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We study the ground-state energy of a system of N identical bosons, each having mass m, which
interact in one dimension via the pair potential V(x)=y

~

x and obey nonrelativistic quantum
mechanics. It is shown that the energy is given by the formula c=C (N)(N —1 )(A'/
m)' (yN/2), where 1.01879&C(N) &1.02333 for all N&2. The lower bound is provided by
the "equivalent two-body method" whereas the upper bound is derived by the use of collective
field theory. The general relation between these complementary theories is investigated.

I. INTRODUCTION

We consider a system of N identical bosons which in-
teract in one spatial dimension via central pair potentials
and obey nonrelativistic quantum mechanics. The Ham-
iltonian for the N-particle system (with the kinetic ener-

gy of the center of mass removed) is given explicitly by

x
1

N 2

N

) f (xj la),

where m is the mass of a particle, x;~ =x; —x~ is a pair
distance, f (x) is the potential shape, a is a length pa-
rameter, and y is the coupling constant. The main pur-
pose of the present article is to study the linear potential
whose shape is given simply by

f(x)= /x
/

(1.2)

This problem provides an opportunity to relate two
well-established but complementary approaches to the
many-body problem. These two methods start respec-
tively from the rather different special cases, N =2 and
N ~ ao, and they lead eventually to sharp energy
bounds.

In Sec. II below we make use of the necessary permu-
tation symmetry of the state vector to relate the energy
of the N-particle system to the energy of a specially con-
structed two-particle system. This "reduction" to an
"equivalent two-body problem" leads to an energy lower

i

bound for the N-particle system. In Sec. III the collec-
tive field method is formulated in a way which permits
the limit N~ ~ to yield an energy upper bound valid for
all finite N. It is interesting that a suitable formulation
exists in which the complementary extreme cases N =2
and N~co become so "close" that we can determine
the N-particle energy with error less than 0.23% for all
N &2.

II. THE EQUIVALENT
TWO-PARTICLE PROBLEM

Soon after the neutron was discovered in 1932,
Wigner and later Feenberg and others tried various
ways' of relating the ground-state energy of a few-
nucleon system to that of a specially constructed two-
body system with a new mass and coupling constant.
Sometimes the relationship was actually that of a varia-
tional upper bound but it was usually regarded simply as
an ad hoc approximation. We shall give here a very
brief outline of some rigorous results related to this idea
and refer the reader to Ref. 2 for more technical details
and literature.

One of the interesting points about the energy bounds
is the fact that their quality depends on the system of
relative coordinates used. We suppose that new coordi-
nates are defined by /=BR, where g'= [g; ] and R = [x; ]
are column vectors of the new and old coordinates, Q is
the center-of-mass coordinate, and g~=(x, —xz)/&2 is
a pair distance. Our methods require these two coordi-
nates and consequently the matrix 8 which must, of
course, be invertible, has, without any further loss of
generality, the form

1

V'2

1

&N
1

v'2 0

1

&N

0

~ ~ ~
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where rows 2 to N, which define the relative coordinates,
are orthogonal to the first row. The column vectors II
and P of the new and old momenta are therefore related
by II = [B '] P. The Hamiltonian (1.1) can also be
rewritten in the form

(p; —p, )'+y f (x,, la)
i j =1
(I (J)

(2.1)

If we now compute expectations with respect to
translation-invariant boson functions, we find from Eq.
(2.1) that (H ) = (&), where the reduced two-body
Hamiltonian & is given by

A=(N —1) II2+ yf (3—/2/2/a)2m' 2
(2.2)

and the parameter A, is equal to the sum of the squares
of the elements of the second row of the matrix fB '] .
For spatially antisymmetric states, the lower bound
methods require more than one pair-distance coordinate
so that B cannot be orthogonal and, in such cases, A. ) 1

(although the parameter A. is not quite a "coefficient of
orthogonality" ). If, for example, we use for our relative
coordinates a set of N —1 pair distances, like (2, then we
find that A. =2(N —1)/N. For boson systems, the best
results (that is to say, the highest lower energy bounds)
are achieved with classical Jacobi coordinates for which
B is orthogonal and therefore the parameter X=1. We
shall assume this value of A, for the remainder of our
work in the present article.

If P represents a translation-invariant boson function
then the lowest energy c of the N-particle system is given
by

consequently we have

F2(v) &Fz(v) &F (v), (2.7)

provided the limit N ~ cc exists.
We now look at variational estimates of the energy. If

we could find a translation-invariant boson function with
the single-product form

0(f2~(3~ ~ kN ) 4(42)g (k3~ ~ kN ) (2.8)

then, by substituting this form in the right-hand side of
Eq. (2.5), we see that an upper bound to Fz(v) is given
by the Rayleigh quotient

(P, HP) (2.9)

F2(v) &F(v(v) &F„(v)&F~(v), (2.10)

where Fg(v) is given by using P(x)=e " in (2.9) and
minimizing the resulting expression with respect to n.
The corresponding energy bounds are recovered from
the trajectory functions by using the following general
expression:

This last expression is exactly what we would use if we
were to estimate variationally the bottom of the spec-
trum of H, a one-particle (or reduced two-particle) Ham-
iltonian. The catch in all this is that (2.8) is a strong
constraint for boson functions and it has in fact been
proved that the single-product form is achieved if and
only if g is a Gaussian function. But in this case N
disappears from the calculation and the result (which
can still be minimized with respect to a scale parameter)
provides an upper trajectory bound valid for all N: we
call this Fg(v). We can now summarize the results by
writing

(g,&g)
(g, (('j)

(2.3) f2 2N
(N —1)F

ma 262
(2.1 1)

It is now convenient to define the dimensionless energy
and coupling parameters E and U by

mrna my'a N
I (N —1) 2&

(2.4)

E =F&(v)=inf (g, HP)

(.

(2.5)

where the Hamiltonian H is defined in terms of the di-
mensionless variable x =(x( —x2)/a =3/2(2/a and the
derivative D =d/dx by

H= D+vf (x)— (2.6)

and g is a translation-invariant N-boson function. We
call the function Fz(v) a trajectory function and the
graph (v, F~(v)), v &0, an energy trajectory for the N
boson problem. Since the permutation-symmetry con-
straint increases monotonically with N it is clear that,
for each jtxed v, the value of Ftq(v) increases monotoni-
cally with N. That is to say, Fz(v) &FM(v), N &M, and

Equation (2.3) may then be further simplified and writ-
ten in the form

F, (v) =F~(v) =F„(v)=Fg (v) =v ' (2.12)

In the more general case of power-law potentials with
the form

f(x)= ~x ~q, q&0. (2.13)

Simple scaling arguments show that the corresponding
energy trajectories are given by

Fy(((v) Fy()( 1 )v 2/(q+2) (2.14)

The inequalities (2.10) are important because they reduce
the N-body energy problem, approximately, to a study of
the single-particle operator H. The N dependence of the
many-particle energy is captured by the general form
(2.11) in which, very often, the trajectory function Ftq
does not itself vary strongly with N.

It is now clear that the inequalities in (2.10) all col-
lapse into equalities if and only if the potential has the
harmonic-oscillator shape f (x)=x . The common value
obtained in this special case is simply the bottom of the
spectrum of H given in (2.6) with f (x)=x, that is to
say
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In the special case of the linear potential q =1 we ab-
sorb the length parameter a into the coupling constant y
by setting a =1 and we then obtain from (2.11) and
(2. 14) the formula

' 1/3

E=C(N)(N —1)
m

2/3
yN
2

(2.15)

where, from (2.10) we have

F2(1) (C(N) &F„(1)(Fg(1) . (2. 16)

F2(1) is the bottom of the spectrum of H and Fg(1) is
the best upper estimate of (H) with respect to normal-
ized Gaussian trial functions and, for the linear poten-
tial, the reduced Hamiltonian H is given by

H= D+—fx I
(2.17)

It is well known that the bottom of the spectrum of H is
given by the first zero of the derivative of Airy's func-
tion. Meanwhile, the estimate of (H) by Gaussian func-
tions (optimized with respect to scale) is obtained by an
elementary computation. We therefore find

while the product yN is held constant: it is this limit
that leads to F (u). We have already resolved the ques-
tion of the relation of this limiting energy trajectory to
the corresponding trajectory for finite N because we
know from (2.10) that F~(u) & F (u).

In this section we shall not use relative coordinates
and therefore we shall work with the full Hamiltonian
for the N-boson problem including the positive center-
of-mass term A, that is to say, with the Hamiltonian

N N
H+%'= g p; + g yf (x;, /a) .

i=1 ij=1
(i(j)

(3.1)

By considering translation-invariant boson functions we
see that the bottom of the spectrum of H is the same as
the bottom of the spectrum of the operator H +%'. For
Bose systems the principal idea is to treat the large N
limit by a special device that builds in from the outset
the necessary constraint of Bose symmetry. The most
general operator which is symmetric in the Ix, I is given
formally by the expression

F2 ( 1 ) = 1.018 793; Fg ( 1 ) =3/2' ~ = 1.024 176 1,
(2.18)

p(x)= g 6(x —x;) . (3.2)

where we have truncated the decimal approximations in
the appropriate directions to preserve the energy
bounds. Hence (2.17) and (2.18) determine the energy of
the N-body problem with error less than 0.264%%uo for all
N ~2. This results will be sharpened in the next section,
with the aid of collective field theory.

III. THE COLLECTIVE FIELD METHOD

We can use p(x) to construct boson functions as in the
example

N

iij(x; ) = f p(x)f(x)dx .
i =1

(3.3)

In general, boson functions can be constructed by means
of a functional of the form

We first look for a formulation of the collective field
method which will allow us to find the limiting trajecto-
ry function

F„(u)= lim F~(u)X~ oo

for a given potential shape f (x). We obtain Eq. (3.9),
below, in which a variational upper bound F~(u) to
F„(u) is provided in terms of the positive field density P
defined on R and normalized to one. We then show that
a Gaussian "trial density" P leads to the same upper es-
timate as we get when a Gaussian boson "trial function"
g is used to estimate F„(u) via the original Hamiltonian
H. This provides an interesting link between the two
very diA'erent approaches to the many-body problem.
From this result we then recover the well-known exact
solution to the harmonic-oscillator problem for which
the potential shape is f (x) =x .

The collective field method dates back to the early
1950s (Ref. 4) but recently it has been clarified and
presented in a form suitable for our needs by Jevicki and
Sakita. There may still be some unresolved problems of
a mathematical nature to do with this theory, particular-
ly relating to the prelimit situation when N is finite.
However, for the purposes of the present paper, our only
interest is in the claims of the theory concerning the lim-
iting energy per particle as N increases without bound,

x~)=+Ipj (3.4)

Consequently, the requirement that P satisfy
Schrodinger's equation implies that the functional
satisfy a corresponding difT'erential equation. This equa-
tion eventually leads to the following approximate ex-
pression for the total energy as a functional of a positive
field density function p defined on R,

Ip (r)1

+ f f p(s)f((s —t)/a )p(t)ds dt, (3.5)
2 IR R

where

p(t)dr =N . (3.6)

As N is increased, the approximation becomes better and
the functional 8[p] approaches an upper estimate to the
lowest energy of the system. Since we are interested only
in the large-N limit we now transform the problem so
that this limit can be approached. We define a new den-
sity P(t) which is normalized to unity on ( —co, ao ) and
we define F&(u) to be, essentially, the limiting energy per
particle, where, from (2.4), u =mpa N/2A' is kept con
stant. Thus we define the following:
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P(t/a) =ap(t)/N

and therefore, (3.7)

f P(t')dt'= I, t'=t/a

F&(v)= lim
N~ oo

ma 'e[p]
fi X

V = mya X =const . (3.8)
2/2

+v f f P(s)f (s —t)P(t)ds dt .

Since (N —1)/N approaches 1 as N increases, we con-
clude from (3.5), (3.7), and (3.8) that the functional Ft, (v)
provides an upper bound to the quantity F„(v) that we
seek. Hence

IV. THE LINEAR POTENTIAL

Even at a time when computation has become both
cheap and comfortable, it is extremely useful to look at
cases for which all the details of a theory can be worked
out essentially by exact analytical methods. It turns out
that the harmonic oscillator is "too good" because in
this case the trajectory functions all coalesce into one,
and also the equivalent two-body method and the collec-
tive field method yield the same results (for the large-N
limit). The linear potential, however, does separate the
distinct approaches.

As we found in Sec. III, the application of a Gaussian
trial function or, in the collective field method, of a
Gaussian density, leads to the same upper estimate to
F„(v). If this upper bound is minimized with respect to
a scale parameter we call the resulting trajectory func-
tion Fg(v) and in the present problem we find for this
trajectory function

(3.9)
2/3

F (v) &Fg(v)=
27T1/3

(4.1)

In the step from (3.5) to (3.9) we have first used dimen-
sionless variables s'=s/a and t'=t/a and then dropped
the primes on s and t in the final expression. All the re-
sults from collective field theory which we obtain are
based on Eq. (3.9).

The next result is obtained by a simple calculation.
We shall give enough of the details so that the calcula-
tion can easily be verified. We start with a normalized
Gaussian density given by

1/2
—4at 2

P(t) =ce ', c =2
m' f P(t)dt =1 . (3.10)

E(a}= ' where u (x)=P(t) .(u, Hu) 2

(u, u)
(3.11)

Consequently, using a Gaussian density in (3.9} or a
Gaussian wave function in (2.3) leads to precisely the
same upper estimate for F (v). When this common
upper estimate is minimized with respect to the parame-
ter a, we call the resulting approximate trajectory func-
tion Fg(v).

In the special case that f (x)=x, we therefore find
from (3.11), as we did in (2.12), that F (v)=v'~ . Since
we know from (2.12) that in this case v is also a lower
bound to F (v), we again recover the result that
F (v) =Fg(v) =v ' . Of course, from the point of view
of collective field theory alone, the relationship between
F (v) and Fz(v), for finite N, would still be unknown.

The advantage of the collective field equation (3.9), in
general, is that it provides a way of systematically irn-
proving on Fg(v). We can simply explore density func-
tions variationally. This is what we do in Sec. IV in the
case of the linear potential.

This density is now substituted into the right-hand side
of (3.9) leading to a function E(a) of the variational pa-
rameter a. More interestingly, we can rework the
right-hand side of (3.9) so that, by using the change of
variable x =i/2t and performing one of the potential-
energy integrals, we obtain the result

F„(1)& Ft, (1)= —f dt
1 [P'(t)]'

+ f f P(s)
I
s t

l
P(t)ds d—t, (4.2)

where the positive density function P(x) satisfies the nor-
malization condition t dt =1. This optimization

R
problem is certainly amenable to numerical methods.
However, great care would have to be taken to preserve
the bound in (4.2). We shall therefore proceed, as far as
possible, with analytical methods.

We have tried a variety of one-parameter trial densi-
ties but they gave worse results than the Gaussian.
However, the following two-parameter density, which in-
cludes the Gaussian as the special case q =2, gives satis-
factory results:

P(t) = [bI (q)] 'e (4.3)

where b is a scale parameter and I(q) is a normalization
integral given by

I(q)=2I (1+1/q) . (4.4)

We approach the minimum with respect to the two vari-
ational parameters b and q in two stages. First, we fix q
and obtain the following expression for E:

K 8Vb+
8Ib I (4.5)

where K and V are the kinetic and potential energy in-
tegrals with the scale parameter b = 1; that is to say,

K = —,
' f dt =2qI (2 —1/q)[4 (t)]

p(t)
(4.6)

Without help from the collective field method it would
be very difficult, in general, to improve on the Gaussian
upper bound (4.1) which is valid for all N )2.

For the linear potential f (x)=
l
x l, the variational

upper estimate (3.9) for F„(1)becomes
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E(q) we conclude that the minimum is at about q =1.9.
Hence, our upper bound becomes

F„(1)& F4 (1)=E (1.9) & 1.023 323, (4.10)

where we have truncated the result upwards to preserve
the bound. The corresponding critical value of the scale
parameter is b =0.833624. In Fig. 2 we exhibit the
graph of the optimal density P along with the optimal
Gaussian density for which q =2.

V. CONCLUSION

and

(4.7)V=-' s s —t t dsdt .
8 R

Even with the aid of Gaussian numerical integration it is
uncomfortable to integrate over the absolute-value func-
tion. We therefore choose new variables obtained from
(s, t) by a rotation by nl4 and obtain for the potential-
energy integral

V = f"ds g(s) f"dt tp(t) . (4.8)
0 S

8 minimizing the expression in (4.3) with respect to by
m'

we find the following formulas for the minimum energy
E and the critical value of b, as functions of q:

1/3 1 /3
2L V AIE=3; b= (4.9)

It is now safe to use computer technique and in Fig.pi
we exhibit the graph of E =E(q). From the data for

I I I I I I I I I I I I il I I I I

't . 0 3.0
FIG. 1. The field theoretic expression (4.5) for the energy is

first minimized with respect to scale parameter b and the figure
shows the final minimization of E (q) given by (4.9) with
respect to the power parameter q.

Our main specific result is that the energy of the N-
boson problem (1.1) with the linear pair potential (1.2)
and a = 1 is given by the formula

1/3 ' 2/3

e=C(N)(N —1)
m

(5.1)
2

where the slowly varying function C(N) is bounded by
the inequalities

1.018 797 9 &Fq(1) & C(N) &F„(1)&Fp(1) & 1.023 322 7 .

(5.2)
The formula (5.1) therefore determines the N-body ener-
gy with an errorless than 0.222% for all N & 2.

We have explained our methods in some detail partly
because our specific results for the linear potential con-

6tradict the previously published data both of Muriel
and of Adric and Bardek. The earlier work does not
claim to provide energy bounds for finite systems. In the
large-N limit, where comparison is possible, the earlier
estimates for what we would call C( oo ) are about 20%%uo

lower than our lower bound. One possible source for
this difference may be the absence of explicit relative
coordinates in the earlier work. As we noted in Sec. II,
the use of N —1 pair distances for the relative coordi-
nates in our theory would enhance the mass of the re-
duced problem by the factor of A, =2(N —1 ) /N; in the
large-N limit this would decrease the lower bound by the
factor 2 ' =0.794.

More importantly, we have established a general rela-
tionship between the equivalent two-body method and
collective field theory; this allows the field theoretic re-
sults to be used to estimate the energy of the many-body
system even when N is finite This is .significant because
it is far easier to perform variational calculations for the
field density than it is to work with translation-invariant
many-body wave functions. For the one exception to
this general rule, the Gaussian wave function, we have
proved that exactly the same results are obtained from
the field theory if a Gaussian trial density is used. Thus,
from a practical point of view, the field theoretical route
to many-body ground-state energy upper bounds now
appears to be in every way superior to direct Rayleigh-
Ritz calculations.
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