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It is pointed out that both classical Wheeler-Feynman electrodynamics and its finite quantized
generalization inevitably lead to microscopic causality violation. As there is some evidence for
such effects in proton Compton scattering, there is possibly reason to prefer such absorber theories
of action at a distance over field theories as the more reasonable microscopic description of nature.

INTRODUCTION

In a pair of remarkable articles, ' Wheeler and Feyn-
man demonstrated how the Schwarzschild-Tetrode-
Fokker action at a distance theory could appear almost
completely identical to the usual Maxwell-Lorentz-
Dirac field theory of classical electrodynamics. Such
theories were later extended to the quantum regime by
Hoyle and Narlikar and Davies. A necessary con-
dition for the viability of such action-at-a-distance
theories is that every photon ever emitted must eventual-
ly be absorbed. Such theories are thus known as ab-
sorber theories of radiation. Whether this condition is
true or not is a cosmological property' and cannot yet
be conclusively decided. "

Although having great similarities, there are some
very significant differences between action at a distance
and field theories. One of the most important differences
is that the action-at-a-distance quantities which obey the
field equations do not have their own independent de-
grees of freedom. Loosely speaking, these "adjunct
fields" contain a summary of the remote influence of all
the other particles in the universe at a given space-time
point. Quantum field theories, in contrast, invest every
point in space with independent degrees of freedom
(often represented as those of a harmonic osci11ator).
One of the most basic difficulties of quantum field theory
is precisely the fact that the zero-point energy of these
degrees of freedom at every point in space leads to an
infinite vacuum energy. The infinite vacuum energy
remains today as one of the most intractable problems of
quantum field theory. In contrast, an action-at-a-
distance formulation instantly eliminates the vacuum-
energy problem, as the adjunct fields do not have in-
dependent degrees of freedom to be quantized. Further-
more, several effects which are conventionally thought to
require the existence of field degrees of freedom, such as
spontaneous emission and the dynamic stark effect, '

have been shown to be describable completely within the
framework of action at a distance. Absorber theory is
also a very serviceable framework for discussions of the
standard paradoxes of quantum mechanics as well, '

and a review of the connection between absorber theory
and "time's arrow, " i.e., the distinction between past and

future, has recently been given. ' A review of absorber
theory, with numerous further references, has been given
by Pegg. '

There is a feature of the classical absorber theory of
Wheeler and Feynman which has not been retained in
the existing quantized forms of absorber theory. The
original absorber theory does not involve any intrinsic
self-action. The classical force of radiative reaction,
which appears to be a self-action, is found to be only an
indirect result of the interaction with all the other re-
mote particles in the environment. Because the classical
absorber theory involves no intrinsic self-action, there
are two direct byproducts, viz. , the theory is completely
finite, as the would-be self-fields arbitrarily close to a
given particle are not present, and there is an inevitable
violation of microscopic causality, in that the force of
radiative reaction contains both advanced and retarded
fields.

Barring experimental evidence for microscopic causal-
ity violation, it is no wonder that the quantum versions
of absorber theory retained intrinsic self-action, and thus
causality. To quote Peg g,

' "The absence of self-action
of the electron, one of the major features of the original
theory, no longer appears necessary or even useful. The
original hope that the omission of self-action could solve
some of the divergence problems of quantum electro-
dynamics has not been realized. "

By retaining an intrinsic self-interaction in the quan-
tized absorber theories, these theories retain both the
causality properties and the divergences of the corre-
sponding quantum field theory. Without such an intrin-
sic self-interaction, these theories inevitably involve mi-
croscopic causality violation, as we will discuss below.
As we have recently observed that there is substantial
evidence in favor of microscopic causality violation, ' '

we are led to suggest that the absorber theories without
intrinsic self-interaction are strongly indicated as being a
more natural framework for the description of nature.
Finally, if the data should turn out to be merely fortui-
tously indicating microscopic causality violation, and
should subsequent measurements establish that there is
no such violation, then this would be substantial evi-
dence against such absorber theories.

In this article we discuss a modified Lagrangian for-
mulation of classical mechanics which is able to accomo-
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date dissipative forces, including radiative reaction, in a
natural way. We then quantize this Lagrangian theory
by the method of path integrals, with particular atten-
tion focused on the causality-violating, "precausal"
features of the problem. Our approach contrasts with
the work of Hoyle and Narlikar, first in that it is consid-
erably simpler, but more importantly in that we explicit-
ly retain the causality-violating features of the classical
theory. We end the present article by establishing some
connections between our precausal quantum mechanics
and conventional quantum mechanics. For simplicity, in
the present article we omit all consideration of relativis-
tic effects. The generalization to relativistic quantum
mechanics turns out to require such substantial
modifications in formulation that we leave all discussion
of such effects to a following article. '

field equations (5) appear identical to those derived from
the Maxwell theory, there are several very important
differences. First, we do not have a gauge theory and
the "fields" do not contain any independent degrees of
freedom of their own, as they are entirely defined in
terms of the world lines of the particles. Second, the
fields are equal superpositions of advanced and retarded
fields. Third, there is no self-action, and therefore no
singularity in the field at the loci of the particles.

It was shown by Wheeler and Feynman' how the
time-symmetric fields entering in (4) may lead to ap-
parently fully retarded interactions. The requirement
that any light emitted by a system of particles eventually
be absorbed by that system of particles leads to the re-
sult that the difference of retarded and advanced fields
must vanish everywhere, i.e.,

PRECAUSAL CLASSICAL MECHANICS

&„"(x)=ei,f 5(s)', )db, (2)

alld

a~)"(x)
F',„'(x)=

Bx

the four-vector equation of motion for particle a is, with
dots indicating derivatives with respect to proper time,

m, d„=e, g F'„'(a)a „.
(b&a)

The Maxwell equations for the quantities F„,
aFI".(x)

=4' J„' '(x),
Bx~

(4)

follow tautologically from the definitions, with the
currents defined by

I„' '(x)=e„ f 5(x, 6, )5(x2 —bz)5—(x3 63 )

X 5(x4 i34 )b„(i3)df3 . —

Although the particle equations of motion (4) and the

As first shown by Dirac, a completely finite classical
radiation theory can be derived from the Fokker action

S= —g f m, da+ g f f e, ei, 5(s,~)da„db„,
a, b

a &b

by a principle of stationary action: 6S=O, and the im-
position of a boundary condition that the sum of the so-
called "in" and "out" fields vanish. Dirac's boundary
condition was introduced based on an assumption of a
fundamental underlying time symmetry, but remained
somewhat mysterious until the work of Wheeler and
Feynman. In Eq. (I) and hereafter, we use Einstein sum-
mation convention and a system of units for which h /2~
and c are both unity. The four-vector displacement
squared between the points a and b is s,&

——(a„
bz)(az —b„), and th—e di6'erential world line element

da =( da„da&)'~ =—(dt's —dx )'~ . In terms of the
definitions

g Fret Fadv
b

This response condition may either be merely assumed a
priori or, by assuming any number of suitable cosmologi-
cal models, it may be shown to follow from the proper-
ties of the universe. ' '" Any model universe with the
property (7) is said to be a "perfect absorber. "

Given the condition (7), the fields which enter the
equations of motion (4) can be rewritten

(F(b)+F)b) )y2
(b~a)

(F,',",'+F,'d'„)/2+ g (F,'„' —F',d'„)/2
(b~a ) (b~a)

+(F;„'—F) ) )/2

(b~a)
(8)

Thus the fully time-symmetric set of fields of all particles
besides a is equivalent to the sum of the retarded fields
of all other particles plus an apparent self-action term.

An essential point is that there is a certain unavoid-
able degree of microscopic causality violation introduced
by absorber theory, and it is intimately connected with
the absence of intrinsic self-interaction. Although the
net field experienced by particle a consists of a sum of
purely retarded fields from all the remote b particles,
there still remains the advanced field of particle a itself
in the radiative reaction term. It is well known that in
the classical electromagnetic theory of Dirac, the preac-
cleration of the electron originates precisely from this
very term. This point was noted by Wheeler and Feyn-
man in the penultimate sentence of their first paper, '"
which we quote: "In such a system the phenomenon of
pre-acceleration appears as the sole evidence of the ad-
vanced effects of the theory of action at a distance. " If
the sum in (I) extended over all particles, i.e., it included
intrinsic self-action, then the series of equations leading
to retarded interactions plus radiative reaction seen in
(8) would instead lead to fully retarded interactions
everywhere, and no radiative reaction. Such a theory
would be completely causal, and due to the infinite self-
interaction, would contain divergences. The fact that it
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contains divergences is obvious from the vanishing of the
argument of the 6 function in the hypothetical term with
a =b in expression (1).

The quantum versions of the Wheeler-Feynman theory
can also be cast in the same general form in terms of ad-
vanced and retarded interactions as the classical
theory. ' By including intrinsic self-action, these treat-
ments of quantized absorber theory have produced
theories exactly equivalent to the conventional quantum
field theories including the feature of being completely
causal, and containing divergences. Should they instead
not have intrinsic self-interaction, we expect that the
quantum theories too will contain, in general, micro-
scopic causality violation resulting from the correspond-
ing quantum generalizations of the radiative reaction
terms. In the remainder of this paper we consider the
nonrelativistic quantization of Wheeler-Feynman electro-
dynamics, with particular attention paid to the radiative
reaction terms responsible for microscopic causality
violation which results from the absence of intrinsic
self-interaction.

As shown by Dirac, the self-action term (8) can be
evaluated as

so that the equation of motion for particle a becomes

m, ii, =e, g [F',"„'(a)]„,a„+2e, /3('a', +a, 'a'&a„) .
(b~a j

driving force. For each of the Cartesian coordinates, we
then have equations of motion

mx = —d V/dx +f (r)+m rx (12)

Now consider a possible single-particle effective La-
grangian for this problem,

L =mx /2 —V(x)+[f(r)+mrx ]x '. (13)

The usual variational principle applied to the action de-
rived from this Lagrangian,

5S=5 f L(x,x,x,x', t)dt =0,
leads to the Euler-Lagrange equations

(BL /Bx ) —(d/dt )(BL /Bx )+(d/dt) (BL /r)x )

(14)

—(d /dt )'(BL /Bx') =0 . (15)

However, the radiative reaction term completely cancels
out of the equations of motion derived in this way.
From our discussion following Eq. (10), we see that the
radiative reaction term is in reality not intrinsically
dependent on the motion of x, since it is merely a con-
venient approximation, valid under certain conditions, to
the influence of the perhaps infinite number of remote
absorber particles. We must therefore not vary with
respect to the radiative reaction term in applying our
variational principle. To signify this, we write our La-
grangian as

(10) L =mx /2 —V(x)+[f (r)+.mr)x (]x, (16)

In this differential equation form, it is the third-order
time derivatives which lead to preacceleration phenome-
na in the classical theory. The radiative reaction force
in (10) can be viewed in either of two complementary
ways in absorber theory: either the theory is written in
completely time-symmetric, half-advanced plus half-
retarded, form with no self-interaction, or it is written as
a fully retarded interaction with all remote particles plus
a self-interaction term which contains a half-retarded
minus half-advanced field. The apparent self-force of ra-
diative reaction appearing in (10) is thus seen to be no
more than the superposition of the advanced influences
of all the other particles in the environment, and thus
only indirectly and approximately related to the motion
of particle a. To emphasize this crucial point of the in-
dependence of the force of radiative reaction on the
world line of particle a, we note that for an incompletely
absorbing universe we would not get the equation of
motion (10), and for a "single-particle universe" there
would be no radiative reaction whatsoever.

The equation of motion (10) in the nonrelativistic limit
becomes

m X=e(E+v XB)+mrx,

where we introduce the definition ~=2e /3m. We will
assume for convenience that no magnetic fields are
present, and specialize to the case that the external fields
acting on particle x can be represented as the sum of a
static conservative force and a time-dependent uniform

(17)

which leads to an equation of motion

mx = —d V /dx +f ( t) +m r )x'( —m I )x ( (18)

which can be solved self-consistently by demanding that
the solution of the equation of motion coincides with the
assumed function )x((t). This we achieve by substitut-
ing x (t) for )x ((t) in Eq. (18), and solving for x(t).
When radiative damping is present, the resulting third-
order equation of motion will involve preacceleration
phenomena whenever the roots of the associated secular
equation have positive imaginary parts as we have dis-
cussed previously.

What we have accomplished by this method is a
reduction of a conservative many-body (perhaps infinite-

where )x'( is a special notation which is to indicate that
this term represents the net result of summing the
influences of all remote particles, which merely happens
to be well approximated by the third time derivative of
x(t). In the original equation of motion (4), it is clear
that there is no explicit self-action. Thus, the forces of
radiative reaction are only apparent self-interactions,
and should be considered as functionally independent of
the behavior of the world line of particle a. In a very
similar way, and for the same basic reasons, we can also
incorporate standard "collisional" damping into our
effective Lagrangian by writing

L =mx /2 —V(x)+[f ( ) 1+m)rx'( —mI )x(]x,
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body) problem to a dissipative one-body problem. For
radiative reaction this should be an exceedingly good ap-
proximation, as the response condition (7) is extremely
general. For collisional damping, there is not such a
general response condition, and our method may or may
not be such a good approximation, depending in detail
on the particular system. Note that with only collisional
damping, our equation of motion (18) becomes simply
the Langevin equation of motion.

If the only thing we achieved by our introduction of
the ) ( operation was a rederivation of the usual classi-
cal equations of motion, we would not have done much.
However, with the above single-particle effective La-
grangian it becomes very easy to quantize the classical
theory. Since the classical theory involves causality
violation, it is then only to be expected that the quantum
mechanics we derive will be causality violating also.

PRECAUSAL NONRELATIVISTIC
QUANTUM MECHANICS

Of all the existing formulations of quantum mechan-
ics, it is clear that the path-integral approach is best
suited to the discussion of causality violating behavior.
Indeed, Feynman and Hibbs, in discussing the interac-
tion of a particle with a harmonic oscillator remark ". . .
(the action) S contains a product of variables defined at
two different times, s and t. The separation of past and
future can no longer be made. This happens because the
(particle) variable x at some previous time affects the os-
ci11ator which, at some later time, reacts back to affect x.
No wave function g(x, t) can be defined to give the am-
plitude that the particle is at some particular place x at a
particular time t. Such an amplitude would be
insufficient for continuing calculations into the future,
since at any time one must also know what the oscillator
is doing. " This particular case of a particle interacting
with a harmonic oscillator is very important, since it is
the foundation of the description of a particle's interac-
tion with the modes of the quantized electromagnetic
field. We will show that in such a case we can still
define a wave function, but that it alone is not sufficient
for continuing calculations into the future.

With our method of incorporating dissipation into the
Lagrangian formulation, it is easy to obtain a dissipative,
causality-violating, quanturli-mechanical theory. From
the classical action, the quantum-mechanical propagator
can be constructed by the path integral

X(x„,t, ;x. , t. )= f 'e"(g)).x
The most important paths in the path integral, accord-
ing to the method of stationary phase, are those for
which the action is extremal. The classical path is exact-
ly determined by the condition of stationary action, so
that the path-integral approach to quantum mechanics
provides a rationale for the standard variational princi-
ples of classical mechanics. At this point we make the
approximation that in the effective Lagrangian for a
specific particle interacting with a remote environment
of other particles, all of the terms in the Lagrangian
which involve response terms be written in terms of the

path of least action, i.e., the classical path. In our
specific example of Eq. (17), the radiative damping and
collisional damping terms are to be determined by the
solutions of the classical equations of motion. In the ter-
minology of Feynman and Hibbs, the inhuence function-
al, which represents the averaged response of the envi-
ronment to the paths of the local particle, is to be ap-
proximated by evaluating it in an expansion in terms of
time derivatives of the classical path x,&(t) Th. e time
evolution of such a quantum system thus depends on the
entire course of the path of least action, which is
equivalent to the behavior of the corresponding classical
system. In conventional quantum mechanics, such a
dependence on the future of the time evolution of wave
functions would be untenable as it necessarily implies
causality violation.

As usual, it is easiest to solve problems in terms of the
differential equations obeyed by the states. For this
reason, consider the integral equation for the time
dependence of a wave function governed by the La-
grangian of Eq. (17),

g(x, t)= f f e 2)x(t)g(x', t')dx' . (20)

—x[f(t)+mr)x'( —ml )x (]P . (21)

We thus have a time-dependent, Hermitian, Hamiltonian
operator

H(t)=( —1/2m )(c) /Bx )+ V(x)

—x[f(t)+ m)rx'( —mI )x(] . (22)

This is a Hamiltonian whose time dependence is deter-
mined by the driving force f (t) and the path of least ac-
tion )x ((t). Because H is Hermitian, probability is con-
served, so that the normalization of states is time in-
dependent. This is in contrast to the Gamov procedure
of introducing imaginary potentials into the Schrodinger
equation to describe dissipation. In the Gamov scheme,
the Hamiltonian is not Hermitian, so that energy eigen-
values are imaginary and probability is not conserved.
On the other hand, because our Hamiltonian is time
dependent, energy is not conserved. If all the (possibly
infinite number ofl remote particles were kept in our
equations, we would find that total energy was con-
served, as is discussed by Feynman and Wheeler for the
classical case. Obviously, with dissipation of energy to
the remote environment, if we only evaluate the energy
contained in a given local system, it will not be con-
served. The most revolutionary difference between our
equation and the usual Schrodinger equation, however,
is the dependence on the classical path, which implies
that the time evolution of a state is affected by the future
as well as the past.

To solve our differential equation, we make use of the
general result, valid for any state g and operator 3,

By considering a time t differing only infinitesimally
from t we discover a Schrodinger-like equation obeyed
by%,

i (r)Q/r)t ) =( —1/2m )(c) P/Bx )+ V(x)g
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Applying this relation to the position and momentum
operators in turn, we find Ehrenfest's theorem, and thus
find the analogue of Newton's second law of motion, where

—t cc) 3 t
(cu( —m2)e, t &0

(28)

m (O'Idt')(x ) =( —dV/dx &+(f(t) &

+mr(d Idt ) )x ( —mI (d Idt) )x (

(24)

For the Harmonic-oscillator potential, the force
—dV/dx is simply proportional to x, so that we solve
this problem completely. In the absence of damping, the
equation of motion for the expectation value of x is iden-
tical to the classical equation of motion. We thus identi-
fy

)x& =(x), (25)

m(d /dt —rd /dt +I d/dt+m )(x ) = (f (t)) . (26)

As an explicit example, consider an impulsive driving
force, (f(t)) ~5(t). Since we have a third-order
differential equation, we must specify three boundary
conditions to determine the solution. It is most "physi-
cal" to let the three required boundary conditions be
that (x ) vanishes as t ~+ ac, and that (x ) (and
d (x ) /dt ) be continuous at t =0. This determines
(x )(t), up to a constant of proportionality, in terms of
the three roots cu, ,j=1—3 of the cubic secular equation

( —ci3J —l rcoi —l col 1 +ci) )(x ) =0 . (27)

Specifically, for the most usual case of undercritical
damping there are two roots with negative imaginary
parts, and one root with a positive imaginary part, so
that

and find that the equation of motion for the expectation
value of x becomes identical to the classical equation of
motion for collisionally and radiatively damped oscilla-
tion, viz. ,

Em(co3) & 0 and Im(co( 2) & 0 .

Once the time evolution of (x ) is determined, the
quantum-mechanical problem reduces to the form (22) of
a time-dependent Hamiltonian, with a driving force well
defined as a function of time. In the absence of radiative
damping we have only second-order differential equa-
tions to solve, and thus the initial wave function con-
tains sufficient information to determine the subsequent
time evolution. Once we include radiative damping, this
is no longer true. In order to solve for the time evolu-
tion of (x ), we must specify the future conditions that
our system will experience. This dependence on the "set
up" of the experiment is at the heart of most of the ap-
parent "paradoxes" of conventional quantum mechanics.
For example, according to the principle of complemen-
tarity, the values that can be measured depend on which
variables one sets out to measure. This paradox is trivi-
ally resolved if the time evolution of wave functions is
explicitly found to depend on the history of the experi-
mental set up. It may appear, on the other extreme, that
our present quantum mechanics is based on circular
reasoning. Apparently, we cannot solve a problem until
we already know the answer. This turns out not to be
the case. In general, we find that we must first solve an
associated classical mechanics problem, and then plug
this solution into the quantum-mechanical wave equa-
tion.

To make the above remarks clear, we turn to a specific
example which can be exactly solved. By the methods of
Feynman and Hibbs the propagator for an impulsively
driven, collisionally damped, radiatively damped, har-
monic oscillator described by the Lagrangian (17) is ex-
actly

E(b, a) = [mes/2lri sin(coT)]'~ e (29)

where T=t& —t„and

bS,)
——[men/2 sin(coT)] cos(cuT)(x(, +x, ) —2x, xb+(2xb

Imago)

f F(t) si n[cg(t —t, )]dt
a

t'b

+(2x, /mcus) f F(t) sin[co(t(, —t )]dt
a

tb—(2/m co ) f dt'F(t') sin[co(t tb')] f dt F(t) sin[co(t —t, )]
a Q

where F(t)=f(t) —mI (dIdt))x(+mr(d Idt ))x(,
and )x ((t)= (x )(t) is the solution of the classical equa-
tions of motion, given by expression (28).

As a specific example of the evolution of wave func-
tions generated by this propagator, consider the initial
state

which represents a minimum-uncertainty wave packet
whose centroid is located a distance a from the center of
the oscillator well. In the absence of damping, i.e.,
I ~0, the probability distribution evolves in time as

t )
~

2 —me@(x —a cos(cut )1

0 )
—m co( x —a ) /2 (31) so that the centroid exhibits simple harmonic motion,
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(x )(t)=a cos(cat) . (33)

g(x, t ) = exp { i cot—/2

For a Gaussian initial state, such as (31), our present
propagator (30) leaves us with only Gaussian integrals to
work out, so that we can exactly solve for g(x, t) W. e
find

two-level problem. That is, suppose that the underlying
Hamiltonian is such that only two states are significantly
involved. Initially, we suppose that the higher energy
level is populated. We then wish to solve for the time
dependence of the population of the two states.

Consider exact eigenstates of the time-independent
Hamiltonian

—(mao /2)[x xx()—(t)+x~(t)]I, (34)
Ho ——( —1/2m )c) Ic)x '+ V(x ),

which satisfy

(37)

where xo(t), x~(t) are complicated complex functions of
time whose explicit form we omit. For the probability
distribution we find

f
zP(x, t)

J

= exp{ —mco[x —(x )(t)] I, (35)

COMPARISON WITH CONVENTIONAL
QUANTUM MECHANICS

In any system for which damping can be neglected, all
paths in the path integral become independent of the
path of least action, and the propagator reduces exactly
to the conventional propagator. Even if collisional
damping is present, the time evolution of the path of
least action is determined by the initial conditions, and
so there is no need to specify future conditions. In such
cases, the present formulation of quantum mechanics
reduces to standard quantum mechanics. A path-
integral treatment of such cases has been given by Feyn-
man and Vernon, including extensive discussion of the
usual connections between dissipation and fluctuations.
For any case in which radiative damping is significant,
the linear-dissipation scheme of Feynman and Vernon
can only be approximately applied, and our formulation
introduces modifications with respect to such conven-
tional treatments.

To see the modifications to conventional quantum
mechanics resulting when radiative reaction terms are
important in a simple setting, consider the behavior of a

where (x )(t)=2 Rexo(t) is self-consistently given by the
classical solution (28).

We have now arrived at the quantum generalization of
our previous semiclassical treatment of Compton
scattering in the region of the 6 resonance. In the
quantum-mechanical case, we now understand that a 6-
function driving force

f (t)=(1/2m) I e ' 'den, (36)

is simply a superposition of all frequencies with equal
amplitude, so that the Fourier resolution of the wave
function (34) determines the detailed variation of the
cross section of the damped oscillator exposed to any
given frequency. Our semiclassical estimate of the ener-

gy dependence of the cross section for Compton scatter-
ing should be valid as long as the wavelength is not
much smaller than the size of the proton, as is approxi-
mately true near the 5 resonance. At this point we con-
clude our discussion of the unconventional aspects of
precausal quantum mechanics, and proceed to make
contact with conventional quantum physics.

Hoick =Ekfk (38)

As a specific example one might consider that V
represents the potential experienced by an atomic elec-
tron. For any eigenstate which satisfies

(39)

such as is true for any state of definite parity, we also
have

(d Idt)" &x ) o: &qj,
~

[H,x]
~
P„&=0 . (40)

For such a state, we conclude that there are no response
terms, as they depend on time derivatives of (x ). In
our framework, a stationary state is truly stationary, and
perforce does not decay spontaneously. Our quantum
mechanics thus solves the old classical paradox of why
atomic electrons do not rapidly spiral into the nucleus as
they radiate away their energy. We apparently have a
new paradox, in that excited states appear to be stable.
In the framework of direct particle-interaction theory, '

however, spontaneous emission is understood as the in-
teraction with remote particles via advanced waves from
the future. Spontaneous emission only appears to us
macroscopic, "forward-in-time-bound" observers as
spontaneous, since we are not able to control the ad-
vanced future interactions with remote particles. The
best we can do is follow the illusory "quantum" to its ul-
timate absorption, in order to discover which particle of
the future interacted with our apparent spontaneous
emitter.

Without specifying when (or whether) an advanced in-
teraction with the future occurs, we are unable to deter-
mine the complete time evolution of a state. Assuming
that we have an exact eigenstate is equivalent to the as-
sumption that there will never be an interaction with a
distant absorber in the future. In a hypothetical one-
particle universe, this would be the proper behavior.
Since we are in fact living in a complicated universe, it is
not reasonable to assume that there will never be an in-
teraction in the future, and we must conclude that exact
eigenstates are never actually realized. If the decay rate
of an excited state is very small, then the incidence of in-
teractions with the future is correspondingly less fre-
quent, and it becomes a good approximation to use an
exact eigenstate for the description of the excited state.

Now contrast the picture of electromagnetic radiation
in terms of conventional quantum mechanics with the
present modified quantum theory. Consider the conven-
tional picture of the spontaneous radiative decay of an
excited atomic state, followed by the absorption of the
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d/d«a&=&ALII/ar & . (41)

For simplicity we consider only radiative damping, so
that

emitted light by a remote atom. Conventionally, the ex-
cited state emits a photon, whose probability distribution
spreads out through space in all directions at the speed
of light. The leading edge of this probability amplitude
distribution is complicated and dependent on the details
of the formation process of the excited state. At some
point, the photon is absorbed at some remote location,
and "instantaneously" the wave function of the photon
collapses, so that even locations arbitrarily far removed
suddenly have no photon wave function present. In the
present picture, on the other hand, an excited state un-
dergoes an action-at-a-distance interaction with a single
remote atom, in which a certain amount of energy and
momentum are exchanged. The specific atom which in-
teracts is not determined, and the precise time of the in-
teraction is also not determined by the initial conditions.
However, once the course of events is known, i.e., which
detectors, bafBes, sources, etc. , are placed where and
when, all intermediate amplitudes are determined, and
the usual quantum-mechanical calculation of' transition
probabilities may be made. Precausal quantum mechan-
ics thus lends itself most naturally to the "transactional
interpretation*' of Cramer. '

To make contact with standard quantum-mechanical
results we apply the general result (23) to the Hamiltoni-
an operator itself to find

as long as x has no diagonal matrix elements. With this
same provision, we find

&
—BV/Bx &= —mes,'&x &, (47)

where coo ——E2 —E]. This may be proven by writing the
force operator in terms of the commutator of p and H,
and then using the proportionality of p to the commuta-
tor of x and H. The quantum-mechanical second law
(26) now becomes [with &f(t) ) representing the interac-
tion which precipitates the decay of the excited state]

m(d /dt —rd /dr +coo)&x ) = & f (r) ) . (48)

As a result, we find once again that under very general
conditions, the expectation value of & x ) exhibits
damped oscillatory behavior of the form (28), which in-
cludes a preacceleration phase. For a system which is
initially in the excited state, we have

I
p(t —+ —

&x& )
I
~1

and a(t ~—oo )~0, so that &x ) vanishes in the remote
past. As the time of the interaction approaches, &x ) in-
creases exponentially with the characteristic preaccelera-
tion time constant ~. After the interaction takes place,
&x ) undergoes damped oscillatory behavior, with an ap-
proximate frequency given by the energy difference
E2 —E], and decaying with a rate we will define to be
I „d/2. In the remote future, we find p(t~+ ~)~0
while

I
a(t~+ oo )

I
~1, so that &x ) vanishes, just as

in the remote past. For a narrow-width case,
E „d«Ez —E], we have, for times t following the initia-
tion of the decay of the excited state, approximately

& "jrH/dr &= —mr&»)& x & . (42)
radt /2

&x ) =xoe "' cos[(E2 E, )r+P]—, (49)

For approximately periodic motion, we may integrate by
parts twice to find

so that the time derivative which enters the energy-loss
equation (42) is

d /dt &H ) = —
—,'e (d /dt '& x ) ) (43)

(d/dt) &x ) =(E2 E, ) &x ), —

1t(x, r) =a(r)1(,(», 0)+P(r)1(,(», 0) . (44)

The eigenstates P& 2 have energies E, , E, , respectively, so
that the total energy of our state is given by

Note that we have derived the quantum analogue of the
Larmor radiation formula without any reference to pho-
tons or electromagnetic fields. Our approach to radia-
tive reaction in terms of Ehrenfest relations is similar to
that of Ackerhalt and Eberly, except that we do not
eliminate third-order time derivatives, as they do, and so
we do not eliminate preacceleration phenomena.

We now return to the two-level problem and suppose
that we have a state which contains the following super-
position of two eigenstates of the time-independent
Hamiltonian (37):

and the power loss (42) is

', e'(E2 E& )'&—» )', — (S0)

By normalizing this power emission per unit of excited
state probability and per unit of transition energy, we
find the usual electric dipole radiation formula for the
radiative decay rate,

d e (E2 El )'
I &0i

I

x
I @2& (52)

where P is the power radiated. We thus find that the
average power radiated decays exponentially. To recov-
er the standard dipole radiation formula, consider a time
long enough after the decay is precipitated that

I
a

I
=1,

I P
I
((1,at which point the average power radiated is

&@ IH I
4&=

I
~«) I'E + IP«)

I

'E

+2m ' Re[a'(t)p(t) & t(,
I
x

I g~ ) & x ) ] .

The expectation value of x is given by

& 0 I
x

I 4& =2 ««*(r»(r) & fi I

x
I 02&»

(45)

(46)

completely in agreement with the usual electric dipole
emission rate for an atomic transition from state gz to
state Pi. Our derivation contrasts with that of conven-
tional quantum mechanics, in that we have no need to
assume a priori that we have "adiabatic switching on" of
a radiative reaction perturbation in the remote past.
Our formalism automatically includes the transition
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from the remote past through the present to the remote
future.

We may also derive the transition rates for stimulated
emission or absorption of radiation from our Hamiltoni-
an of Eq. (22) by including the time-dependent driving
term

f(t) =eE(t), (53)

where E is the external electric field. If we suppose that
the electric field is turned on at t =0, and that initially
a= 1, P=O, then the quantity (x) initially vanishes.
For a short time afterwards, the radiation-reaction term
will be negligible compared to the external driving force
term of Eq. (53). We many therefore write our Hamil-
tonian as

H(t)=Ho —ex E(t) . (54)

For this problem we may use Dirac's conventional time-
dependent perturbation theory to solve for the time evo-
lution of the amplitudes a(r) and P(t). The result is that
we find the conventional expressions for the stimulated
emission or absorption probabilities, leading to the total
transition probabilities &,

W, z = A, z+B,z U(co),

Wz-t =Bz 1 U(co ),
(55)

where U(co)den is the energy density of the electromag-
netic field in the angular frequency interval (co,cu+dco),
and

Biz=Bzi =(4~zez/3)
I

&1
I

& I2) (56)

is the Einstein coefficient for stimulated emission or ab-
sorption, while

A, z ——(4e cg /3)i(lix i2)
i

(57)

is the Einstein coefficient for spontaneous emission,
which we have already derived in Eq. (52) above. It is
well known that these Einstein coefficients lead, under
conditions of thermodynamic equilibrium, to the Planck
black-body spectrum

U(co)=(co /~ )[ exp(co/kT) —1]

The spectral density can be written as

(58)

U(co) =co n(co)/rc (59)

where

n(co) =1/[ exp(co/kT) —1],
is the number of "photons" of angular frequency co. In
our theory, the number of photons is equivalent to the
number of emitter-absorber interactions "in progress. "

As a specific example, consider a 1 g mass of hydrogen
gas in a 1 liter container whose walls are assumed per-
fectly reflecting. Suppose there is precisely one atom in
its 2p state initially, while all the others are in their
ground state, corresponding to an equilibrium tempera-
ture of 2162 K. Approximately once every nanosecond
the excited atom emits its quantum of energy and re-

turns to the ground state. In a very short time the quan-
tum is absorbed by some other atom, and it becomes ex-
cited to the 2p state. Most of the time the state of the
entire system consists of a single excited atom with no
radiation field at the 10.2 eV energy. During the course
of an emitter-absorber interaction it is impossible to at-
tribute the quantum to either the emitter or the ab-
sorber. The radiation field acts as a "stand in" to
represent the "quantum in transit" from the emitter to
the absorber. While the quantum of energy is in transit,
we may say that the radiation field contains a single
10.2-eV photon. The strength of the adjunct electromag-
netic field at the position of any given atom must be of
the appropriate intensity to account for the time average
absorption rate. If all atoms are in their ground state,
then there is no possibility of one atom exciting another,
and the entire system remains in this static situation.
The total energy density of the system is merely the
mass energy density of the ground-state atoms, and is
finite.

In conventional quantum electrodynamics, on the oth-
er hand, the modes of the electromagnetic field are in-
dependent degrees of freedom, and therefore possess a
zero-point energy. As a result, the vacuum spectral en-
ergy density of the electromagnetic field is

U„„„(co)=(co/rc )}—,'+1/[ exp(cu/kT) —1]) . (61)

On integrating over all frequencies, the zero-point con-
tribution to the spectrum diverges,

f deuce /2n =f1 /Sm' ~oo (as Q, ~oo) . (62)
0

Conventionally this vacuum-energy divergence is elim-
inated by subtracting an infinite constant from the Ham-
iltonian.

It is conventionally argued that there is direct experi-
mental evidence for the zero-point fluctuations in that
effects such as the Lamb shift, or the Casimir effect
would not be present without the zero-point fluctuations
in the electromagnetic field. Since the Lamb shift is well
established experimentally, it is widely believed that
zero-point fluctuations are "real, " and that they require
the electromagnetic field to have its own independent de-
grees of freedom.

On the other hand, a few authors have pointed
out that the effects of the zero-point fluctuations are just
the same as the effects produced by the forces of radia-
tion reaction. We quote Jaynes, "This complete inter-
changeability of source-field effects and vacuum-
fluctuation effects does not show that vacuum fluctua-
tions are 'real ~

' It shows that source-field effects are the
same as if vacuum fluctuations were present. The radi-
ating atom is indeed interacting with an electromagnetic
field of the intensity predicted by the zero-point energy,
but this is just the atoms own radiation reaction field. "

We can see this very directly and quickly from the ex-
pression for the emission probability in Eq. (55). In the
absence of external fields, the emission probability is
given by the Einstein A coefficient. If we rewrite this in
terms of a B coefficient times an "equivalent" radiation
field U(co)=ai /n, we would get exactly the same emis-
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[ V(x+6 x)],„=(1+—,'[bx ],„V ) V(x) . (63)

For the Coulomb potential, the Laplacian produces a 6
function at the origin, so that only s states are affected.
Welton estimates the mean square fluctuation of the
coordinate by considering the equation of motion for a
free electron,

m (d /dr )x = e Ezp .

For a single-frequency component we have

x(co) = —eE(cu)/men

(64)

(65)

so that

[x ],„=(e /m ) f E~zp(co)des/co
0

=(2e /~m ) f den/co .
0

(66)

(67)

This integral diverges logarithmically in Welton s treat-
ment. He must argue that both the high-energy and
low-energy bounds should in fact be finite values, and
therefore a finite integral results. If we had instead used
a somewhat more realistic equation of motion

m(d /dt —rd /dt +coo)x=eE (68)

then we would have found a mean square fluctuation of

[x ],„=(e /m ) f Ezp(a))
~

co +ice r coo
~

den, (6—9)

which is completely finite, and approximately equal to

(2e /arm ) f de/co .
~0

(70)

Our treatment is still unsatisfactory, since the upper
cutoff of the integral should more realistically be at the

sion rate. But this equivalent radiation field is exactly
that which corresponds to an occupation number
n (co) = 1. We may say that the photon responsible for
the field is just the photon being emitted.

Again quoting Jaynes: "(The divergences of the vacu-
um fluctuations) disappear as soon as we realize that, in
order to account for spontaneous emission, there is no
need for this energy density to be present in all space, at
all times, in all frequency bands. It is produced au-
tomatically by the radiating atom, but in a more
economical way; only the field component that is needed,
where it is needed, when it is needed, and in the frequen-
cy band needed. "

In our Hamiltonian, Eq. (22), the force of radiation re-
action is not present as long as (x) =0. It is only while
an emitter-absorber interaction is taking place that
d /dt (x)&0, and that the radiation reaction term is
present. Since this produces a contribution to H(t)
which cannot be distinguished from the equivalent zero-
point fluctuating field contribution, we will still have the
consequences of the zero-point fluctuations without the
associated divergences. We may therefore follow the ar-
guments of Welton's analysis of the Lamb shift.

Welton considers the effects on an electron produced
by the equivalent zero-point fields. Because of the fluc-
tuations, the potential "seen" by an electron becomes
smeared out,

mass m, since relativistic effects will be important at that
point. Also, the lower cutoff will not be adequately de-
scribed by the oscillator approximation for the effects of
binding which we have introduced in Eq. (68). Our main
point is that there indeed are significant effects produced
by the radiation-reaction term and that, with a more
careful treatment, they should reproduce the results of
the conventional nonrelativistic treatment. That vacuum
fluctuations and radiation reaction can be interchanged
in this way is a result of a profound fluctuation-
dissipation theorem, as pointed out by Jaynes, Milon-
ni, and others.

LIMITATIONS AND OMISSIONS

We have purposely omitted treatment of relativistic
effects. We have also not discussed the effects of spin.
We could have treated spin by introducing it into the
Hamiltonian of Eq. (22), with the usual Pauli coupling to
the magnetic field and with a radiative-reaction-force
term proportional to the third time derivative of the ex-
pectation value of the magnetic moment operator, in
analogy with the treatment of the electric radiative-
reaction term. We would then be able to treat magnetic
dipole radiation in the same way as we have treated elec-
tric dipole radiation.

At the level of the approximations we have made, we
do not have quadrupole, or higher multipole radiation.
This is the quantum analogue of the fact that nonrela-
tivistic Larmor radiation is only dipole radiation. If we
had kept relativistic corrections in the original equations
of motion, we would also end up with higher multipole
radiation terms here, and increasing powers of (U/e)
would correspond to increasing multipole order. Even
without explicitly calculating such a multipole expan-
sion, we expect that as a general rule to account for pre-
causal behavior in expressions derived conventionally,
we should replace all time dependence of the form
e '"' "' in conventional expressions by a time depen-
dence of the general form of Eq. (28). For most cases in
atomic physics, the resulting change will introduce only
very minute modifications into the corresponding energy
spectrum. Only in cases where the precausal time con-
stant ~ is significant compared to the characteristic fre-
quency of a system will there be noticeable differences.

The relevant parameter determining the relative im-
portance of the deviations between our theory and con-
ventional quantum mechanics is set by ~~, where cu is an
energy scale characteristic of the given system and ~ is
the preacceleration time constant. For any processes in-
volving nonrelativistic electrons, co & m„so that m~ &~ 1.
On the other hand, for high-energy processes involving
electrons, relativistic quantum-mechanical effects greatly
dominate the essentially classical preacceleration effects.
Thus, as we have discussed earlier, ' it is extremely
difficult to see any precausal effects in the physics of sys-
tems dominated by electrons. For the proton, however,
where apparently m~~~ = 1, we do expect to see effects at
the 10% level for co=300 MeV. Thus we are drawn al-
most uniquely to the b,(1232) resonance in proton
Compton scattering as essentially the only quantum sys-
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tern and energy scale for which our nonrelativistic ap-
proach differs in a readily measurable way from that of
conventional quantum mechanics.

SUMMARY

Motivated by the expression of the force of radiative
reaction in terms of the influence of the environment
rather than an intrinsic self-action, we wrote an effective
time-dependent Lagrangian which was able to account
for dissipation. We quantized the action generated by
this Lagrangian via the path-integral approach. The re-
sulting generalization of quantum mechanics appears to
be able to account for a wider variety of phenomena
than conventional quantum mechanics. We also notice a
deeper connection between our quantum mechanics and

classical mechanics than is apparent with conventional
quantum mechanics, since we find that the classical be-
havior of a system plays a key role in determining the
detailed behavior of the quantum system. We solve ex-
actly for the behavior of a simple damped harmonic os-
cillator, and approximately the behavior of a radiatively
decaying two-level system. We point out that our pre-
causal quantum mechanics reduces to conventional
quantum mechanics in all cases for which the charac-
teristic precausal time scale ~ is negligible.
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