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We show that cholesteric liquid crystals with a sufficiently short pitch, when put in an electric
field, can exhibit undulations, the analog of mechanical undulations or of thermal undulations ob-
tained when an external pressure or a temperature gradient is applied, respectively. As the pitch
is increased a competition between the electric-field-induced undulations and the electrohydro-
dynamic instability arises. We give numerical estimates for both instabilities in this system, which
represents another example of a competition between a constrained pattern-forming equilibrium
system (electric-field-induced undulations) and a nonequilibrium (electrohydrodynamic) instability.

I. INTRODUCTION

We have recently shown' that in cholesteric liquid
crystals subject to an external temperature gradient, a
competition between two different types of instabilities
arises. Depending on the size of the pitch, either a static
instability (thermal undulations) or a hydrodynamic in-
stability (thermal convection) occurs first.

Over the last few years the competition between insta-
bilities has been discussed theoretically and experimen-
tally for a number of systems, including onset of convec-
tion in binary-quid mixtures, ' onset of convection in
nematic liquid crystals and viscoelastic liquids, ' and
the Taylor instability between independently rotating
cylinders. ' In all these systems a codimension-2 point
arises, for which the thresholds of the two instabilities
are equal.

In contrast to all these examples, cholesteric liquid
crystals seem to be the only system which can become
unstable statically or dynamically due to the same exter-
nal field. Here we point out that such a situation can
occur in an external electric field (similar to the case of a
temperature gradient, but in contrast to the case of an
external magnetic field). The competition between insta-
bilities emerges in the present case, since there is not
only the well-known electrohydrodynarnic instability, ' '"
but also an electric-field-induced undulative instability
possible, a fact which has not been reported so far. '

Such an interference of static and dynamic instabilities
can also be studied by applying more than one external
field, e.g. , a temperature gradient and an external mag-
netic field in nematic liquid crystals.

Layered structures, such as smectic and cholesteric
liquid crystals (the "layers" of the latter are planes of
equal phase of the helix formed by the director; the '"lay-
er thickness" is therefore the pitch") are known to un-
dergo an undulative instability if dilated above a certain

threshold. ' ' Because of intrinsic nonlinearities in the
elastic energy of these systems, it is then energetically
more favorable to have the layers undulated (and less di-
lated) than fiat (and more dilated). This mechanism
works when the dilation is homogeneous (if the dilation
is generated mechanically) or inhomogeneous (in the
case of the temperature gradient or electric field), even if
some regions are compressed rather than dilated. Of
course, the threshold value for the onset of the instabili-
ty depends on the spatial distribution of dilation.

An electric field generates dilation (or compression)
due to two effects: (i) the balance of permeation and
electric-field-induced permeation necessary for a station-
ary state, where electric-field-induced permeation de-
scribes the dissipative cross coupling between layer dis-
placement and electric field' (the analogous effect with
respect to temperature gradients is the thermal per-
meation' ), and (ii) the piezoelectric effect, ' i.e., the stat-
ic cross coupling between (first) gradients of the displace-
ment and the electric field. This effect is specific for
cholesteric and chiral smectic liquid crystals and is not
present in smectic-3 liquid crystals. For both effects the
electric field has to be along the helical axis.

If the electric field is strong enough, the induced dila-
tion may then exceed the threshold for the undulation
instability [electric-field-induced undulation (EU) insta-
bility]. For fixed boundaries at the top and at the bot-
tom of the sample the piezoelectric effect will lead to the
instability, while for a free top boundary only the
electric-field-induced permeation effect contributes. Ex-
plicit formulas will be given in Sec. II.

On the other hand, it is well known that a cholesteric
liquid crystal (like a nematic liquid crystal) can show an
electrohydrodynamic instability (EHD), if subject to an
external electric field. ' Such a hydrodynamic instability
arises if the system becomes unstable against time-
dependent fluctuations. Linear stability is tested by
(linear) fiuctuations with an exponential time behavior
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[-exp( —A,t)] of all hydrodynamic variables: If at least
the real part of one eigenvalue k changes sign, the
threshold for the instability is reached.

The most important part of the mechanism leading to
EHD in cholesteric liquid crystals is connected with the
anisotropy of the electric conductivity (Carr-Helfrich
mechanism' ' ). The elastic restoring force acting on
layer fluctuations can be overcome by the electric force
between space charges, which are created in the layer
fluctuations due to the anisotropy of the electric conduc-
tivity. An explicit derivation of the threshold condition
for EHD, which includes the coupling between helical
structure and vorticity specific for cholesteric liquid
crystals, will be given in Sec. III.

Since there are two different kinds of instabilities pos-
sible, a competition can arise. The instability whose
threshold is lower will actually occur. Among the quan-
tities which determine both thresholds are the sample
thickness and the helical pitch, which can be varied over
a very broad range. The magnitude of the pitch governs
the rigidity of the layer structure, i.e., small (large) pitch
mean large (small) bulk elastic modulus'' (the stiffness
against layer bending is independent of the pitch). Thus
for small-pitch cholesteric liquid crystals even small dila-
tions are energetically unfavorable and the threshold for
the EU instability will be low. On the contrary, the elas-
tic restoring force is large and can be overcome by a
large electric force only, i.e., the threshold for the EHD
instability is high. Of course, for large-pitch cholesteric
liquid crystals the situation is reversed and there must be
some crossover region at intermediate values of the pitch
where the thresholds for the two different instabilities
coincide. A more quantitative discussion of this region
will be given in Sec. IV. Although the values of some of
the material parameters involved are not known precise-
ly (the instabilities might be used to measure them), we
expect this crossover region to be accessible experimen-
tally.

The threshold fields for the two instabilities depend on
the sample thickness d in different manners: While for
EHD jt is a d law, for EU jt is a d pr d ' behav-
ior (depending on whether the piezoelectric effect or
electric-field-induced permeation is relevant) Thus.
electric-field-induced undulations will be favored by
thick samples, while in thin samples the EHD instability
is more likely to occur.

There are other restrictions for the occurrence of the
instabilities. The EHD instability is possible only if the
conductivity anisotropy is negative, while the EU insta-
bility is (in the relevant pitch region) independent of
dielectric or conductivity anisotropy. On the other

I

The dynamical equations are' '' ' '

hand, the EHD instability threshold is invariant under
the reversal of the electric field, while EU instability can
occur only with one specific sense of direction of the
field, which one depends on the sign of a certain hydro-
dynamic parameter and the handedness of the helix.
Again, this is a feature which should help to discrim-
inate the two different types of instability.

In this paper we restrict ourselves to the onset of the
instability, i.e., we do not address the question of which
pattern is selected above threshold. Nevertheless, from
the nature of the fluctuations, which become unstable at
threshold, one can gain some hints about the structure
above threshold. The spatial patterns to be expected
above threshold for both kinds of instabilities seem to be
similar to the extent that they include all hydrodynamic
degrees of freedom, i.e., layer deformation, flow veloci-
ty, electric current, etc. , are all contributing to the spa-
tial pattern.

II. ELECTRIC-FIELD-INDUCED UNDULATIVE
INSTABILITY

%'e start with the discussion of the static coupling be-
tween the "layer" (helix) displacement u and the electric
field E. The free-energy density of these degrees of free-
dom rs

e= —
y~~+

—(b,,u)' —
—,'[X,E'+X, (E p)']

E' Pea(p —E)r~~ 0;',k&;V—,Vku (2.1)

5e E 5e
5E 4~ 5Vu

(2.2)

which contains the pure elastic and curvature terms, '

the pure electric terms, " and piezoelectric and Aexoelec-
tric terms, ' ' respectively. The dilation of the layers,
y~~, is in lowest order of the appropriate gradients given
by y~~

——V, u ——,'(Viu), where we have chosen the equi-
librium direction of the helix to be the z axis. Fluctua-
tions of the helix axis are described by gradients of u
and to lowest order p=p [1——,'(Viu) ]—Viu, where

p =e, and e, Vi—=0. The flexoelectric tensor g;~k has
the same structure as in smectic-A liquid crystals, while
the piezoelectric term (P) is specific for systems without
inversion symmetry, like cholesteric and chiral smectic
liquid crystals. '

The polarization P and the elastic restoring force divP
can easily be deduced from (2.1) by variational deriva-
tives

and

c} A i A A A+v.V u —p. v — p. ro qo(g, p;p —V ;U+g diivv)=gdivP+gp E
gp

a +v V p,~+V. [o.,p(p E)+o iE+itpdivP] =0,

(2.3)

(2.4)
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divt)(t = — E,„,=const (2.5)

and

p=p =e, ,

which gives rise to an equilibrium polarization

P =e, X~~
—zqpP ext (2.6)

and an equilibrium layer dilation (or compression)

du
dz tB z +co E,„, , (2.7)

where the constant co depends on the boundary condi-
tions and where X~~

——X~~+g~qpcp gzglgB is—a renormal-
ized electric susceptibility. For a layer with fixed plates
at the bottom (z =0) and the top (z =d),
cp ——d i'(2$B) ', while if the top is a free boundary,

P, (z =d)=0 and cp ——(dgj '+Pqp)B
It is easy to check that with the solution (2.5)—(2.7)

the continuity, the Navier-Stokes, and the energy conser-
vation equations are solved identically; the temperature
and the mass density are constant, while the pressure is
a linear function of z.

The nonvanishing equilibrium polarization P gives rise
to an electric surface charge density 4~7~~E„,. These
charges produce an electric field (although partially
screened), which acts opposite to the external field.
Thus the local field Eo is smaller than the external field

E,„, and in Eqs. (2.5)—(2.7) E,„, has to be replaced by
Ep E,„ t(/1 +4rXi~~). Th——ere is also a small bulk charge
density, divP&0, whose field we neglect against E„, or
Eo, because divP is quadratic in the small off-diagonal
terms g qp and P/$B. In the same spirit X~~ is replaced

The layer displacement u caused by the external elec-
tric field now constitutes dilation (du /dz &0) at least in

parts of the sample, depending on the signs of P, g~, or
Eo. It is then straightforward to test the stability of this
dilation against undulative fluctuations. Assuming

+epz Ep+ 3 cos(kix)sin(k, z), (2.8)

with k, =m/2gd, where g= —,
' and 1 for fixed and free

top boundaries, respectively, and with the local field Eo
remaining constant, the total energy E = f ed V can

where v is the velocity, co= —,
' curlv the vorticity, and p, 1

the electric charge density. The other hydrodynamic
equations will not be needed here explicitly. The
thermal degree of freedom is suppressed in (2.3) and
(2.4).

Looking for a stationary ( t3/t3t =0), nonconvective
(v=0) equilibrium state in the presence of an external,
homogeneous field E„, along the helix axis p, only the
dissipative terms in (2.3) and (2.4) survive: permeation
(g), electric-field-induced permeation ( tt ), and electric
conductivity (o i, o, ). The desired solution is

be calculated as a function of the amplitude A. It turns
out that E is a minimum for 3 =0 only below a certain
threshold field Eo", above which the state 2 =0 becomes
unstable. This threshold field is given by

E'" = k (BK)' '
Ci

(2.9)

where c, =(il ——,
' )1(td (rr 4)/2—rr g+(i1 —1)g qp. The

critical transverse wave vector is
1/4

gth g1/2
z (2.10)

with the appropriate length scale Li —(dL )'~ smaller
than the sample thickness d as long as the pitch length
Lz is smaller than d (which is assumed throughout this
paper).

Since the signs of P and f (and thus of c, ) are not
fixed, the direction of E„, has to be chosen in order to
get Epci positive. For a fixed top boundary (i)= —,') the
electric-field-induced permeation effect drops out and the
piezoelectric effect is solely responsible for the instability
(Ep" —I/g ). This can be understood quite generally:
any energy contribution not connected with the handed-
ness must be invariant under E,„,~—E„„if dilation
and compression are symmetrically distributed in either
half of the sample (as it is indeed the case for il= ~ ).
Since the threshold is linear in the electric field, this
symmetry would rule out any finite threshold field Eo".
However, the piezoelectric energy does depend on the
handedness of the helix and is different for E„, and
—E„„even if dilation and compression are symmetric.
An instability is possible only if Epg &0.

For free top boundaries (i) =1) there is an instability,
if E,„, is chosen, so that Ep1( & 0. In this case the
piezoelectric effect drops out and electric-field-induced
permeation triggers the instability alone. It is quite
characteristic for a free boundary that only dissipative
terms can lead to an instability, since by adjusting the
height of the sample, the static cross coupling contribu-
tions to the generalized energy always make the energy a
minimum.

Apparently, the height d of the sample in the electric
field is larger than the height do without the dilation in-
troduced by the electric field [d/dp ——1+(g qp+dg/
2()Ep /B].

Such a behavior was already obtained in the case of
thermal undulations, ' where with a free top boundary
only the dissipative effect triggered the instability, but
not the static one. On the other hand, for thermal undu-
lations, there was no instability found in the case of rig-
id boundaries, because no term with handedness (like the
piezoelectric term) was introduced. However, there ex-
ists an analogous term in the free energy for cholesteric
liquid crystals —g qpV, T)

~~~,
relating gradients of the

temperature to compression or dilation of the layers.
Usually that term is neglected in the thermal case
against —y26Ty~~, the thermal layer expansion effect.
(In the electric case, no such y2 elfect exists). If g
would have been kept in Ref. 1, an instability also in the
case of fixed boundaries would have been found, with a
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threshold given by Eq. (2.9) (V, T, g instead of Eo, g,
and rl= —,'). In smectic-/f liquid crystal systems, howev-

er, where terms with handedness are absent by symme-
try, no electric-field-induced undulation instability can
occur in the case of rigid boundaries.

In deriving (2.9) we have neglected the fact that an
undulative fluctuation (2.8) also constitutes a local fluc-
tuation of the helix axis, where p is no longer parallel to
E,„,. For negative electric susceptibility anisotropy (with
respect to p, not n), X, &0, this is a destabilizing effect
which can lower the threshold. %hen including this sus-
ceptibility anisotropy eftect, Eq. (2.9) reads

(Eth )2+ Eth k (pre )1/2 (2. 1 1)

For c[ ——0, the threshold field Eo" is just that for the
well-known electrical Helfrich-Hurault instability, ' a
static instability against inhomogeneous tilt of the helix
axis with respect to E,„,. Since this contribution to the
threshold condition is quadratic in Eo, a positive 7, is
always stabilizing and enhances the threshold. From our
numerical estimates in Sec. IV, we conclude that —at
least in the parameter range, where the undulation insta-
bility is the relevant one —the susceptibility anisotropy
effect is only a small correction to the electric-field-
induced permeation or piezoelectric effect, i.e. , Eq. (2.9)
can be used instead of (2.11).

III. KLECTROHYDRODYNAMIC INSTABILITY

The derivation of the threshold field for the EHD in
cholesteric liquid crystals follows the general line for
EHD in nematic liquid crystals. Since for the latter
there exists a comprehensive literature, ' ' ' ' we can
be brief here. The nonconvective, stationary state due to
an external constant electric field (as discussed in Sec. II)
is now probed for stability against time - [-exp( —A, t)]
and space-dependent [exp(ikix +ik, z) ] infinitesimal
fluctuations. The longitudinal wave vector is again
chosen to accommodate boundary conditions,
k, =~/2qd with g= —,

' and 1 for rigid and free top boun-
daries, respectively, while k~ is obtained by minimizing
the threshold.

As usual we will make the approximation of in-
compressibility (div v=0) and neglect longitudinal fluc-
tuations of the electric field against the imposed field
(E, =Eo), and we will suppress the thermal degree of
freedom. The dynamical equations are then given by
(2.3), (2.4) d' ' '

ak,'+Kk,'
(Eth )2= — (1+12k2)

where

(3.2)
eZO. , +e, O. l k

k'
Z

~3+ ~&
k~

1 Zg+ 2 &2+ &3
qo'

The viscosities v are according to the notation in Refs.
16, 28, and 29. It should be noted that even if per-
meation is neglected additionally (/=0, as in Ref. 10),
the longitudinal velocity v, and the vorticity ~, are not
zero (and cannot be put to zero a priori), because of the
intricate connection of vorticity and displacement in
cholesteric liquid crystals (2.3). The l k term in (3.2) is
partly due to this connection. However, the length I
scales with the pitch length L~ and it turns out that
l k & 1 as long as Lz &d. Neglecting 1 k in (3.2), the
transverse wave vector, which minimizes Eo", is then
found to be equal to that for the electric-field-induced
undulative instability (2.10)

1//2

(k th )2 (3.3)
2gd JC

—(dLp )

and the threshold field is given by'

(Eth )2 2k (pit )1/2
4o.err

EZO ~
(3.4)

(Eth )2+ Eth k (g~)1/2
8m' j

(3.5)

Our numerical estimates in Sec. IV suggest, however,
that —in the relevant parameter range, where EHD
occurs —the linear term -Eo" is less important in (3.5)
than the quadratic term (-E'") and Eqs. (3.2) or (3.4)
are a good approximation for the threshold field. Thus
the EHD instability is not affected by field reversal and
can only occur if o, is negative.

If electric-field-induced permeation and piezoelectrici-
ty (and fiexoelectricity) are taken into account, the EHD
instability is no longer a stationary one, but an oscillato-
ry one (just as it is the case for thermal convection, if
thermal permeation, etc. , are taken into account ). The
frequency is proportional to P (and g, , g ) and thus
probably very small. The threshold condition (3.4) is
also changed and follows from a quadratic equation of
the form

a 1
p „, —+v V v+Vp —pdivP+ (pXV)divf,

Bt 29o
(3.1)

—g, qop(p. V)divf — V.(E+4irP)E= v VVv .
4m

The standard procedure of linear stability then gives the
threshold value for Eo, where k changes sign. We find
(neglecting electric-field-induced permeation, piezoelec-
tricity, and flexoelectricity for the moment)

IV. NUMERICAL ESTIMATES AND COMPARISON

To compare the threshold fields for EU and EHD in-
stability, one has to know the parameters entering (2.11)
and (3.5). Unfortunately the electric-field-induced per-
meation and piezoelectric coefficients, g and g, are not
known experimentally. It will rather be the other way
around; measuring the crossover threshold field (see
below) provides a method for obtaining experimental
values of P and g . Since there are also no easy and reli-
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able theoretical methods to calculate such coefficients,
we can only give some estimates. There are upper
bounds for off-diagonal elements of generalized thermo-
dynamic potentials and of the entropy production ma-
trix, because of static and thermodynamic stability, re-
spectively. These Cauchy-Schwarz inequalities read [cf.
(2.1), (2.3), and (2.4)]

a

01-

(gc7, , (4. 1)

and

(4.2)

01
cr

P Lp

10

In cholesteric liquid crystals the elastic coefficient 8 is
known to be roughly equal to KL~, while the per-
meation coefficient g=g„, ,L~, where g„, , is the orien-
tational viscosity of nematics (sometimes called y& ).
The pitch length Lz is related to the helical wave length
by

I qo I
=2'/L~. If one would use the equality sign in

Eq. (4.1), l( would be -qo '. However, since qo is a
pseudoscalar quantity (qo =—(n curln), z), odd powers of
qo are already built in explicitly in the dynamical equa-
tions where necessary and it is expected that all
coefficients are only functions of even powers of qo. '

To be consistent with the inequality (4. 1) even for
Lz ~ oo (the nematic limit), /=const is the appropriate
choice. Of course, Eq. (4. 1) is then violated for L~~0.
However, L~ cannot be smaller than some molecular
length (e.g. , length of the molecules), since then the no-
tion of helix, etc. , has already lost any meaning. Choos-
ing P independent of Lz and so small that it does not
violate (4.1) for all possible L~, one gets (with cr, =10
sec ', („, ,=10 cm sec/g) g=+2X10 cm ~

g
Even for a pitch as small as Lz ——0. 1 pm, P is then two
orders of magnitude smaller than the maximal allowed
value by (4.1). For P we chose a value, which is —for
all possible values of L~ —at least one order of magni-
tude smaller than allowed by (4.2) and find (with
K =5X10 gcm/sec, X~~

———,') g =+6X10
g' cm' sec '. Of course, these values of g and P are
rather guesses than estimates and all quantitative results
obtained with these values must be taken with caution;
the qualitative picture we will derive below, however, is
not affected by these uncertainties.

The threshold conditions for EU and EHD instability,
Eqs. (2.11) and (3.5), both have the form
——,'a;(Eo" ) +c;Eo"=k, (BK)'~, where a; (a; =g, or

e, cr, /cr~4mneglectin. g I k against 1) is independent of
Lz or d, while k, (BK)' —(dL~ ) '. The linear
coeKcients c; contain two different types of terms, dg/g
and qoP and which are -d/L~ and -L~ ', respective-
ly. Thus for large Lz (and small d) the term linear in
Eo" will become negligible against the quadratic term.
In that case (Eo" ) = —a; ' 2k, (BK)' ~ and the thresh-
old for EHD is lower than that for EU, since usually

I e, cr, /o~
I

is larger than
I
e, I. On the contrary, for

small L~ (and large d) the quadratic term is less impor-
tant and the threshold field is given by

FIG. 1. Threshold voltages V'" as a function of the pitch
length L~ (at constant sample thickness d) in double logarith-
mic plot; q= 2

and 1 for fixed and free top boundaries, respec-
tively; crossover values V,'", and L~" are discussed in text.

L'"=Pd„, (4.3)

where the proportionality coefficient

P=(g oq/Kg„, ,F., I
cr,

I

)'~ (1 —4/~ )

and

=8' g o~/KE,
I
o,

I

for g= 1 and —,', respectively. With our numerical esti-
mates p=4X10 for both cases. The crossover thresh-
old field, where the thresholds for EU and EHD instabil-
ity are equal, is

0,1

S"
0.1

d/d
Cf

10

FIG. 2. Threshold voltages V'" as a function of the sample
thickness d (at constant pitch length L~) in double logarithmic
plot; g= —,

' and 1 for fixed and free top boundaries, respective-

ly; crossover values V',", and d„are discussed in text.

Eo =c; 'k, (BK)' . Now, the threshold for EU is lower
than that for EHD, since

I

c
& I

is larger than
I
c2

Thus, there is a crossover pitch length L" (and a cross-
over sample thickness d„) which separates the EHD in-
stability from the EU instability, whose threshold fields
are given by (3.2) and (2.9), respectively. L„"and d„are
not independent of each other, but related linearly,
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k, (BK)'
'

k, (BK)'"

1/2

(4.4)

that the crossover can be reached experimentally in
cholesteric liquid crystals, and by varying either the
sample thickness or the pitch length one should proceed
from a dynamical instability (EHD) to a static one (EU),
and vice versa. As already stated in the Introduction,
above threshold, however, the two kinds of instability
might be rather similar in appearance.

Choosing a convenient crossover pitch length I~"= 1 pm
(and thus d,„=—' cm) the crossover field is
(a&= 1)

~

E',„~ =75 and 60 V/cm (crossover voltage 20
and 15 V) for free (g= 1) and fixed (q= —,') top boun-
daries. A schematic plot of the threshold voltages is
given in Figs. 1 and 2.

In conclusion, our crude estimates for P and P show
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