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A recent theory of the initial density dependences of both viscosity and thermal conductivity
has been extended to include lower reduced temperatures. New data on the second viscosity virial
coefficients of some organic vapors are found to be in substantial agreement with the theory even
at the lowest temperatures. We present in tabular form the numerical values for both transport
virial coefficients in the reduced temperature range 0.5 < T* < 100 and include values for the con-
stituent two-monomer, three-monomer, and monomer-dimer contributions. A brief discussion of
the theoretical approach and calculational methods is also given.

I. INTRODUCTION

We have recently developed a microscopically based
theoretical model for the second transport virial
coefficients of gases."> The second viscosity virial
coefficient B, is defined by

n=no1+B,p+ "), (1)

where 7 is the viscosity, 7, is the dilute gas or
Chapman-Enskog limit of 7, and p is the number densi-
ty. The second thermal conductivity virial coefficient
B, , where A is thermal conductivity, is defined similarly.
We demonstrated that, for a Lennard-Jones 12-6 poten-
tial, our model agrees well for both transport virial
coefficients with experimental results in the region
T*>1, where T*=kyT /¢, kg is Boltzmann’s constant,
and ¢ is the intermolecular potential energy parameter.

More recently, Vogel, Bich, and Nimz*® have deter-
mined B, from their measurements of the viscosity of
benzene and methanol vapors at T* < 1. These data
show that B, becomes negative and rapidly decreases
with decreasing temperature. They discuss-our model in
some detail and show graphically that our previous re-
sults, if extrapolated, would agree qualitatively with
their data. However, they also emphasize that, in the
absence of numerical values for B, according to our
model for T* <1, a quantitative comparison cannot be
made.

Since our numerical results for B, and B, were
presented only in graphical form in Ref. 2, it is difficult
at present for experimentalists to make quantitative
comparisons with our model. This problem was noted in
Refs. 4 and 5, as well as for the low reduced temperature
measurements of Ref. 3. In order to facilitate such com-
parisons in the future, we present in this report a table
of numerical results for the reduced transport virial
coefficients as functions of 7*. Included in the table are
new numerical calculations with the Lennard-Jones 12-6
potential for 0.5<7T* <0.9. We also compare our mod-
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el with the new viscosity data of Vogel et al.,? and find
that the theoretical transport virial coefficients, as calcu-
lated with the Lennard-Jones potential, agree with ex-
periment well within the limits that can be expected for
polyatomic gases.

II. SUMMARY OF THEORY

We reduce the second transport virial coefficients ac-
cording to B} :Bﬂ/a3 and B} =B, /o> where o is the
intermolecular potential distance parameter, and subdi-
vide the coefficients as

BY=B2* yBY* L pM-Dx 2)

and similarly for B¥. The terms in Eq. (2) represent a
two-monomer contribution, a three-monomer contribu-
tion, obeying B‘,,”* =B{* in our model, and the
monomer-dimer contribution.

The two-body terms were first derived by Snider and
Curtiss.® Our primary theoretical contribution has been
to revise these terms to ensure that integrations are per-
formed only over free two-body phase space,! in part be-
cause bound and metastable contributions are expected
to be included in BLM‘D)*, p=mnorA.

Calculation of B2’* involves two types of integrals.
The first are similar to the Q“9* integrals in the
Chapman-Enskog theory of dilute gas transport proper-
ties.” However, in addition to integration over the ener-
gy and the impact parameter of a binary collision, these
terms require a path integral over the interparticle dis-
tance along the collision trajectory.’® The second are
much simpler two-dimensional integrals to obtain the
free part of the pressure second virial coefficient B and
its temperature derivatives according to two different
conventions, which are described in detail in Ref. 1.

Expressions for Bif)* and B{?* are given by Egs. (88)
and (89), respectively, of Ref. 1. These quantities are
easily calculated algebraically with input from Tables I
and II of Ref. 1, but, for convenience in comparisons
with experimental work, their values are listed in Table I
of this paper.
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TABLE 1. Second transport virial coefficients and their subdivisions according to Eq. (2).

T* BY* B* BM-D* B\M-D* B B! B!
0.5 —3.148 —0.624 3.8093 34.411 —22.54 —21.88 11.25
0.6 —1.954 0.170 2.5181 20.917 —10.15 —9.586 10.94
0.7 —1.152 0.691 1.8530 14.307 —5.281 —4.580 9.716
0.8 —0.6035 1.038 1.4292 10.515 —3.023 —2.197 8.530
0.9 —0.1988 1.286 1.1847 8.169 —1.857 —0.871 7.598
1.0 0.0820 1.4519 1.0060 6.5755 —1.213 —0.125 6.814
1.2 0.4670 1.6674 0.7694 4.6043 —0.6191 0.617 5.653
1.5 0.7515 1.8032 0.5930 3.1008 —0.3642 0.980 4.540
2.0 0.9457 1.8634 0.4175 1.9332 —0.3519 1.011 3.445
3.0 1.0211 1.8224 0.2520 1.0350 —0.5018 0.771 2.356
4.0 1.0107 1.7559 0.1718 0.6715 —0.6109 0.572 1.817
5.0 0.9834 1.6941 0.1264 0.4814 —0.6801 0.430 1.495
8.0 0.8992 1.5606 0.0650 0.2408 —0.7736 0.191 1.028

30.0 0.6821 1.1909 0.0091 0.0338 —0.7782 —0.087 0.447

100.0 0.5149 0.9106 0.0015 0.0056 —0.6523 —0.136 0.264

The three-body terms were first derived by Hoffman
and Curtiss,”!? and are unchanged in our model. They
require an integral similar to the two-body terms de-
scribed above, except that included in the integrand is
the function y(r), defined by

o(r)/kgT
e B

y(ri=g(r) =1+4py,(rN+0(p?), 3)

where ¢(r) is the potential and g(r) is the radial distri-
bution function. Calculation of y(r) requires a separate
two-dimensional numerical integration.!®!!

Table I lists our numerical results for B* =B{*.
The entries for 0.5 < T* <0.9 are new and make possible
the comparison with the recent data of Vogel et al.?
Hoffman and Curtiss,'? and later Bennett and Curtiss, '2
have published results for five of the higher tempera-
tures.

The monomer-dimer terms are due to Stogryn and
Hirschfelder.!*~! They depend on the free part of B ac-
cording to a third convention' and the Q'*?* integrals
of Chapman-Enskog theory.” The approximation is
made that the effective monomer-dimer potential is also
a Lennard-Jones 12-6, but with different length and ener-
gy scales.'* Hence, there are two parameters, a ratio of
length scales & (monomer-dimer to monomer-monomer)
and a similar ratio of energy scales 8. We have found?
that agreement with both the viscosity and thermal con-
ductivity data is optimized by the choice §=1.02,
6=1.15. The numerical results with this choice for
BM=D* and B{M —D* are listed in Table 1.

The idea of restricting the two-body contribution to
free two-body phase space, and then adding to the
Snider-Curtiss and  Hoffman-Curtiss terms the
monomer-dimer contributions of Stogryn and Hirsch-
felder, was first proposed by Kuznetsov.!® We have
shown,! however, that Kuznetsov’s replacement of cer-
tain terms in B>* by the free part of B as defined by
Stogryn and Hirschfelder is not justified. Furthermore,
although Kuznetsov did not examine thermal conduc-
tivity, we have shown? that B 1> as predicted from
Kuznetsov’s hypotheses, would disagree with experiment
at moderately low T*.

III. NUMERICAL METHODS

We have put forth considerable effort to develop
efficient and reliable computer codes for numerical eval-
uation of the generalized collision integrals appearing in
B2*, B{¥*, and B')’*. These codes are modeled after
the dilute gas collision integral program of O’Hara and
Smith,'” which we have considerably extended to accom-
modate potentials with multiple extrema.'® The quadra-
ture used is due to Clenshaw and Curtis,'® and its advan-
tages over other quadratures, including a built-in error
estimate, have been explained in detail elsewhere.!”!?

The other important feature of the O’Hara-Smith pro-
gram is its careful analysis of singularities in the in-
tegrals due to orbiting collisions, classical turning points,
and infinite limits of integration. At no point in the
computation are these singular regions excluded from
the integration volume. Rather, transformations of the
integration variables are made to remove or to suppress
the singularities. These techniques have been carried
over to the generalized collision integrals for the trans-
port virial coefficients.

Techniques for calculating the two-body collision in-
tegrals and the subdivisions of B have been described
previously.! The three-body collision integral has been
calculated similarly, with additional features to include
y1(r). We again used Clenshaw-Curtis quadrature to
evaluate the integral expression for y,(r) and fit the
function to a finite Chebyshev series,!” since considerable
computer time is saved when performing the collision in-
tegral by determining y,(r) from a fit. The polynomial
fits and the analytic expressions!! for small and large
were explicitly incorporated into the collision integral.

The numerical results may be checked in two ways,
first by comparison with previous results and second by
internal consistency checks. As for the former, two-
body collision integrals were first evaluated numerically
for the Lennard-Jones 12-6 potentials by Curtiss, McEl-
roy, and Hoffman.? These authors used Gaussian and
Gauss-Mehler quadratures, which, unlike Clenshaw-
Curtis quadratures, do not possess an error estimate.
Also, they specifically excluded sections of the integra-
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tion volume near the singularities. For these reasons, we
believe our numerical techniques are more reliable than
theirs. In general, agreement between equivalent in-
tegrals® 1220 is better than 2%, with detailed numerical
comparisons given in Tables V and VI of Ref. 1. Of
course the final values of B{}'* and B{>* of Refs. 8, 12,
and 20 differ substantially from ours (as given in Table
I), differing in sign and order of magnitude for B{>* at
the lowest temperature, because of our (self-consistent)
treatment of the free portion of phase space in all ex-
pressions for collision integrals and pressure virial
coefficients.

Three-body terms were first numerically evaluated by
Hoffman and Curtiss,'® and later by Bennett and Cur-
tiss,!? using similar methods at five reduced temperatures
with 1<T* <100. As in our calculations, fits to y;(#)
were used in the collision integrals, but these fits includ-
ed substantially fewer terms than ours and disagreed in
the r—0 and r— oo limits.!! Despite these differences,
agreement between the results of Table I and those in
Refs. 10 and 12 is better than 1% for these five tempera-
tures.

Kuznetsov!® has reported results at five additional
temperatures above T*=1, which disagree substantially
with our values. For example, after correcting for
differing reduction schemes, the difference is 47% at
T*=1.5. Because Kuznetsov does not indicate a source
for these numbers, in contradistinction to the other
values reported in Ref. 16, we feel that these disagree-
ments do not cast doubt on the accuracy of our
methods.

There are several internal consistency checks for our
integration methods. For the two-body terms, rigorous
relations have been derived"?! among the various
definitions of the bound part of B. Also, identities have
been found relating differences of certain two-body col-
lision integrals and the various definitions of the free
part of B and its temperature derivatives. Numerically,
these relations are obeyed for 0.5 < T* <100 within the
accuracy input of the integration.!?!

For the three-body collision integrals, we have
shown?? that removal of y,(r) from the integrand yields
a result proportional to the (tabulated®®) Q'>%* integral.
Also, five identities!! involving integrals of y,(r), and the
second and third pressure virial coefficients or their tem-
perature derivatives, were checked by using numerical
integration of the polynomial fits of y,(#) and tabulated
values of virial coefficients.”?? In all cases, these internal
checks were satisfactory.

IV. COMPARISON WITH EXPERIMENT

Figure 1 shows B} and its two-body, three-body, and
monomer-dimer parts as a function of reduced tempera-
ture. Also displayed are the data for benzene and
methanol of Vogel et al.® and B} according to the
modified Enskog theory (MET) (Ref. 24) for the
Lennard-Jones 12-6 potential.

The reduced temperature range can be divided into
three regions. At high temperatures, 7*>10, the
monomer-dimer term is negligible because the popula-

tion of dimers becomes very small. B\’’* and B{'* are
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nearly equal in magnitude but are opposite in sign, so
the full B} is quite small. For T*>20, B} is negative,
in agreement with experimental data on helium?® and
our earlier conclusions for the inverse twelfth poten-
tial,?? to which the Lennard-Jones 12-6 reduces in the
high-temperature limit. Since, at these temperatures, the
distinction between the free and full part of B is negligi-
ble, these results essentially coincide with those of
Hoffman and Curtiss.” 1°

At intermediate temperature, 1.5 <T* <10, both the
monomer-dimer contribution and the full contribution
are much larger and increase smoothly with decreasing
temperature. It is within this range that most experi-
mental data have been reported.”> While the turning
points of both B} and 7,B, are located in this region,
they are not easily observed because of the flatness of the
curve and the large experimental uncertainties involved.

At low temperature, T* < 1.5, both the two-body and
three-body contributions rapidly decrease with decreas-
ing temperature, whereas the monomer-dimer term in-
creases at a lower rate. Hence, the full B} goes negative
and decreases rapidly with decreasing temperature, as
shown.

The methanol data in Fig. 1 were reduced with the
Lennard-Jones  parameters o0 =0.3359 nm and
e/ky=649.0 K as reported by Vogel et al.> For ben-
zene, Ref. 3 does not present an independently deter-
mined set of parameters, so we have adopted the values

—-0.8

-1.64

Reduced Viscosity Virial Coefficient

244

-3.2

-4 T T T T T T

10
Reduced Temperature

FIG. 1. Plots of the second viscosity virial coefficient B:‘,.
———, full theory; - . . -, two-body contribution; — — —,
three-monomer contribution; —. —. —., monomer-dimer contri-
bution; -—-—, modified Enskog theory; B, data for
methanol;® V, data for benzene.® Three additional points for
methanol are outside the range of the figure; see Table II.
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TABLE II. B} for methanol below T*=0.65. Data are

from Ref. 3. For the last two columns, two-point linear extra-
polation or interpolation from tabulated points was used.

T,K T* BY, Expt.  BY Theory B}, MET
32315 0.498 —36.1 —22.1 —48.3
363.15  0.560 —125 —14.6 —31.4
403.15  0.621 —5.52 —8.52 —~17.9

0=0.5455 nm and e/kz=401.2 K, from Mourits and
Rummens.?® Our model curve passes between the exper-
imental curves of benzene and methanol, and displays
the same negative values and abrupt decrease with de-
creasing temperature. It is emphasized that the
Lennard-Jones 12-6 potential is approximate even for
monatomic gases, but is a particularly oversimplified po-
tential for polyatomic molecules such as those of
methanol or benzene. In view of this considerations, the
agreement of Fig. 1 is as good as can be expected.

The MET (Ref. 24) is an ad hoc variant of Enskog’s
hard-sphere theory. It does not incorporate collision dy-
namics of particles interacting with realistic potentials.
Rather, it starts with the Enskog theory based on hard-
sphere collision dynamics, and adds the ad hoc replace-
ment of a thermodynamic property (the thermal pres-
sure) by that of a model fluid with a realistic potential,
or the experimental fluid. Therefore, the MET is not
microscopically based in the same sense that our model
is.

In Fig. 1 the MET results for B:‘l are also shown,
where the second and third pressure virial coefficients,
required as input, are the theoretical values calculated
from the Lennard-Jones 12-6 potential. The MET also
shows negative rapidly decreasing results for Bj, al-
though our model is generally closer to the data. For
the three methanol points outside the range of Fig. 1
(T* <0.65 and B} < —5.0), Table II indicates that two
are in much better agreement with our model than with
the MET, whereas deviations for the third and lowest
are about equal. The MET generally overestimates B
in the intermediate temperature range and incorrectly
predicts a positive result in the high-temperature limit,
as we have shown for the inverse twelfth potential.??> At
low temperature, the MET predicts a decreasing thermal
conductivity virial coefficient with decreasing tempera-
ture. This contrasts with our model and the available
experimental evidence.?

V. DISCUSSION

Vogel et al.? include a thoughtful and informative cri-
tique of theories for density corrections to transport
properties in general, and our model in particular. We
are mostly in agreement both with their endorsements
and caveats concerning our work. To their discussion
we would like to add only a few further comments.

First, while ours is a microscopically based theory, we
do not claim that it is strictly rigorous. The treatment
of monomers and dimers is intuitively reasonable but
clearly ad hoc. Ideally, we should start from a funda-
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mentally derived set of coupled kinetic equations for
reacting monomers and dimers along the lines of a for-
mal theory such as that by Lowry and Snider.?’ Also,
the three-body terms follow the approximation of
Hoffman and Curtiss,” ! suggested first by Enskog’s
hard sphere theory,” that only binary collisions occur
but the collision rate is changed by the presence of a
third particle. A more rigorous theory would probably
require integrals over true three-body collisions.

Therefore, the two parameters & and 6, as optimized
for our model, may not be the most physically meaning-
ful choices. Stogryn and Hirschfelder,'*!® using an ap-
proximate scheme for angular averaging, derived the
values 8§=1.16 and 6=1.32. Vogel et al.> correctly
point out that B(,]M_D)* is extremely sensitive to simul-
taneous increases or decreases in 8 and 0 and that exper-
imental evidence®® suggests that B{™ ~2* <0. However,
there is evidence that 6 can be increased and 8§ de-
creased, or vice versa, such that BM —D)* apnd BiM —D)*
remain essentially the same?® so that our model in effect
has one degree of freedom rather than two. Stogryn and
Hirschfelder'® used 6=1.04 instead of their derived 1.16
to fit experimental data. Kim and Ross,” using a com-
pletely different formalism, chose the values §=1.02 and
60=1.23.

Kuznetsov'® used the derived values of Stogryn and
Hirschfelder. However, as we have stated, his procedure
is inconsistent with the phase-space structure of the
second virial coefficient and the two-body collision in-
tegrals, as well as with low-temperature thermal conduc-
tivity data. In summary, there is ample precedent in the
literature for treating & and O as adjustable parameters,
and substantial disagreement over their optimal values.

In order to ascertain the best values of § and 6 to ap-
proximate monomer-dimer potentials realistically, fur-
ther work is necessary. A more rigorous theory that in-
cludes explicit monomer and dimer kinetic equations
and true three-body collisions could lead to a solution.
Further experimental work, analogous to that of Ref. 28,
which measures viscosity as a function of the degree of
dimerization, would assist this effort, as would an expli-
cit spectroscopic investigation of monomer-dimer poten-
tial functions and their spherical approximations. Re-
gardless, our modification of the Snider-Curtiss-Hoffman
and Stogryn-Hirschfelder theories has yielded a model
which agrees well with density corrections to viscosity
and thermal conductivity, and, at present, is the only
theoretical model that can predict such density correc-
tions over the complete experimental temperature range
with reasonable confidence.

We hope that the numerical values in Table I will as-
sist in making comparisons between experimental mea-
surements of transport virial coefficients and the present
theory. Such comparisons must be based on Lennard-
Jones potential parameters, preferably derived from
low-density viscosity data using the standard methods’
and the reduction scheme of Eqgs. (1) and (2). Experi-
mental measurements of both viscosity and thermal con-
ductivity along isotherms with a sufficient number of
low-density points to resolve both slope and zero density
limit would be useful in order to refine the theory fur-

6
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ther. Additional results for gases with spherical and
nearly spherical constituents over the broadest possible
temperature ranges and with accuracies better than
0.2% for viscosity and 0.5% for thermal conductivity
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are most important. The substantial agreement between
the new low-temperature viscosity points of Ref. 3 and
the theory increases our confidence in its utility for the
prediction and correlation of transport virial coefficients.
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