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Binding energies of muonic molecules
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The integral-transform (generator-coordinate) method has been applied to calculate the binding
energies of the lowest S states of a set of muonic molecules. The wave functions obtained are both
compact and accurate, as indicated by energy eigenvalues. The calculated values of the energies of
ddp, ttp, and ttp* are the lowest reported so far, and they lead to a new estimation of the corre-
sponding asymptotic values for a saturated basis set.

I. INTRODUCTION

There has been a revival of interest in the literature in
the calculation of the binding energies and other proper-
ties of three-body systems. Possibly the most intriguing
of such systems to be studied most recently are muonic
molecules such as ddt, ttp, etc. , due to their involve-
ment in catalyzing nuclear fusion. '

The required accuracy (of the order of 1 meV in ener-
gy) is a demanding test of the quality of calculated wave
functions. The trial functions used in such calculations
are either of Hylleraas type, ' or of explicitly correlated
pseudo-Slater type with the exponents generated in a
pseudorandom manner from a set of nonlinear variation-
al parameters.

The lat ter approach is essentially a version of the
integral-transform (generator-coordinate) method
developed in this laboratory and extensively tested for
small atoms. In a simplified form, it has been recent-
ly applied with success by Frolov and Efros. They used
only three nonlinear parameters, whose optimization was
rather perfunctory, if done at all. The values of those
parameters have been set equal for most muonic mole-
cules and states they considered, instead of being indi-
vidually optimized for each molecule.

In spite of the simplicity of their approach, Frolov
and Efros achieved impressive numerical accuracy.
However, in view of the high standard of precision re-
quired for nuclear fusion applications, the accuracy of
some of the results of Ref. 4 may not suffice. It is there-
fore logical to apply the earlier, more sophisticated ap-
proach to the same problem. As we are going to
demonstrate, in a number of cases this allows one to
reduce the size of the basis set without loss of accuracy,
and sometimes even with its gain. In some cases, this
produces a considerable change in the estimate of the
binding energy obtained by extrapolation to the limit of
a saturated basis set.

II. METHOD

The standard approximation in treating muonic mole-
cules consists in the neglect of non-Coulomb contribu-
tions to the interaction potential between the particles.
%"ith this approximation, the Hamiltonian of a muonic
molecule is the sum of the potential energy of the

pair-wise Coulomb interactions, and of the kinetic
energy of the three particles involved. We used the fol-
lowing values of the constants: m, =5496.899m„md=3670.481m„m = 1836.151 527m„m „=206.7686m„
and Ry=13.605 804 1 eV.

To solve the corresponding Schrodinger equation, we
have applied a modified version of the integral-transform
(generator-coordinate) method, originally developed in
this laboratory. It is equivalent to the variational
treatment with the trial function of the form

)& exp( —ak r t f3& r2 ——
Y t r -),

yk ——exp[G& ( ,'k(k+1)V'5)+G—z(—,'k(k+1)/13) ],
(2b)

(2c)

where (x ) is the fractional part of x.
This algorithm for generating the exponents (temper-

ing scheme) has been recently proposed by Alexander
et al. Its advantage, with respect to that previously
developed in this laboratory, ' is due to a wider spread
of exponents obtained, which alleviates problems with
quasilinear dependences between basis functions, en-

where r
&

and r2 denote the distances between each of the
two nucleons and the muon, and r is the distance be-
tween the nucleons. P]2 stands for the permutation
operator and enters only for homonuclear molecules.
The Ck are linear combination coefficients, determined
by diagonalizing the Hamiltonian matrix.

The exponents at, , /3t, , and yt, are generated in a pseu-
dorandom manner from the set of six nonlinear varia-
tional parameters 3 &, Az, 8], 82, G&, and 62, accord-
ing to the formulas:

a k
——- exp[ A, ( —,

' k ( k + 1 ) /2 ) + A 2 ( —,
' k ( k + 1 )v'7 ) ],

(2a)

Pk ——exp[B, ( ,'k(k+1)/3) +B—~(,'k(k+ 1)v'l l ) ],
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TABLE I. Binding energies (in eV) of the lowest S states of homonuclear muonic molecules. N is
the number of terms in the trial function according to Eq. (1). Asterisks denote the lowest excited
state of S syrnrnetry (2S). P, present results; FE, results from Ref. 4; BD, results from Ref. 2 obtained
with a Hylleraas-type variational ansatz (number of terms in parentheses).

80
120
140

100
125
140

253.15041
253.152 05
253.152 30
253.1524

253.15040
253.152 05
253.152 40
253 ~ 153

253.152
(125)

325.070 35
325.073 49
325.073 52
325.0735

325.066 95
325.071 24
325.072 13
325.074

325.070
(203)

FE

BD

35.837 07
35.842 93
35.843 27
35.8435

35.694 46
35.81093
35.836 58
35.9

35.815
(161)

362.908 10
362.909 40
362.909 45
362.9095

362.871 01
362.895 58
362.900 40
362.904

362.900
(203)

83.713 08
83.769 86
83.769 96
83.771

83.540 17
83.684 14
83.722 02
83.78

83.630
(161)

countered for very extended basis sets.
Those problems are usually caused by the loss of accu-

racy due to cancellations. The typical manifestations of
such problems are of two kinds. Firstly, the roundoff er-
rors may accumulate to make the metric matrix in the
eigenvalue problem nonpositive definite. Due to a built-
in penalty function, the program automatically rejects
those sets of nonlinear parameters for which the metric
matrix is non-positive-definite and continues the search
for optimum parameters in other regions of the parame-
ter space. The only effect of the loss of accuracy con-
sists in the fact that the optimum set of nonlinear pa-
rameters cannot be approached too closely (which would
be possible with higher numerical precision, i.e., smaller
roundoff errors), and the resultant wave function is
slightly worse.

In other cases, the loss of accuracy may result in obvi-
ously unphysical eigenvalues. As the eigenvalues are not
known a priori, there is no systematic way for the pro-
gram to detect this sort of problems. However, errors of
this kind may be easily detected by direct inspection of
the final results. In doubtful cases the calculations
should be repeated with higher precision. Our experi-
ence suggests that with the tempering scheme used in
this paper [Eqs. (2a) —(2c)], the variational ansatz of up
to 100 terms is very safe with the numerical precision
obtained with a 16-bit mantissa.

III. RESULTS

In most of our present calculations for heteronuclear
muonic molecules, the accuracy of a Perkin Elmer 3251
computer in double precision (53 bit = 16-significant-
figure mantissa) turned out to be sufficient to avoid the
difficulties mentioned above. In order to safeguard the
conclusions against the second kind of errors, we verified
the results for a few sample cases by repeating the calcu-
lations on an IBM 3081G computer in quadruple pre-
cision (109-bit mantissa). In most instances the
differences between the two results turned out to be

negligible. For tpp, although the lower precision results
did not exhibit any unphysical features, the higher nu-
merical precision of the IBM yield a substantial im-
provement of the eigenvalue, probably by allowing the
program to approach the energy minimum more closely.

For homonuclear molecules where shorter expansions
produce already very good results, the problems with the
loss of accuracy for the most extended basis set (N= 140)
are a rule rather than an exception. In those cases, all
calculations have been done on an IBM 3081G in qua-
druple precision.

The calculated binding energies of the lowest S states
of several muonic molecules are shown in Tables I and
II, and compared with those reported by Frolov and
Efros. The lower values of the total energies obtained
from our present treatment clearly indicate the very

80
120
140

125
200
250

pdp

221.528 89
221.546 34
221.547 97
221.5503

221.533 93
221.547 81
221.549 23
221.551

221.541
(440)

ptp

P
213.777 70
213.837 00
213.838 82
213.841

FE
213.828 47
213.838 96
213.839 75
213.841

BD
213.829

(440)

dtp,

319.105 69
319.134 79
319.137 47
319.1411

319.049 91
319.134 51
319.138 05
319.140

319.062
(440)

dtp*

34.049 83
34.669 78
34.753 56
34.850

34.342 04
34.791 12
34.823 81
34.84

34.573
(440)

TABLE II. Binding energies (in eV) of the lowest S states of
heteronuclear muonic molecules. N is the number of terms in
the trial function according to Eq. (1). Asterisks denote the
lowest excited state of S symmetry (2S). P, present results; FE,
results from Ref. 4; BD, results from Ref. 2 obtained with a
Hylleraas-type variational ansatz (number of terms in
parentheses).
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good quality of the corresponding wavefunctions. Al-
most as a rule, the accuracy attained with the present
approach is better than that of Frolov and Efros for a
basis set with a comparable number of terms. The
difference is particularly spectacular for ttp where our
value of the binding energy even for the least extended
basis set (N=80) is greater than the limiting (extrapolat-
ed to N = oo) value of Ref. 4. This advantage is due to
the flexibility added to the trial function by additional
nonlinear parameters, and also to their thorough optimi-
zation in the present study. It should also be noted that
our binding energies are generally lower than those ob-
tained by using Hylleraas-type trial functions, even with
a much greater number of terms. ' This observation
agrees very well with previous results for atomic sys-
tems, demonstrating the ability of this version of the in-
tegral transform method to produce wavefunctions that
are both accurate and compact.

From the point of view of nuclear fusion applications,
the required accuracy of the binding energies is of the
order of 1 meV. Although our calculated binding ener-
gies are often better (at least in most cases of homonu-
clear molecules) than those of Frolov and Efros, they
usually seem to converge to the same limit, thereby
confirming most of the results of Ref. 4.

The discrepancies in the extrapolated values go
beyond the 1-meV margin for dt p', ddt, ttp, and ttp*.
(Asterisks denote the first excited S state. ) We believe
that in the first case the result of Ref. 4 may be more re-
liable, as suggested by the lower values of calculated en-

ergies, due to the use of a much larger number of terms
in the trial function. In other cases, based again on the
consideration of the calculated binding energies for finite

X, we consider the present results more reliable and
probably the most accurate to date. For ttp, our extra-

polated value of 362.9095 eV is in the rniddle of the in-
terval between the extrapolated values of Ref. 4 (362.904
eV) and Ref. 2 (362.95 eV). Surprisingly enough, our ex-
trapolated values for ddp' and ttp* are smaller than
those reported by other authors, the difference for
ddp* being as large as about 60 meV. ' However, since
our calculated total energies for finite N are considerably
lower than those of other authors and seem to converge
more rapidly, our extrapolated values also seem to be
more accurate.

However, in spite of the achieved numerical accuracy,
the physical relevance of our results as well as of those
of other authors is limited by the physical approxima-
tions adopted, the neglect of the vacuum polarization
correction being presumably the most important. An at-
tempt to include it in the calculations is presently under-
way. "

Note added in proof. As we have discovered recently,
a direct comparison of the results at this level of accura-
cy is somewhat difficult due to different values of particle
masses assumed by different authors. For instance, Fro-
lov and Efros assume larger values for m, and m„ than
we do. Consequently, if we used their values, our bind-
ing energies would be still larger, i.e., still better than
those of Ref. 4. For comparison, we have recalculated
the binding energy of the @pe molecule with
m„=206.769m, (as in Ref. 4), and with N= 140 we have
obtained —E =253. 152 58 eV, which is better than the
corresponding result of Efros and Frolov (253.152 40
eV).
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