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Generalized recurrence relation for the calculation of two-center matrix elements
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As a novel application of the hypervirial theorem, a new recursion relation for the calculation of

any operator two-center integral, in the most general case of arbitrary potential eigenfunctions, is

presented. The proposed formula, in addition to reducing properly to the recurrence relation for

the calculation of one-center matrix elements that come from the second hypervirial theorem, al-

lows us to obtain a generalization of the Ta-You Wu equation for the calculation of Franck-

Condon factors.

I. INTRODUCTION

Since 1960, when Hirschfelder' proposed the hypervirial relations
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numerous efforts have been dedicated to deriving relationships between quantum-mechanical matrix elements. In fact,
from the second hypervirial theorem [Eq. (1.2)], the exact generalized recurrence relation for the calculation of f (x)
matrix elements as a function of eigenenergies E,E„ for any one-dimensional potential V(x) (Refs. 2 and 3),
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where a=A /2p, has been successfully employed in the
literature and different particular cases have been report-
ed. ' However, as far as we know, the power of hyper-
virial methods has not been exploited to obtain a re-
currence relation for the calculation of two-center ma-
trix elements. ' %'ith this purpose in mind, and by using
a hypervirial-like theorem with commutator algebra,
Sec. II is devoted to the determination of a generalized
recurrence relation for matrix elements of an arbitrary
function between states represented by eigenfunctions
corresponding to different potential functions. The
equation thus obtained contains as a particular case the
exact recurrence relation for the calculation of one-
center integrals as specified by Eq. (1.3).
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II. GENERALIZED RECURRENCE RELATION
FOR T%'O-CENTER INTKGRALS

Consider two arbitrary potentials V(xG ) = VG and
V(xz)= V~ with the respective one-dimensional Hamil-
tonians

where aG(z) ——A /2pG(&) and the eigenenergies EG['z)',
mass pz(z], and potentials VG[E) parameters are assumed
to be known; G and E refer to the ground G (

~

and ex-
cited

~
)~ states. Without loss of generality we can as-

sume that the two potentials are displaced from their
respective equilibrium positions according to xG —xz ——l.
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In such cases cedure leads to
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[VG fE]=[VE fE]=o
a hyper virial-like theorem commutator algebra pro-

where (d/dx)=(d/dxG)=(d/dxE). In order to avoid
the differential operator (d/dx) it is convenient to solve
the commutator [HE, (dfE/dxE)(d/dx )]. It is given by
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Thus the above two identities along with the properties specified by Eqs. (2.3) allow us to obtain
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This relation, useful for the calculation of Franck-

This equation is an exact recurrence relation generalized
for the calculation of f (x) two-center matrix elements as
a function of eigenenergies for any V(x). It contains
several particular cases: When G =E one recovers the
corresponding formula for the calculation of one-center
integrals, Eq. (1.3), that comes from the second hyper-
virial theorem.

For fE ——const Eq. (2.10) reduces to

I

Condon factors, is a generalization of the Ta-You Wu'
formula and can also be obtained directly from Eqs. (2.6)
and (2.7).'

III. DISCUSSION

As a novel application of the hypervirial theorem, we
have obtained a new recurrence relation for the calcula-
tion of two-center matrix elements. The proposed for-
mula is given in the most general case for any potential
as well as f (x). As expected, our formula contains as a
particular case the corresponding generalized recurrence
relation for the calculation of one-center integrals that
has been successfully used in the literature for many
years. On the other hand, from Eq. (2.10), we have
shown that the Ta-You Wu formula, for the calculation
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of overlap integrals in the particular case of pG ——pE, has
been generalized to Eq. (2.11). In short, the proposed
formula for the calculation of two-center integrals
should be used along with the corresponding equation

for the evaluation of E ( k
~ fE ~

n ) E one-center integrals,
Eq. (1.3), and the one for the overlap integrals
G ( m

~

k )~, Eq. (2.11), which closes the loop.
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