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Spin Ising transcription of a lattice model of micellar solutions

A. Robledo

(Received 16 April 1987)

It is pointed out that the spin-1 Hamiltonian

&= —J g S;S)—K g S S)' —C g (S S, +S;SJ')+b, g S
( &J ) ( &J ) ( 1J ) l

with staggered field C represents the Widom-type lattice mixture of bifunctional molecules ab and

AA with finite interactions. The structure of the mean-field phase behavior of the model micellar

solution is provided partially by that of the symmetrical section of Griffiths's three-component

model.

I. INTRODUCTION

In 1968 Wheeler and Widom' introduced a lattice
model of bifunctional molecules A A ( 0 —0 ), BB
(~—~}, and AB ( 0 —~ } that abstracts some features of
a ternary system composed of two immiscible solvents
and an amphiphile. The rnolecules are confined to the
bonds of a (simple cubic) lattice filling every bond with
one, and only one, molecule allowing only same-letter
molecular ends to meet at a given lattice site. This re-
striction makes the model mixture equivalent to the
nearest-neighbor spin- —, Ising model in the same lattice.
The basic character of each constituent is specified by
means of infinite repulsions or no attractions between
molecular ends. More recently, Widom has generalized
this model with the introduction of next-nearest neigh-
bor and three-spin interactions and, as a consequence,
amphiphile AB structures exhibit nonvanishing bending
energies. The additional interactions generate phase di-
agrarns and interfacial properties which concord with
some features of real microemulsions.

Also recently, a different generalization of the original
model has been proposed, only now, instead of further
interactions, finite molecular end-end interactions are al-
lowed. The amphiphile molecule is now denoted by ab
( —~ ) to help distinguish between end-end encounters
originating from different kinds of molecules (A-a as
different from A-A, etc. ) This differentiation allows for
nonvanishing amphiphile-film bending energies while
considering only end-end interactions. As discussed in
Ref. 3, the model properties are obtainable in terms of
simple Ising systems with spins located at the bonds (or
secondary sites) of the lattice if the (nearest-neighbor)
couplings are given a specific temperature dependence.
A spin-1 system describes the ternary mixture while
spin- —,

' systems apply to the associated binary mixtures.
Closed solubility loops, liquid-crystalline-like phases, mi-
croemulsionlike phase progressions, and other features
common to amphiphile systems are reproduced through
the study of such mappings.

Following the publication of Ref. 3 the author

discovered that the establishment of the equivalence be-
tween the partition functions involved a neglect of orien-
tational correlations. Therefore, the range of application
of that mapping is reduced to either small differences be-
tween certain end-end interaction energies where a mole-
cule of amphiphile is involved or to high temperatures.
An appropriate reformulation that takes into account
this circumstance has been provided. Here we consider
the definition of the spin Ising system that authentically
represents the lattice mixture for all possible values of its
parameters. Details are given for the binary case
3 A +ah only, which, as shown below, corresponds now
to a spin-1 system. The properties of the three-
component 3 A +ah +BB mixture would be represented
now by a spin- —, system, and its formulation is a straight-
forward extension to the one given here.

II. FORMULATION OF THE SPIN MODEL

With the two species 3 3 and ab there are six kinds of
end-to-end encounters between pairs of molecules. Only
those placed along bonds at right angles have nonzero
interaction energies, the values of which are denoted by
E „„,e „,, E „b, E„, c,b, and Ebb ( E; & 0 for repulsions).
See Fig. 1. Consider now the subdivision shown in Fig.
2(a) of the primary and secondary lattices each into two
sublattices. The sublattices, P and Q, for the primary
lattice are interwoven and those, C) and &(, for the
secondary lattice form layers. The values S=O, 1, and
—1 are assigned to the spins located at the se-
condary sites according to the molecular occupations
shown in Fig. 2(b). S=0 indicates occupation by AA
and S=+1 specifies orientations of ab. The orientation
assignments for S=+1 appear reversed in the sublattices
C) and )&. This reversal ensures that the configurations
of every pair of nearest-neighbor spins have each a
uniquely defined contribution to the total configurational
energy. These contributions are listed in Table I, where
the two different columns refer to the fact that end-end
encounters and nearest-neighbor pairs of spins fall into
one of the two sets, according to whether they occur at,
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TABLE I. Spin-spin interaction energies.
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&Wa

&aa

&ab

~bb

0
1

—1

1

1

—1
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SJ

0
0
0
1

—1
—1

~bb

&aa

or are placed next to, a primary site of type P or g. The
equivalence between mixture and magnet can be estab-
lished by comparison of their respective Boltzmann fac-
tors. For an end-to-end encounter this is

expI (kTq ) '—[e;I p(S; +—S, )]I,
where e;i (i,j =0,+1) takes the values eAA, eA„eAb,
c„, c.,b, and ebb according to Table I, p=p, &

—pzz is
the chemical potential difference between the two
species, and q is the coordination number of the secon-
dary lattice. For nearest-neighbor pairs of spins the
Boltzmann factor is

and

J= 2E b
—~(E +ebb )

E b+sA EAA sob (E +~bb )

+C= —,'(&A. —&Ab) ——.(E- &bb»—

H=O,

~= &(eAb —EAA )+ &(EA —eAA ) P—

(lc)

(ld)

(le)

F expI (kTq) '—[ JS;S,—K—S; S~ —C(S; S, +S;S, )

—H(S, +S, )+A(S,'+S,')]I,
where F is a constant, J and E are dipolar and quadru-
polar exchange couplings, while H is a magnetic field
and 6 a crystal-field splitting. The term C is normally
absent in magnetic systems but it is needed in the
description of multicomponent lattice gases. The
equality of the Boltzmann factors leads [within the par-
ticular choice of F= exp( —E„„Ik Tq ) ] to the
identifications

where the sign in front of C is positive if the pair of
spins belongs to a primary site of type P and is negative
otherwise. Thus the spin-1 model obtained differs from
the usual in that the field C is not uniform but alter-
nates in sign throughout the lattice. Also, the total mag-
netic field H acting on any spin S; vanishes because the
contribution H; to H from a pair of spins S;,5 is

H,, =+—,'q (eAb —EA, ), where again a positive sign is

given to type P pairs and negative otherwise, and thus
H= g&;. ) H; =0. It is convenient to express the above
equivalences also in the language of a ternary mixture or
alloy consisting of the three components x, y, and z on
the same lattice where the spins are located. Its five
relevant fields, three interaction energy parameters a, b,
and c, and two chemical potential differences, p, and

py z p are related to the spin- I fields through
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FICz. 1. (a) Bifunctional molecules A A and ab on the bonds
of the primary lattice. The secondary lattice is formed by the
bond midpoints. (b) Ordered sublattice arrangement of close-
packed ab molecules.

FIG. 2. (a) Subiattice arrangement for primary (P and Q)
and secondary (0 and &() sites. (b) Spin value assignation of
molecular orientations in the two sublattices G and X.
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a = —,'(J+K —2C.),
b = —,'(J+K+2C),

(2a) where

(2b) a = —,'(a+& ) = —,'(J+K ) = —,'(sA, +sAb —E„„)
c =2J,
p„,=b —(b, H—)=—,'(J+K+2C —2b, +2H),
and

(2c)

(2d)

and

——(e +ebb )

C =C =2J = Eab —
2 (Eaa + Ebb )

(6a)

(6b)

Py, =a —(b+H)= —,'(J+K —2C —2b, —2H) .

In terms of these we obtain

(2e)

=8+ z (2s A A eb—b —s o } . (6c)

P =P„—, =Py, = —,'(p„,+py, )=—,'( +K —2b, )

~P sAb (EAA +ebb } bQ (3a)

bP =&A. —
—,'(eAA+s-)=&Q (3b)

CP Cab —z(Eaa+Ebb)=CQ (3c}

(I x —z)P P+z( AA aa) (I y —z)Q (3d)

and

(py z )p p+ Z(SAA ebb } (I x —z }Q (3e)

where the subindexes refer to nearest-neighbor pairs of
particles associated to primary sites of types P and Q.
In this language x and y represent the two possible
orientations of the amphiphile ab and z the solvent A A.
There is only one independent chemical potential
difference and therefore, as would be expected, overall
amphiphile orientation cannot be modified by an exter-
nal field. The staggered property of the equivalent spin-
1 system requires the interchange of the interaction pa-
rameters a and b and chemical potential differencesp, and py, whenever the type of a nearest-neighbor
pair of molecules changes from P to Q.

Thus, the phase behavior of the model micellar solution
in this approximation is given by that of the so-called
symmetrical section (a =b) (Ref. 7) of Griffiths' three-
component model under the additional restriction that
p py The symmetrical section of interest cuts
through four "energy" triangles, a & 0, b & 0, c & 0;
a&0, b&0, c&0; a&0, b&0, c&0; and a&0, b&0,
c &0. Of these, the "principal" energy triangle a &0,
b & 0, c &0, is the richest in multiphase equilibria among
uniform phases in the spin-1 language (some of which, as
we see below are not uniform in the bifunctional mole-
cule mixture language}. As one changes the magnitudes
(and signs) of the interaction parameters a, b, and c,
these kinds of phase equilibria gradually simplify and
finally lead to only one-phase states in the central region
of the energy triangle with a &0, b &0, c &0. In Fig. 3
we show the symmetrical section in the principal energy
triangle projected on the (T,c) plane. Only the main
features of the section, which happen to appear precisely
when p,„,=py, are marked in the figure. We follow
a similar notation for phase coexistence and critical
boundaries as in Ref. 7. Thus, a represents two coexist-
ing phases and P denotes an ordinary critical point
where the two phases coalesce. Likewise, three-phase

III. SOME MEAN-FIELD PROPERTIES

The properties in mean-field approximation of the
ab+ AA model mixture can be obtained from those of
the usual spin-1 model with uniform fields also in the
same approximation. To see this, consider the uniform
states of the staggered spin-1 model. If x, y, and z
represent the mole fractions of the corresponding three
components, constant throughout the lattice, the grand
potential per bond (or secondary site) co in the mean-field
approximation is

co =k T[x lnx +y lny +z lnz ]

or

+ —,
' [ayz+bxz +cxy —p, ,x —py, y ]

+ ,' [byz +axz+cxy ——py,x —p, y ],

co=kT[x lnx+y lny+z lnz]

+a (yz +xz ) +cxy —P(x +y ),

(4)

C

20+c

FIG. 3. Projection of the symmetrical section of the full
phase diagram on the (T, c/(2a+c)) plane. This figure is
essentially Fig. 8 in Ref. 6. The notation for phase coexistence
and critical boundaries is explained in the text. The arrows la-
beled 1 and 2 indicate the paths that yield the phase progres-
sions shown in Figs. 4 and 5, respectively.
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states a terminate at a critical end point ag or at a tri-
critical point y. Four-phase states a may appear
bounded by critical points coexisting with two phases
a P, by a double critical point I3~, by a tricritical end
point ay, or by a fourth-order critical point 6.

The symmetrical section in the principal energy trian-
gle contains two different regions of four-phase coex-
istence. The first region appears close to the center of
the triangle and forms part of the so-called shield region
that extends out of the symmetrical section. The e
points of this type that lie on the symmetrical section
form a line bounded by a P and ay points. The ay
point is in turn the end of a line of symmetrical tricriti-
cal points y, that extends at higher temperatures over
the u points and spans an interval of c values. At the
large c end of this interval the line terminates at a
fourth-order point 6, and, as shown in Fig. 3, this is also
the common end of two loci of P and a 13 points, the
boundaries of the second set of a points. The symme-
trical sections in the other three energy triangles exhibit
only a and P points. (There are two exceptions, the
merging of two y points from outside the symmetrical
section in the a & 0, b & 0, c & 0 triangle and a y point at
the boundary c =0 between the a &0, b &0, c & 0 and
the a &0, b &0, c &0 triangles. ) Figures 4 and 5 show
two different phase diagram sequences obtained when
the temperature is incremented in mixtures with values
of c such that each displays one type of four-phase coex-
istence. The trajectories followed in (T,c) space are
shown by the arrows labeled 1 and 2 in Fig. 3.

The condition p =p, =p~, selects from these
phase diagrams only the states with compositions
(x,y, z) =(x +6, x —6, 1 —2x ). In the ah+ A A mixture
language these states are either uniform phases (6=0) or
nonuniform "aggregated" phases (6&0), where the ab
molecules acquire the sublattice arrangement shown in
Fig. 1(b). In Figs. 6(a) and 6(b) we show the phase boun-
daries in (p, T) space for the two kinds of mixtures, re-
spectively, together with the location of the a, a P, P,
and y points. Because phases differing only in the sign
of 5 indicate only degeneracy of the same sublattice or-

(b) (c)

(e)

FIG. 5. Phase diagrams obtained when the temperature is
increased, (a)—(f), in a mixture with interaction parameter
c/(2a+c) indicated by the label 2 in Fig. 3.

dering, a and a points appear forming simple first-
order lines bounded by the higher-order y or P critical
points. If, in a system represented by Fig. 6(a), c is de-
creased in value the y point approaches the location of
the a state, and both eventually coalesce at an ay
point. For smaller values of c the first-order line be-
tween sublattice order and an isotropic 3 3-rich solution
terminates at an aP point. When c =0 this point occurs
at T=O. The mixtures in the a &0, b &0, c &0 triangle
exhibit only phase separation of isotropic liquids
differing only in solvent content, and thus their phase di-
agrams consist of a single a line bounded by a P point.
On the other hand, in Fig. 6(b) if c is incremented in
value, or alternatively a is decremented, the e line be-
comes shorter in extent and the a P point moves to
lower temperatures. When the system enters the a &0,
b &0, c &0 triangle only the second order points P that
separate sublattice order and isotropic solution remain.

Additional phase equilibrium properties of the model
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FIG. 4. Phase diagrams obtained when the temperature is
increased, (a) —(f), in a mixture with interaction parameter
e/(2a+c ) indicated by the label 1 in Fig. 3.

FICx. 6. (a) Phase diagram in the (p, T) for the ah+ A&
mixture that corresponds to the system described in Fig. 4.
Solid and dashed lines represent first- and second-order
boundaries, respectively. (b) The same as (a) but for the system
described in Fig. 5.
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mixture may be obtained (also within mean-field)
through the consideration of the nonuniform states of
the staggered spin-1 model. However, the analysis of the
model's capability in describing amphiphile aggregation
in uniform (isotropic) solutions, such as occurrence of a
critical micellar concentration, would probably require
the study of the staggered spin-1 model beyond the
mean-field approximation.
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