUX

I
27Tl T

1/2
iI a

exp P+ —T +2nn
2T I

2
lA T
2T

where b,e„=B„"—e '. In the original variable P,

K„(P",t ";P', t ')
The single-valuedness requirement on wave functions

is argued in relation to a time-dependent magnetic flux.
The theory presented in this paper leads to the same
conclusion as that for the time-dependent case. Let us
introduce a time-dependent magnetic flux passing
through the center of the ring,

=K„(P",t";P', t')e px[i a(P +2nm)],

where
1/2

(4.5) 0&=a4af (t) .

The Lagrangian is then

(5.1)

iI
exp ($+2n ~)'

2T
& = —P'+aPf(t),

2
(5.2)

where f (t) is a function of time only. From (5.2) follows
the equation of motion,

(4.6)

P+ —f(t)=0 .I (5.3)

If we introduce an angular variable such that'

is the propagator in the absence of the magnetic flux and

Because of the inaccessible magnetic flux, the sym-
metric condition (2.9) is broken. For P= rr one ob-—
tains' from Eq. (4.5)

K „+,=K„exp[ —i2a(2n —1)vr] . (4.7) P=P+ f (t), — (5.4)

Repeating the procedure (2.10)—(2. 13) again, one finds the Lagrangian (5.2) becomes
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2

L = —[P(&)]'— f'(r) .
2 2I

The calculation of K„ is trivial,

K„(p",r";f3', t')

I
27Tl T

1/2
2

exp (f3+2nvr) i —G(t", t')
2T 2I

where

G(t", t')= j f'(r)dr,

(5.6)

1, t&0
f(t)=H(t)= '0 0 (5.7)

The total propagator for t" & t' &0 is

K(tt", r";p', t')
1/2

1 2&T
I o, T

exp i P+
2

—l T
2I

irI a T 2I rr

T I ' T

P=P"—P', and T =t" r'. Fro—m (5.6) it is easy to veri-
fy that the symmetric relations (2.9) are satisfied for
P= —m. Therefore, 6 should be zero and the propagator
is single valued.

In particular, suppose the magnetic flux is suddenly
switched on at t=0. For the sake of simplicity we set

m —cz due to the torque applied by the induced electric
field.

The dynamics of an electron with a time-dependent
magnetic flux which induces a force field is different
from what we discussed in Sec. IV. Nothing is strange
with the flux-dependent kinetic angular momentum
which is consistent with classical result. Since the gen-
erator of rotation should be the operator of canonical
angular momentum, the fractional eigenvalues of kinetic
angular momentum do not lead to the fractional angular
momentum quantization. The flux-dependent energy
spectrum (5.9) is specified as the bound-state AB effect.

VI. CONCLUSION

The SO(2) group does not give a unique definition for
the angular momentum quantization. Moreover, in a
two-dimensional multiply connected space there is no
strong reason to impose the single-valuedness require-
ment on the wave function even though the potential is
single valued; the eigenvalue of angular momentum is
ambiguous by an additive constant. The ambiguity of
angular momentum quantization can be removed using
the path-integral formulation of quantum mechanics in
multiply connected spaces. A topological phase arising
from the homotopy theory of path integrals in multiply
connected spaces is uniquely defined and physically
meaningful. It is the topological phase defined on the
group manifold of SO(2) that gives rise to the fractional
angular momentum quantization.
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