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Role of near-degeneracy in the scattering of composite neutral systems
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We study the elastic scattering of two neutral composite systems, both of which have states nearly
degenerate with the initial state. A novel consequence of the degeneracy is the appearance of a term
in the scattering amplitude f, coming from the second Born approximation, which behaves as
i(Q /p)ln(Q /p ) for small momentum transfer Q and fixed momentum p. This term strongly
affects the behavior of the partial-wave amplitudes ft for 1 & l. Possible applications to experiment,
especially to the scattering of excited-state positronium from molecules, are indicated.

I. INTRODUCTION II. ANALYSIS

There has been extensive study of the effects of two-
photon exchange in the interaction of two neutral sys-
tems' or of a neutral and a charged system. In most of
these analyses it was assumed that the initial state of the
neutral system has no accidental degeneracy. Recently
the effects of two-photon exchange in the scattering of an
electron from a neutral atom were discussed for the case
where the initial atomic state is nearly degenerate. It was
found that, in the limit of exact degeneracy, the leading
term in the scattering amplitude at small momentum
transfer Q=p' —p is imaginary and strongly dependent
on both energy and angle, with a logarithmic divergence
of the form i(lnQ)/p for Q~O and p fixed. This singu-
larity arises completely from double Coulomb exchange,
with transverse photons giving only a small correction in
the nonrelativistic regime.

In the present paper we extend this work by examining
the scattering of two neutral systems, each of which may
have an accidental near degeneracy. We find that if only
one system is degenerate then the relevant part of the
scattering amplitude at small Q is real and behaves as Q,
corresponding to the familiar R London potential.
Furthermore, in the limit of exact degeneracy, transverse
photons again only give a small correction; this is unlike
the case of two nondegenerate systems, where there is a
cancellation between transverse-photon and Coulomb ex-
change, leaving a residual term which behaves as Q lnQ,
corresponding to the Casimir-Polder R potential.

When both systems are degenerate the dominant contri-
bution at small Q, again given by double Coulomb ex-
change, is imaginary and behaves as i (Q /p)lnQ for fixed
P.

The derivation of these results is given below, in Sec. II.
Concluding remarks are made in Sec. III ~

A. Preliminaries

With spin and exchange neglected, the wave function of
the initial state is given by

Pt = exp(ip~. R~ )tbz. , (r) exp(iptt. Rtt )Ptt b(r') . .

Here pz, R~, and r=r& —r2 denote the initial momen-
tum, c.m. coordinate, and relative coordinate, respective-
ly, associated with 3; the vectors pz, Rz, and r'=r3 —r4
are similarly associated with B.

The second-order transition amplitude for elastic
scattering to a final state PF with momenta pq and pit but
unchanged internal quantum numbers a and b is given by

T=(p'a b
I
U(~o+p /2MAB HO+i&) 'U

l p a b)

(la)

where p and p' are the initial and fina momenta of B in
the overall c.m. system and Ho is the Hamiltonian in the
c.m. system,

Ho =h g +hg +Pop/2M gg (1b)

We consider a neutral target atom 3 and neutral pro-
jectile B and work in the c.m. of the combined systems.
For simplicity we specialize to the case where both 3 and
B are hydrogenlike, but allow the masses of the positively
charged constituents to differ. The generalization to more
complex systems is straightforward.

With r~ and rq the coordinates of the electron and core
of 3, r3 and r4 those of the electron and core of B, the
electrostatic interaction between 3 and B takes the form

'+
I

r2 r41
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Here hz and hz are the internal Hamiltonians of A and
B Wp = W + Wb is the sum of the binding energies of A
and B, M~~=M~M~/(M&+M~) is the reduced mass of
the combined system, and P,z

———
& 0/BR, with

R=R~ —Rq the coordinate vector of B relative to A.
On inserting a complete set of eigenstates

I
k;m, n ) of

Ho into (1.2) we get

T=gT „,T „=(2ir) f dkk I „,
0

m, n

where

(2)

(p';a, b
I

U
I
k;m, n)(k;m, n

I
U

I
p;a, b)

[D „(p,k)+ie]

The integration in (3) is over the angles of the vector k.
On use of the Fourier representation

x '=(1/2m. ) f dy exp(ix. y)/y

one finds that the numerator matrix elements may be
written in the form

(3a)
with

D „(p,k)=(W, —W )+(Wb —W„)+(p —k )/2M„g .

(3b)

teraction, whereas the polynomial 3+Bt also gets contri-
butions from short distances. In the spirit of our earlier
work we concentrate on the calculation of the singularity
at t =0, but in contrast to Ref. 3 we find it convenient this
time to make use of dispersion theory techniques, as in
Ref. 2 and Ref. 4.

We note first that the analyticity properties of T are
closely tied to those of the partial summands I „which
occur as integrands in (2). Let us define

F ',.b &m lr qla&&n lr' qlb&

F.b; ~ & a
I

r'q'
I

m & & b
I

r''q'
I

n & .
(9a)

The numerator in the expression for J
„

then reduces to
the form

Jmn g Imn
dCg

where the sum is over a complete set of product states de-
generate in energy with Pq. Pe.„.Because of the rota-
tional invariance of U and because the definition (3) in-

cludes an integration over the angles of the intermediate-
state relative momentum k, the function J

„

is also rota-
tionally invariant and can therefore be regarded as a func-
tion of t, p, and k. For our purpose it is sufficient to
study the function J

„

in the dipole approximation. In
this approximation we have

with

(k;m, n
I

U
I
p;a, b ) =(4vre /q )F „.,i, (q),

(p', a, b
I

U
I
k;m, n ) =(4~e /q' )F,b. „(q'), (4)

dCg dCg

(9b)

$(a
I

r q'
I
m)(m

I

r q I

a ) $(b
I

r'. q'
I

n )(n
I

r'. q I
b).

q=k —p, q'=p' —k .

The F's are sums of products of transition form factors,

F „,b(q).
= [ [ & m

I
exp(ia2q'r)

I

a & & n
I

exp( —ib2q'r')
I

b & ]

+(a2~ ai bp bi)

(b, ~ b,—) —(a2~ ——a, )I,
where a; and b; are mass ratios defined by

a] =m ) /Mq ap =m2/Mg,

6) ——m3/Mg, 62 ——mg/M~ .

B. Computation

Let us regard T as a function of the relative momentum

p and the squared momentum transfer t in the c.m. sys-
tem,

For
I
a ) and

I
b ) both S states (the states

I
m ) and

I
n )

are then necessarily P states) this further reduces to the
form

(q' q/3)(G, )'(q'. q/3)(G„~)', (9c)

J „~J'g= A „[D„(p,k)+ie] 'K,
where

(10a)

„=(4~e /3 ) ( G, G„p) ( lob)

E= dA q'q /q q'

Since

Q=q+q
we have

where the G's denote the matrix element of r taken be-
tween radial wave functions. It follows that, in the dipole
approximation and with initial S states,

r= —O', Q=p' —p. q'. q = ( Q —q —q' )/2 . (12)
For fixed p we expect T to have the form On substituting (12) into (11) we see that K has the form

T= A (p)+B(p)t+C(p, t),
where C is analytic in a cut t plane, with a singularity at
t =0, and decreasing for large

I
t

I
. This singularity

arises from the long-range character of the Coulomb in-

K =K'+K",
where

K'=(r/2) fdQ/q q'

(13)

(14)
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arises from the square of the first term on the right-hand
side of (12). The quantity K" in (13) represents the con-
tribution of the remaining terms which, as is readily
shown, give just a first-degree polynomial in t,

K"=Cit+C0

we find the following result: for p

[T'„],=iC „t'"[(t,—t) '~'e(to —t)

+l'(t to)—' e(t to—)],
and for p

(20a)

with the C's functions of p and k. Although both K'' and
Ci t decrease rapidly enough for large k to give convergent
integrals if (10a) is used in (2), the term Co in K" does
not; its contribution, while formally independent of t, is
linearly divergent. However, the dipole approximation is
not valid for the short distances to which large values of k
correspond. If this approximation is not made, the ana-
logue of the C0 term gives a convergent contribution to
T „which, while not independent of t, is not singular in
the neighborhood of t =0. We can therefore concentrate
on K'.

Let J' „denote the part of J „coming from K' and
T'

„

the corresponding part of T

T'„=(2') f 1kk J'„. (16)
0

Analysis shows that the quantity T'
„

is an analytic func-
tion of t with a branchpoint singularity at t =0. We will
study the behavior of T'

„

in the neighborhood of t =0 by
the techniques of dispersion theory. This leads us to con-
sider the discontinuity across the cut, taken from 0 to plus
infinity, which is given by

[T'.], =(2~) ' J "dk k'[J'„],, (17)
0

where

[T' „],= iC —„t'"(t+t, ) (20b)

const(t /p)0(t),

which yields a T' „proportional to

i (t/p) ln( t) . — (21a)

This situation applies when the states
I

m & and
I

n & are
both degenerate, with the states

I

a & and
I
b &, respective-

ly, i.e., to the case of double degeneracy. We have thus
shown that in this case the scattering amplitude behaves,
for small t, as a polynomial plus a term proportional to
(21a).

(b) p «b, and Q «h. In this case to-b. , ko —b, '

and (2la) reduces to the form

The amplitude T'„in the physical region (t&0) is
given, apart from an additive polynomial in t, by an in-
tegral of the form

(2~i) —' J dt'[T' „(t')),/(t' t);—
0

subtractions necessary for convergence are not explicitly
indicated. We are now ready to consider in turn the spe-
cial cases of interest to us.

(a) p»6, t=—g»3, . For b, ~0, the first term in
(20a) vanishes and the second term reduces to the form

[J'„],=A „[D„(p,k)+ie] '[K'], ,
const(t /b, ) . (21b)

[K'], =(4i~ )(t/2) f du 5(F)/k—1

(18)

On substituting (18) into (17) we get, on reversing the in-

tegration order,

[T'„],=(i/~)MggA „(t/2)
X f du f ™dk(ko k+ie)—'5(F),

—1 0

where

(19)

ko ——p —b, , b, = —(2Mgg)(W, —W +Wb —W ).
The integrations over k and u can then be carried out.
With the quantities t0 and C „defined by

to=~ /lko
I

Cmn=(M„aA t )/o86

and [K'], is the discontinuity of K' across a cut extending
from a branchpoint t~ (which depends on k) to infinity.
On combining the denominators in (14) by a Feynman pa-
rameter and carrying out the angular integration, one
finds that

K'=(27r)(t/2) J du 1/k F,—1

where

F=t, —(1 —u ')t, t, =(p' —k')'/k' .

It follows that

T'„itself then behaves for small t as (21b) plus an addi-
tive polynomial. This situation applies if only one of the
intermediate states is degenerate while the excitation ener-

gy of the other is large compared to p /2M&z, the behav-
ior found corresponds to what one would get from the
London potential. It is easy to verify that the corre-
sponding London constant is proportional to the electric
polarizability aE of the nondegenerate system.

C. Transverse photon contribution

In this section we will show that if we consider only the
excitation of states degenerate with the initial state, the
exchange of transverse photons makes a negligible contri-
bution to the scattering amplitude.

There are two types of transverse-photon contributions
to T, those in which two transverse photons are ex-
changed and those in which one transverse photon and
one "Coulomb photon" are exchanged. Consider first the
exchange of two transverse photons. A typical
degenerate-state contribution to T will contain a factor
which also enters the Compton amplitude for photon
scattering from system 2, which we assume to be the one
with degenerate states. This factor is given, in the dipole
approximation, by

&a
I

~'.p., I
d&«

I
~ p., Iu&
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III. DISCUSSION

A. Further remarks on photon exchange

In the preceding section we have isolated the dominant
contribution to T from the degenerate states. Of course,
other, nondegenerate states will give contributions to
transverse photon exchange and to double Coulomb ex-
change. These combine to give that part of the scattering
amplitude that arises from the Casimir-Polder potential.
The latter amplitude behaves as t lnt for small t, and so
should be substantially smaller than that arising from the
degenerate states.

If the degeneracy is not exact, then the transverse pho-
ton contributions of the nearly degenerate states will not
vanish exactly. In that case, at suSciently small t the to-
tal long-range (i.e. , nonanalytic) part of T will always be
given by the Casimir-Polder potential. The relevant value
of t is given by t'-M~~A. If Mq~ -m, and 6 is much
less than the usual atomic excitation energies, then t' will
correspond to very small angles and the amplitude arising
from double Coulomb exchange can be used in most of
the region of physical interest.

B. Possible application to experiment

To orient ourselves about the approximate magnitude
of the scattering amplitude and the domain of validity of
the second Born approximation we estimate the
degenerate-state contribution f' to the scattering ampli-
tude f in the doubly degenerate case. Using
f= —(Mqs /2') T and Eq. (21a) we get

f' iM~tta a -(M„ztjp)1 (nt/p ), (22)

where a is a length of atomic dimensions. This can be
rewritten in the form

where
~

d & is a state almost degenerate with
~

a &. Upon
use of the usual commutator identity for p,~ we see that
this factor is proportional to the square of the energy
difference Wd —W, between

~

tt & and
~

d &. It therefore
vanishes in the limit of exact degeneracy. Similarly, if one
transverse photon and a Coulomb photon are exchanged
the corresponding factor is

&a
I
r r' d &&d

I
e pop I

a &

which is proportional to Bd —8' . It follows that if we
do not make the adiabatic approximation (so that none of
the accompanying energy denominators vanishes) these
contributions all vanish in the limit of exact degeneracy.

TABLE I. Order of magnitude of various contributions to
partial wave amplitudes fi, for small values of l.

fI'la

pa
pa
pa

1

pa
(pa )

f&ndyg

(pa )

(pa )'
(pa )
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The amplitude f' contains all partial wave amplitudes fI
and these decrease only slowly with /. If Mzz -m„as,
for example, when the projectile is a positronium atom,
the f~' satisfy the unitarity bound

~ f/~ ~

&1, as long as

p &a '. However, if M~& &&m„e.g. , if the projectile is
an ordinary atom, this bound is grossly violated, unless p
is extremely small. Therefore our second Born approxi-
mation formulas can certainly not be applied, in the dou-
bly degenerate case, to the scattering of an ordinary atom
or molecule by another, except perhaps at ridiculously
low energies. Furthermore, for I =0 and 1 the full partial
wave amplitudes f~ get large contributions from higher
Born approximations, from short-distance eAects such as
those contained in K" [Eq. (15)], and from other excited
states in the second Born approximation. Because of
these, the values of fo and f, cannot be approximated by
fo and f &

in any case.
We can, however, use (23) to estimate f/ for I & 1 for

positronium, e.g. , for positronium in the 2 S state scatter-
ing from a polar molecule in its ground state, for which it
may be the dominant contribution to ft. To see this we
present, in Table I, the order of magnitude of various con-
tributions to fi.. the long-range part f/ coming from de-
generate states, the short-range part f/I" coming from all
states, and a part f/'"" coming from intermediate states in
which only one of the two colliding systems retains its ini-
tial energy.

From Table I we see that for pa & 1 and I )2 the quan-
tity ft begins to dominate f/~". We also note that for
pa & 1 the contribution f/'" is much smaller than f/; if
both systems are excited to nondegenerate states the con-
tribution is still smaller. If ground-state positronium is
scattered from a molecule, only f/'" is present in higher
partial waves. '

An accurate measurement of the elastic dift'erential
cross section for 2 S-state positronium on a polar mole-
cule may be able to reveal these novel e6'ects of degenera-
cy in long-range interactions.

f' -a (M„s/m, )'(pa)g(O),

where

g ( 8)= ( 1 —cos8) ln( 1 —cos8) .

(23)
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