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Azimuthal anchoring energy of a nematic liquid crystal at a grooved interface
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The azimuthal anchoring of a nematic liquid crystal at a grooved interface is usually explained in
terms of the well-known Berreman model. Recent experimental results, however, suggest that the
original Berreman mode1 must be modified in order to account for the presence of a reduced (or in-
creased) order at the surface. A further important parameter, assumed to be infinite in the Berre-
man model, is the polar anchoring energy. In this paper we investigate how finite polar anchoring
and the reduced (or increased) surface order affect the azimuthal anchoring, and we propose a more
general expression for the azimuthal anchoring energy at a grooved interface. The main result of
this paper is that the finite polar anchoring can lead to an important contribution to the azimuthal
anchoring, while the effect of surface order can be usually neglected except in the case where the iso-
tropic phase wets the substrate.

In recent years there has been a growing interest in the
interfacial properties of liquid crystals (LC).' The inter-
face is characterized by an excess of free energy per unit
surface area y which depends on the surface orientation
of the director n. y is minimized when the director is
aligned along an easy axis defined by the two angles t9O

and $0 (see Fig. 1) and it can be written as

r(80—4o)+ W(8 80,0 40)— —
where 8 and P are the director polar and azimuthal angles
shown in Fig. 1 and W(8 —80,$—Po) is a positive func-
tion termed the "anchoring energy. " If 0 is kept equal to
8O, the anchoring energy becomes a function of P only:

W'= W, (P —Po) .

In this case 8' is named "azimuthal" anchoring energy.
On the other hand, if /=$0, one obtains

W= W~(8 —80)

which is the "polar" anchoring energy.
At the interface between a nematic LC and a planar iso-

tropic medium, the symmetry of the system requires the
azimuthal anchoring energy to vanish [W', (P —Po)=0].
This is not the case when the interface exhibits a grooved
structure as schematically shown in Fig. 2. This kind of
interface can be obtained by "rubbing" of the surface or
by oblique evaporation of a thin SiO film. Some years
ago Berreman proposed a simple model to explain the az-
imuthal anchoring of a nematic LC at a grooved interface.
The basic assumptions of this model are the following.

(i) The director at the surface is strongly forced to lie
parallel to the surface (infinite polar anchoring energy).
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FIG. 1. Geometrical parameters defining the director orien-
tation at the interface between a nematic LC and a different iso-
tropic medium. The interface is assumed to coincide with the
x-y plane. 0 and g are the polar and azimuthal angles of the
director n, respectively. 00 and yo are the polar and azimutha1
angles corresponding to the easy axis (dashed line).

FIG. 2. Schematic geometry of a grooved nematic-solid inter-
face. The grooves are assumed to be parallel to the y axis and to
have a sine profile. A and A, are the amplitude and the wave-
length of the grooves, respectively. h is the characteristic length
of the director distortion. (a) Equilibrium director orientation
near the interface when the surface director orientation is paral-
lel to the y axis. Points indicate that the director is everywhere
parallel to the y axis. (b) Equilibrium director arrangement
when the surface director orientation lies in the x-z plane.
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(ii) The elastic constants of the nematic LC near the
surface have the same value as in the bulk.

27TxE(x)=a x,z=A sin

Both these assumptions might not be satisfied in many
practical cases. For example, there is strong circumstan-
tial evidence that the surface order parameter Qz is lower
(or higher) than the bulk value Qz. ' Therefore, the
surface elastic constants, too, are different from the bulk
ones because they scale approximately as the square power
of the scalar order parameter. Dramatic consequences of
the breakdown of assumption (ii) are expected when wet-
ting of the surface by isotropic phase occurs. "' Also as-
sumption (i) turns out to be unvalidated in some impor-
tant cases. '

In this paper we investigate how the Berreman expres-
sion for the azimuthal anchoring energy at a grooved in-
terface must be modified if assumptions (i) and (ii) are
released. According to Berreman, we assume that the
surface profile is given the simple form (see Fig. 2)

g(x)=A sin x277
(4)

where A and A, are the amplitude and the wavelength of
grooves, respectively.

The physical mechanism responsible for the azimuthal
anchoring is schematically shown in Figs. 2(a) and 2(b).
The polar anchoring is assumed to align the director
parallel to the interface [6)o=m /2 in Eq. (3)]. If the direc-
tor lies in the y-z plane (P=m/2), no director distortion
occurs and thus the total free energy per unit surface area
vanishes. On the contrary, if the director lies in the x-z
plane (/=0), a director distortion occurs and the elastic
free energy per unit surface area does not vanish. By
making assumptions (i) and (ii) and by setting in Eq. (4)
the elastic constants to be isotropic (K;; =K, for
i = 1, . . . , 3) and 3 /k « 1, Berreman obtained

277 277—arctan A cos x (8)

In the same spirit of the Berreman calculation we assume
A «A, and we replace Eq. (8) with

2~ 2'e(x)=a(x,z=0) — A cos x (9)

It is evident that e(x) will never exceed the value (2n. /A, )A
and thus e(x) « l. At equilibrium the director orienta-
tion minimizes the total free energy

'2 2
Ba da+ d V+ 8'~sin ed5,
BX Z 5

K = csin(2e)=2W~e .
Be
(3Z z=0

Equations (11) and (12) admit the simple solution

(12)

2~ 2'a(x,z) =aoexp — z cos x (13)

(10)

where the first term in the right-hand side of Eq. (10) cor-
responds to the bulk elastic free energy, while the second
term corresponds to the surface free energy and differ-
ences among the three elastic constants are ignored.
Minimization of Eq. (10) gives the Euler-Lagrange equa-
tion

2e c)2a =0
BX 9Z

with the boundary condition (valid for 3 «A, )

W, (P) = W, sin
2

where

where ao= (14)

2mAK
0 g3

(6)

is the azimuthal anchoring energy coefficient. Note that
the major contribution to W, comes from the thin distort-
ed layer of thickness h -A, /2' near the surface.

We now investigate how Eqs. (5) and (6) must be modi-
fied to take into account the finite value of the polar an-
choring energy

W~(e)= csin E, (7)

where 8& is the polar anchoring energy coefficient and
e=~/2 —0 is the angle which the director makes with the
surface [see Fig. 2(a)]. Let us name a(x,z) the angle be-
tween the director and the x axis. Therefore, the angle e
of Eq. (7) is given by

For Wz »m(K/A. ) (strong polar anchoring), Eqs. (13) and
(14) coincide with the Berreman result, i.e., ao-2n. A/A, .
In the opposite case [Wz «n. (K/A, )], ao-0 and the
director is almost uniformly oriented along the x axis.
Note that the angle e of Eq. (9) is always lower than
2n.d /k and thus the integrand in the second term of the
right-hand side of Eq. (10) can be replaced by Wze . The
azimuthal anchoring coefficient corresponds to the excess
of free energy per unit surface area

2

W, =f —,'K dx+ —f Wpe'dx .
BX

Ba
az

(15)

By substituting a(x,z) and e(x) of Eqs. (13) and (9) into
Eq. (15) we obtain
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2nd K
(16)

Note that, for Wz »(vr/A, )K, the major contribution to
W, comes from the elastic Berreman mechanism [first
term in the right-hand side of Eq. (15)] and thus W', coin-
cides with the Berreman result of Eq. (6). On the con-
trary, for W& «nK/A. , W is almost entirely due to the
polar anchoring contribution and assumes the limiting
value

2nd W
W, =

i.2
(17)

In order to estimate the possible relevance of the polar an-
choring contribution, we consider, for instance, the ob-
liquely evaporated SiQ-nematic interface which is known
to exhibit a grooved structure [A —100 A and A, —300 A
(Ref. 2)]. The polar anchoring coefficient at this interface
for the nematic LC 5CB has been recently measured by
Yokoyama et al. ' '" They found Wz -0.05 erg/cm at
5' below the clearing temperature Tz;, while W~ -0.005
erg/cm at the clearing point. By assuming E-4.10
dyn, ' we found ~K/A, -0.4 erg/cm and thus the condi-
tion Wz ~~nK/A, is never fulfilled.

Now we briefly discuss the contribution of the surface
order to the azimuthal anchoring energy. As already
remarked, the elastic constant K scales approximately as
the square power of the local scalar order parameter Q.
On the other hand, the scalar order parameter changes
within a thin layer of thickness 6 near the interface rang-
ing from the surface value Qs to the bulk one g~. There-
fore, the elastic constant, too, must change near the inter-
face. A complete theory of the azimuthal anchoring
should start from the minimization of the Landau —de
Gennes free-energy density' and of the surface free ener-

gy. " This procedure, however, furnishes a set of differen-
tial equations which do not admit simple analytical solu-
tions.

In most of the practical cases, however, the characteris-
tic length 5 is much lower than that of the orientational
distortion (h —A, /2m ). Therefore, the elastic constant
within the distorted layer assumes almost everywhere the
bulk value K and thus Eq. (16) is substantially correct.
This case (5&~h) is no doubt the most general one; in
fact, the 6 parameter is usually expected to be of the order
of 10 A."

The only special case where the characteristic length 6
becomes very large is when the isotropic phase wets the
solid surface. " In this case, indeed, the 6 length is known
to diverge with a logarithmic law as the temperature ap-
proaches the clearing value Tz;. Therefore there will ex-
ist a temperature range near Tz; where Eq. (16) complete-
ly fails. Also in this case, however, a simple analytic ex-
pression for the azimuthal anchoring energy can be ob-
tained if the temperature T is very close to the clearing
value. In this regime, in fact, 5 is much larger than h and
the elastic constant within the distorted layer is almost
coincident with the surface value Ks. Therefore, Eq. (16)
still holds provided that the bulk elastic constant K is re-
placed by Kz. The surface elastic constant, in turn, is
proportional to the square power of the surface order pa-
rameter which is known to vanish at the wetting transi-
tion. " Therefore, the azimuthal anchoring energy, too, is
expected to vanish [see Eq. (16) where K is replaced by
Ks]. A more detailed discussion of this effect was already
given in Ref. 12 where experimental measurements of the
azimuthal anchoring energy coefficient at the SiO-
nematic interface of 5CB were reported.
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