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The Soret coefficient (thermal diffusion coefficient) characterizing the coupling between heat and
mass transport in more-component systems has been obtained by equilibrium molecular dynamics.
Two-component liquid systems of the Lennard-Jones type were considered: three isotopic mix-
tures and Ar-Kr. Computations 20 times longer than the ones used for a "usual" transport
coefficient, as the thermal conductivity, were necessary to obtain this cross coefficient with modest
accuracy. The analysis of the Green-Kubo integrand shows that, opposite to the thermal conduc-
tivity, the thermal diffusion depends strongly on the terms containing the partial enthalpies of the
components. For the isotopic mixtures, it was found that the Soret coefficient grows with the
mass ratio in a way consistent with experimental results. For the Ar-Kr system, direct compar-
isons with nonequilibrium molecular-dynamics data indicated good agreement. As experimental
Soret coefficients for Ar-Kr are lacking, we cannot compare our results with data of the real mix-
ture. The order of magnitude found agrees, however, with that experimentally observed for binary
liquid mixtures.

I. INTRODUCTION

While in a pure liquid the collective mass current is
zero, in a binary mixture, mass and heat currents couple
giving rise to cross transport coefficients, the therrnaI

diffusion coefficients, D, where a (=1,2) refers to the
component of the mixture.

These coefficients must not be confused with the
thermal diffusivity, Dr, being the thermal conductivity,
A, , divided by the mass density and the heat capacity of
the system. Experimentally, one determines the so-
called Soret coe+cients s, being essentially the ratio of
these cross coefficients and the mutual diffusion
coefficient D &z.

.

s = D /(D)2Tpw)w—~) with a= 1 or 2,
where T denotes the temperature, p the mass density,
and w&, m2 the mass fractions. '

The effect of diffusion induced by a temperature gra-
dient in binary liquid mixtures was first observed by
Ludwig and later by Soret. Thus it is usually termed as
the Ludwig-Soret effect. The inverse effect is known as
the Dufour effect. Due to Onsager's relations these two
cross coefficients are equal. Sometimes cited in the
literature are the thermal diffusion ratios, kr, which
represent dimensionless quantities defined by the ratio of
D and D&2..

kz- =D /(D~2pw~w2) with a= 1 or 2 .

These ratios are zero for a pure liquid and nearly zero

for highly diluted binary mixtures.
For a binary mixture the Soret coefficients and all the

related quantities of the two components must be equal
but for a sign. We have, for example,

Si = —S2

The subscript is therefore omitted in the following, and
s, D, and kr denote the quantities of the first corn
Ponent.

For real two-component liquids, the thermal diffusion
ratio is at least 1 order of magnitude smaller than 1.
Thus the Soret coefficient amounts to about 10 K
%'e shall confirm this order of magnitude for our model
mixtures.

We present here molecular dynamics (MD) calcula-
tions for the thermal diffusion coefficient of ideal mix-
tures in which the particles of the two components differ
only in mass. This choice of the mixtures has some ad-
vantages which are discussed in later sections.

The Green-Kubo integral is used for the determina-
tion, and the analysis of the correlation functions is
given in terms of the partial functions. A discussion of
the accuracy of the results is furthermore presented us-
ing independent runs with varying system size of the
MD ensemble.

Furthermore, extensive results for the Ar-Kr model
mixture are given and compared with values obtained by
using nonequilibrium MD. ' The coefficients for the
mutual diffusion and the thermal conductivity are addi-
tionally compared, as they are byproducts of the calcula-
tions for the cross coefficients.
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II. MUTUAL DIFFUSION, THERMAL
CONDUCTIVITY, AND THERMAL DIFFUSION

FOR A BINARY MIXTURE
IN TERMS OF THE GREEN-KUBO RELATIONS

The mutual dift'usion coefficient D&2 can be defined as
the time integral of the autocorrelation function of the
mass current of the particles of component 1 of the mix-
ture

D J OJ ~ d~,
3N m)m2w)w2 o

where

and w2 denote the mass fractions, N the particle num-
ber, Q a thermodynamic factor, and v; the velocity of a
particle i. The total number of particles is given by
N =N&+N2, and the parentheses indicate the thermal
average.

This expression is discussed at length in Refs. 7 and 8,
and results for the D&2 are presented in Ref. 9. In what
follows, we omit the factor Q giving the D, z values for
thermodynamically ideal mixtures.

Following Gubbins, ' we have the Green-Kubo ex-
pressions for the thermal conductivity k, and the cross
coefficient (thermal diffusion coefficient) D, in the form

NI

J (r)=m) g v;(r) . (la)
(2)

m& and mz denote the masses of the two species. w& where Jq is the heat current given by

aP(r,.„)
q
——g g ,'m~—v,~v, ~

a=1 j=1 a= I p= 1 j&k rjakp

2 N

—(5(r~~gp)g 'v~~ —g /l ~ g v~~
a=1

(2a)

D = I (J (0)Jq(r))dr .
3Vkz T o

The subscripts a,P count the two different kinds of
particles and j,k count the numbers of particles of a
given kind. The term in large parentheses on the right-
hand side of (2a) is a dyadic and g is the unit tensor.
P(r) denotes the interaction potential depending only on
the absolute value of the distance vector rj k~, and kz
denotes the Boltzmann constant. h is the average
enthalpy per molecule of species a. Note that D divid-
ed by the total mass density and the mass fractions has
the same dimensions as D&2, length /time. ' '"

Equation (2a) requires some comment. To define the
heat current in a two-component system, it is reasonable
to substract from the energy current that part of the
current associated with macroscopically observable
transport of energy. What remains is the part associated
with the microscopic motion of the molecules. Thus we
have the additional term in Eq. (2a) which involves the
partial enthalpies of the components. " ' These partial
enthalpies h, are pure thermodynamic quantities' and
cannot be defined in terms of simple molecular expres-
sions. Evaluation of these quantities by computer calcu-
lations requires additional methods of determination, '

of which one is presented in Sec. VII.
However, in some special cases, for example, for an

isotopic mixture the partial enthalpies may exactly be
described by molecular terms, the potential energy and
the virial sum of particles of species a relative to those
of the same species and of species P, and the kinetic en-
ergy of particles of type a. In that case it is also possi-
ble to express these thermal averages in instantaneous
molecular variables, as shown by Mac Gowan and
Evans.

In this work we have determined h by thermal aver-
ages over molecular quantities during the MD computa-
tion of the heat and mass currents. We have moreover
shown by pilot runs that the Evans formulation leads to
identical results. For not very nonideal mixtures, the
molecular approximation for h and thus the Evans for-
mulation of the heat current might be valid (see Sec.
VII).

III. MIXTURE SYSTEMS, POTENTIALS, STATES

We have chosen isotopic model mixtures for our in-
vestigation to have an exact molecular description of the

TABLE I. Lennard-Jones potential parameters for the considered mixture systems.
0

Crll (A)
0

o 22 (A)
0

~» (A) el Ikg ' (K) &22~B (K) &12~B Comment

Systems 1 —3'
Ar-Kr

3.519
3.405

3.519
3.670

3.519
3.5375

141.445
119.8

141.445
167.0

141.445
141.445 Lorentz-Berthelot

combining rules

'System 1, mass ratio, m
& /m& ——0.7143 (atomic mass of component 1, 51.56 a.u. ) ~ System 2, mass ratio, m

& /m2 ——0.5 (atomic mass
of component 1, 41.25 a.u. ) ~ System 3, mass ratio, m I /m 2

——0.4 (atomic mass of component 1, 35.36 a.u. ).
Atomic mass of argon, 39.95 a.u. ; atomic mass of Kr, 83.8 a.u.
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TABLE II. Thermodynamic states: n =(N/V)o„; T = Tk&, e,= Tk /e ' z =PV/Nkz T (compressibility
number of articles; V, volume; x;, mole fraction; o. and e„are defined according to the

one-fluid approximation. For systems 1 —3, o., =3.519 A; e k~
A;6 kB ' ——14375K.

State point

0.7500
0.8031
0.7902

0.96
0.81
0.80

0.35
0.2

—0.1

0.5
0.5
0.5

Comment

For systems 1 —3
Ar-Kr
Ar-Kr

partial enthalpies of the components and to study the
mass epen edependence of the Soret effect in the simplest way.

s LJThree mass ratios were used and the Lennard-Jones ( )

potential interaction was employed. Numerical values
for the potential parameters are listed in Table I togeth-
er with the mass ratios. A thermodynamic state has
been considered which gave a positive pressure of about
100 bar. Detailed values are presented in Table II.

Furthermore, to compare with nonequilibrium
molecular-dynamics (NEMD) and to predict a value for
a measurable system, we studied the LJ mixture Ar-Kr
at similar state points investigated by NEMD.
Lennard-Jones interaction parameters and masses for the
Ar-Kr mixture are summarized in Table I. The state
point data can be found in Table II. The slight enhance-
ment of the crK, LJ potential parameter compared with
the usually employed one leads to a positive pressure for
state 2 and is thus better suited to model the experimen-
tal system. 17

IV. COMMENTS ON THE COMPUTATIONS

ciated ACF's in agreement with findings obtained by
NEMD studies. ' For this CCF to achieve an accuracy
equivalent to that of the ACF's, the statistical error
must be reduced to about —,', of that for the ACF's.
Hence, the number of integration steps ought to be en-
larged by about a factor of 100. As we are only able to
perform about 1)&10 time steps, a much larger statisti-
cal error for the cross transport coefticient is expected.
In view of this, we have not attempted to study the par-
ticle number and the potential cutoff dependence of the
results. Runs of about 10 steps, with a cutoff of
(2.25 —2. 5)0 and a particle number of 108—256, have
been performed. Usable technical details of these com-
putations are summarized in Table III. Highest accura-
cy for the cross coefficient was achieved for system 2 and
the Ar-Kr system at state 2. For each of these mixtures,
6—7 independent runs of considerable total time length
were carried out. The CCF of system 2 may be com-
pared with the ACF's of the mass and the heat current
in Fig. 1.

I previous investigations of LJ mixtures, we haven p
lfound that the mutual diffusion coefficient and therma

con uc iod tion coefficient are accessible by MD calculations
4 104 .

with an accuracy of about 5%%uo using 5& 10 —10& 1n-

etegration steps and small particle numbers. ' ' e
amplitude of the autocorrelation function (ACF) of the
diffusion and the heat currents are sufficiently large, and
the time behavior allows a quickly converging integra-
tion. '

The determination of the Soret coefficients requires,
however, the evaluation of a cross-correlation function
(CCF) which usually is of much smaller amplitude than
either of the ACF's. This has already been shown in
Ref. 20. In the case of thermal diffusion, we found for
the CCF an amplitude of order 10% of those of the asso-

TABLE III. Technical details of the equilibrium MD.

Ch

0. 75
&x
&x
~x

0. 4

0. 25

0. 25

0. 75
+

X '

x ++~
x +y

X ++ ++
+

tVPIV

x RCF QF
FICF OF Jq

[+ ccF

Particle numbers

Integration time steps

Time step

Cutoff radii for the
Lennard-Jones potentials

CPU time for 100 integration steps
(Cyber 205) in seconds

108-256
(standard 108)
10'-10'
(standard 8 ~ 10')
10 ' —2&10 ' s
(standard 2& 10 ' s)

2.25 —2. 5o.;,

0.965(108); 2.95(256)

+ +
J

+y+

0. 5

T j ML (pg)

FIG. 1. Green-Kubo integrands for the mutual diffusion,
the thermal conductivity, and the thermal diffusion coefficients.
The autocorrelation functions are normalized to unity. eThe
cross-correlation function (CCF) is given in units of 10'
cm /s . Integration of the CCF gives (3/p)D (see Sec. VA).
System 2, state point 1.
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V. RESULTS FOR THE ISOTOPIC MIXTURES

A. The Green-Kubo integrand for D of system 2

According to Eqs. (la) —(3) given in Sec. II, the total
Green-Kubo integrand (J (0)Jq(t)), is composed of
three terms, ( J (0)J~'"(t) ), ( J (0)J~~"(t) ), and
(J (0)Jq"'(t)), where J~'" denotes the first part of the
right-hand side of Eq. (2a), Jt ' the second one and Jz"'
the third one containing the partial enthalpies. We shall
call these partial Green-Kubo integr ands kinetic-
diffusive (KD), potential-diffusive (PD), and enthalpic-
diffusive (ED) terms. Their sum gives the total cross-
correlation function.

For system 2 (mass ratio: m&/m &

——2), we have com-
puted these four CCF's, and the results are plotted in
Figs. 2 and 3. As the total CCF starts from zero, we
show the function in units of 10' cm /s normalized
such that its integral over real time gives (3/p)D . Evi-
dently, all the functions have amplitudes of the same or-
der of magnitude. So the three partial CCF's determine
the total one by about the same weight. Furthermore,
the short-time behavior of the total CCF is governed by
a cancellation of the PD term on one hand and the KD
and ED terms on the other hand.

So it is crucial to compute reliably the ED function
which contains the partial enthalpies. This is completely
different from the situation for the autocorrelation func-
tion of the thermal conductivity where the terms involv-
ing h do not contribute significantly. Comparing the
plots in Figs. 2 and 3, we find the following.

(i) The short-time behavior of the total CCF is
governed by all the three partial CCF, while the behav-
ior at longer times is represented by the PD term alone.

C)

& "xm
x

Cl
x

0.8

F'RFI T

PQR T

0. 6
x

C)
x

Q. 4.

0 ~ 2 X

0—

(ii) The partial terms, KD and ED, have a smooth
form and decay quickly; the PD term displays Auctua-
tions and dies away after about 1.2 ps.

(iii) KD and ED terms show an inverse time behavior
in comparison with the PD term, but this is peculiar to
the isotopic mixture.

(iv) The total CCF has a characteristic form found for
all the mixture systems considered, namely, a pro-

T I&E jpsi

FIG. 3. Partial CCF s, kinetic-diffusive term, and enthalpic-
diffusive term, of System 2 at state point 1.
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partial, potential-diffusive CCF of system 2 at state point 1.
The partial function has the same units as the total one.

FIG. 4. Total CCF calculated from two different runs (see
Table IV). System 2, state point 1.
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FIG, 5. Time integrals obtained from the CCF's shown in
Fig. 4.

FIG. 6. Total CCF's of systems 1 —3.

nounced negative part at short times and a longer
ranged positive part.

The thermal diffusion coefficient is given by the time
integral over the total CCF. From point (iv) it becomes
immediately clear that the integral value must be ap-
proximately 0 due to the cancellation of the negative and
the positive areas enclosed by the correlation function.
While the first negative part of the CCF can be obtained
with relatively high accuracy, the second positive one
cannot, because of statistical fluctuations noticeable in
that branch of the curve. For illustration, we have plot-
ted CCF s of two different runs in Fig. 4 and the time in-
tegrals in Fig. 5. We see that the plateau values are not
very pronounced and differ appreciably in height.

Our further computations have, however, indicated
that the integration should be performed up to the time
where the second positive branch of the total CCF or
the PD term gets close to zero. The behavior of the
CCF for longer times seems to be mainly governed by
statistical fluctuations. By seven independent computa-
tions we have evaluated the thermal diffusion coefficient

for system 2. These coefficients, the mutual diffusion
coefficients, and the thermal conductivities are given in
Table IV. The average values and our estimated errors
are additionally listed in the table. As expected, the ac-
curacy of this cross coefficients amounts to about 20%%uo.

B. D vaIues for systems 1 and 3

For the mass ratios, mz/m& ——1.4 and 2.5, we have
performed only two runs for each system. To illustrate
the alteration of the CCF's we display plots of these
functions for systems 1 —3 in Fig. 6.

As expected, only the amplitudes of the correlation
functions vary giving a D value growing monotonously
from system 1 to system 3. The values are summarized
in Table V together with the other transport coefficients
and the estimated error bars.

The increase of the thermal diffusion constant (abso-
lute value) with the mass ratio seems to be reasonable.
Indeed it is known experimentally from investigations on
binary gas mixtures ' ' that the separation tendency of
the components increases with the mass ratio.

TABLE IV. Transport coefticients of system 2 calculated by MD for state point 1. N represents particle number; At, total in-
tegration time; p, mass density.

Run

1

2
3
4
5

6
7

108
108
108
108
256
256
256

At (ns)

16.0
16.0
16.0
16.0
7.0
9.0
8.2

p
(cm s ')

—0.57+0. 15
—0.78
—0.66
—0.63
—0.52+0.2
—0.86
—0.56
—0.65+0. 1

10 s

(K ')

+ 5.5+1.5

10 D12

(cm's ')

3.92+0.2
3.76
3.78
3.99
3.98+0.25
4.02
3.77
3.89+0. 1

10'a

(JK 'm 's ')

71.6+2
71.9
70.4
71.2
68.0+3
73.1

71.8
71.1+ 1

Comments

Error bars for runs 1 —4

Error bars for runs 5 —7

Mean values
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TABLE V. Transport coeScients of systems 1 —3 computed by MD for state point 1.

System

108
108

108
108

At (ns)

16
16

16
16

105 D 1'

P
(cm s ')

—0.20+0.2
—0.40
—0.30+0.2
—0.65+0. 1

—0.73+0. 15
—0.75
—0.74+0. 15

10 s

+ 2.4+1.7
+ 5.5+1.0

+ 7.1+1.8

10'D12

(cm's ')

3.72+0.2
3.73
3.73+0.15
3.89+0. 1

3.79+0.2
3.67
3.73+0. 15

10 k

(JK—1 —1 —1
)

76.9+2.0
77.2
77.1+1.5
71.1+1.0

66.3+2.0
66.3
66.3+ 1.5

Comments

Mean values
Mean values
(from Table IV)

Mean values

Furthermore, the negative sign of D is a1so in agree-
ment with experimental results for binary liquid mix-
tures. According to our definitions (see Ref. 1}a positiue
D indicates that the considered species (here com-
ponent 1} diffuses down the temperature gradient, a neg-
ative D denotes diffusion upwards the temperature gra-
dient. In experiments with two-component liquid sys-
tems a negative D is always measured when the mass
ratio is large and the first component has the lighter
mass. In other words, for liquid mixtures with
thermal diffusion governed by the mass ratio the species
of the lighter mass migrates always upwards the temper-
ature gradient. This is precisely what we have found for
our isotopic model mixtures.

VI. RESULTS FOR THE Ar-Kr MODEL MIXTURES

A. Green-Kubo integrand for D

As in Sec. V, we show the total Green-Kubo integrand
and the partial ones of the Ar-Kr system in Figs. 7 and

8. Although the total CCF for Ar-Kr resembles that of
system 2, the ED term is initially negative and larger in
amplitude than the KD or the PD term. Such a change
of the ED part of the CCF is of course a consequence of
the differences between the three interatomic potentials
assumed for this mixture.

In Figs. 9 and 10 obtained via two diff'erent runs, we
compare the total CCF's and the time integrals. Similar-
ly to the case of system 2 we find that the area corre-
sponding to the first part of the CCF nearly compensates
that of the second part so that the asymptotic value of
the time integral is quite small.

The statistical fluctuations in the CCF for longer
times make it di%cult to detect a plateau value as is seen
by the first plot in Figs. 9 and 10. However, to demon-
strate convincingly that the CCF is essentially deter-
mined by noise for times larger than about 1.2 ps, we
have averaged the CCF over six independent runs. The
result is shown in Fig. 11. For comparison the CCF of
system 2 averaged in the same way is presented in Fig.
12. Both CCF's exhibit now the expected behavior: a
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FIG. 7. As in Fig. 2, but for the LJ Ar-Kr system at state
point 2.

FIG. 8. As in Fig. 3, but for the LJ Ar-Kr system at state
point 2.
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FIG. 9. As in Fig. 4, but for Ar-Kr at state point 2.

pronounced first negative part, a second longer ranged
positive part vanishing approximately for times larger
than about 1.2 ps. Accordingly the integrals, also given
in Figs. 11 and 12, show rather good plateau regions and
lead to fairly accurate cross coefficients.

We have listed the thermal diffusion coefficient, the
mutual diffusion coefficient and the thermal conductivity
obtained by these independent runs in Table VI together
with their mean values and the estimated statistical er-
ror.

T [ML tpgj

FIG. 11. Comparison of the total CCF and its time integral.
Ar-Kr system at state 2. The CCF is averaged over six curves
obtained by single MD runs. Vertical lines indicate error bars.

The indicated error bars for D take into account only
the statistical uncertainty of the computations, not the
systematic errors due to the molecular approximation
which we have used for the partial enthalpies (see discus-
sion). However, as the Ar-Kr system is not a very
nonideal mixture, ' we believe that these systematic er-
rors are negligible in comparison with the statistical er-
ror of about 20%%uo.
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FIG. 10. Time integrals obtained from the CCF's shown in

Fig. 9.
FIG. 12. As in Fig. 11, but for system 2. The CCF is aver-

aged over seven independent curves.
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TABLE VI. Transport coefficients of LJ Ar-Kr at state points 2 —3.

Run

State

point

108
108
108
108
108
256

108
108
108
108

At (ns)

16
16
16
16
16
4

8

8

8

16

10 1D

(cm s ')

—0.45+0.2
—0.64
—0.65
—0.37
—0.59
—0.65
—0.56+0. 1

—0.44+0.2
—0.48
—0.38
—0.43
—0.43+0. 13

10 s

+ 9.1+2.0

+ 6.5+2.0

10 D12

(cm's ')

2.39+0.15
2.38
2.39
2.39
2.44
2.47
2.41+0. 1

2.63+0. 15
2.67
2.58
2.65
2.65+0. 12

10'a

{JK 'm 's ')

83.0+2.0
82.4
84. 1

81.6
82.3
84.3
83.0+1.0
77.3+2.0
80.5
80.0
79.4
79.3+1.3

Comments

Mean values

Mean values

B. Comparison with NEMD results

For state point 2 of the Ar-Kr model system two ex-
isting nonequilibrium MD studies can be used for direct
comparisons. MacGowan and Evans (ME) have used a
well-established NEMD method and runs of total in-
tegration times comparable to ours. These authors
define the heat current in the mixture in terms of instan-
taneous variables thereby using the molecular approxi-
mation for the partial enthalpies, as already mentioned
(see Sec. V). Paolini and Ciccotti (PC) have used the
same NEMD method as ME, however, a substraction
technique was additionally exploited to avoid largely
the problem of extrapolation to zero field necessary for
NEMD calculations when transport coefficients are to
be evaluated. However, the total integration time of the
computations of PC was shorter than that performed by
ME and our work.

The comparison of the transport coefficients is made
in Table VII, where some additional details on the
NEMD and MD runs are also given. We see that excel-
lent agreement exists for the NEMD values of ME and
the results of the present work. The difference lies well
within the error bars. Interesting is the following point:

in their work ME claim to have discovered a significant
difference in the mutual diffusion coefficients determined
by their NEMD and previous MD by Schoen and
Hoheisel. There is, however, a simple explanation for
this discrepancy. The D&z values in Ref. 8 were ob-
tained with large particle numbers of 864 and more,
while the values found by ME and in the present work
stem from computations with 108—256 particles. For
these small particle numbers —not studied in Ref. 8 —a
tendency towards lower diffusion coefficients can easily
be shown.

In Table VIII we show some results for the mutual
diffusion coefficient with different particle numbers and
runs of a total integration time of 1000 ps. Taking into
account this particle number dependence, the D&z values
determined in Refs. 5 and 8 and the present work are in
good agreement. The cross ratio D&z/(x&D2+x2D&)
with D i and D2 being the self-diffusion coefficients,
defined in Ref. 8 appears to be almost independent of the
particle number. This ratio is also shown in Table VIII.
Even for a 32-particle system, there is no significant
difference between our results and those of Ref. 8,
though a slight tendency towards smaller values for
smaller MD systems can be read from Fig. 6 of that
work.

TABLE VII. Comparison of NEMD and MD values for the transport coefficients of LJ Ar-Kr.

Method

NEMD
Ref. 5

MD
This work

NEMD
This work
NEMD
Ref. 6

108
and
256
108
32'
32
32

256

At (ns)

16
4
4
4

0.8

0.7902

0.7902

0.7902

0.7902

0.805

0.803

0.803

0.824

10'—D'
P

(cm' s-')
—0.68+0.2

—0.43+0. 13
—0.45+0.2
—0.48+0.2
—0.34+0.2

—1.2+0.2

10 s

11.3

6.5

16.2

10'D ip

(cm's-')

2.38+0. 17

2.64+0. 12

2.86+0.07

10 k

(Jm 'K 's ')

79.4+ 1.2

79.3+ 1.3

84.1+1.7

'Calculated with the Bochum program.
Calculated with the Rome program.
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TABLE VIII. Mutual dift'usion coefficient of LJ Ar-Kr determined by MD as a function of the par-
ticle number. State point, n *=0.7889; T*=0.812; x l

——0.5.

32
108
256
500

10'D l2 (cm s ')

2.24
2.35
2.57
2.79
2.86

xlD, +x2DI

1.02
0.88
0.91
1.02
1.05

Comment

From Ref. 8

'D
&, D2 self-diftusion coefficients.

On comparing our transport coefficients with the
NEMD results of PC in Ref. 6, we find disagreement
within the error bars. However, as the temperature of
the state chosen by PC, is 2.5% higher than ours, the
mutual diffusion coefficient and the thermal conductivity
may be regarded as consistent with our values. The
discrepancies in Di2 and k are only small and the PC
values exceed our MD results most likely due to the
higher temperature.

In contrast, the thermal diff'usion coefficient (absolute
amount) determined by PC exceeds the value of this
work by about a factor of 2. Comparison with the CCF
which was also computed by PC showed that the first
minimum of the curve is much deeper than the one
found in this work. The maxima of both functions are
however nearly equal. As the Green-Kubo results com-
plementarily obtained by PC showed a similar tendency,
we attempted to study these discrepancies by further
computations. We performed runs of total time length
of 4000 ps with a 32-particle system using the "Rome

-D. 5—

x
/+

X X i+
I+

v' l+

/+

't
i'

program" and the "Bochum program. " The resulting
CCF's are plotted in Fig. 13, and the thermal diffusion
coefficients are given in Table VII. While the transport
coefficients determined with both programmes are now
in best agreement, the CCF's differ clearly in amplitude.

Compared with the results obtained by the "Bochum
program, " the "Rome program" gives more pronounced
maxima and minima of the CCF. Integration of the
curves leads of course to the some results for the trans-
port coefficient due to the cancellation of positive and
negative areas. At present, we have no satisfactory ex-
planation for this remaining discrepancy. Further calcu-
lations with a soft sphere potential are, however, in
preparation.

Nevertheless, the thermal diffusion coefficients deter-
mined by these latter calculations are in good agreement
and agree moreover with the best value obtained with
larger particle numbers (see Table VII). This indicates a
very small particle number dependence of D, similar to
the cross-ratio discussed before.

The relatively large D value found by PC might
probably be the consequence of too short MD runs
which cannot reproduce the maximum of the CCF at
longer times. Our studies have shown that computations
of a total integration time of at least 3 ns are necessary
to predict reliable values for the cross coefficient. A nice
illustration of this is given by plots of the total CCF
evaluated at very different averaging levels in Fig. 14. In
fact the CCF's have been obtained by data from one sin-
gle run of 16 ns (total integration time). For the first
CCF, we considered only the first part of the data up to
1 ns, for the second curve only the part of the data up to
2 ns and so on. The averaging process included at least
50.000 events corresponding to about 5.000 uncorrelated
time origins. The plots in Fig. 14 clearly show how the
time behavior of the CCF is altered when increasing the
integration time. For total integration times longer than
3 ns, a definite form of the CCF is reached, supporting
our previous statements. The cross transport coefficient
resulting from these CCF's plotted in Fig. 14 are sum-
marized in Table IX. We see rather well the evolution
of the D value finally being consistent with the result
given in Table IV.

FIG. 13. CCF's for Ar-Kr at state point 3. & denotes MD
with the Bochum-program (this work);, MD with the

Rome-program (this work); +, NEMD (this work). All the

calculations were done with a 32-particle system.

C. Comparison with experiment

A direct comparison of our calculated Soret
coefficients with experiment cannot be made, as unfor-
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FIG. 14. CCF's of system 2 using increasingly larger parts of the trajectories for the averaging process (see Table IX). The actu-
al integration time is indicated in the figure.

TABLE IX. Thermal diffusion coefficient obtained from the
cross correlation curves plotted in Fig. 14.

At (ns)

1.0
2.0
3.0
40
8.0

16.0

10 —D (cm s ')1

P

—1.10
—0.72
—0.74
—0.79
—0.85
—0.78
—0.65

Comments

run 2 for system 2
was used; the CCF's
were integrated up
until —1 ps

Best value (see Table IV)

tunately no measurements are available for rare-gas
liquid mixtures. However, Soret coefficients for several
mixtures of organic liquids have been experimentally
measured so far. As all these values range at the order
of magnitude of 10 K ', we expect the same order of
magnitude for liquid rare-gas mixtures. In fact our nu-
merical results for s of LJ Ar-Kr mixtures fall well in
line with this experimental range. For liquid mixtures
with very large mass ratios, we expect s to be essentially
determined by this mass effect when the mixture is not

too nonideal (hydrogen bonding, association, etc.) We
have gathered some experimental values of s for mix-
tures with mass ratios of the same order of those of the
Ar-Kr system and system 2 in Table X. The table shows
that the predicted Soret coefficients, for model Ar-Kr
and the isotopic system 2, agree in the order of magni-
tude with the experimental data.

VII. DISCUSSION AND CONCLUSIONS

We have shown that the Soret coefficient of the
Lennard-Jones mixture can be reliably computed via
equilibrium MD. Using MD runs of a factor of 10
longer than those commonly carried out for transport
coefficients, we were able to determine the Soret
coefficient with an accuracy of better than 30%. Agree-
ment with NEMD results is remarkable, demonstrating
that both methods can equivalently by employed to
determine transport coefficients of simple liquid mix-
tures.

While for the isotopic mixtures, our calculations do
not involve any systematic error due to insufficient deter-
mination of the partial enthalpies, for the Ar-Kr mixture
the molecular approximation for h is not exact. The
h 's can be determined by computing the total enthalpy



3974 VOGELSANG, HOHEISEL, PAOLINI, AND CICCOTTI 36

TABLE X. Soret coefficient for some experimental (Ref. 23)
equimolar mixtures compared with theoretica1 values of this
work.

Liquid mixture

C6H6-CC14
C6H I 2-CC14
CC14-CBr4.
Ar-Kr
(this work)
Isotopic
system 2
(this work}

Mass ratio m l /m 2

0.51
0.55
0.46
0.48

0.50

10' s

(K ')

+46
+ 4.7
+ 5.0
+ 9.1'

+ 5.5

'State point 2.

as a function of composition. The partial enthalpies are
then obtained by constructing the tangents of the result-
ing curve. '

Fortunately McDonald ' calculated the total enthal-

py h of LJ Ar-Kr as function of concentration. From
these calculations a linear behavior of h results, giving
directly the partial enthalpies. Apparently the LJ Ar-Kr
mixture behaves very ideally and has a low excess
enthalpy. Though the computations of McDonald
have been made at constant pressure, for constant
volume mixing a similar ideal behavior is expected.
Furthermore, the state chosen in Ref. 26 does not corre-
spond precisely to the state considered herein. Never-
theless, the results given in Ref. 26 should to a good ap-
proximation hold for our state. Using these h values, we
And partial enthalpies of

—h i
——5. 19m))/Nkg T,

—~2=8 98&)I/&kg~ )

(without kinetic contributions) which agree well with the

results obtained by our molecular approximation:

—h )
""——5.40m)j/Nk~T,

—h 2"~' =8. 19@) ( /Nkg T .

This shows that at least for these simple binary mix-
tures the molecular approximation for h works well, as
expected. For very nonideal systems, as the ones stud-
ied, for example, by Gillan, ' the discrepancy between

and h' "' might become significant, and then an ap-
propriate evaluation of h by separate MD methods is
inevitable.

%'e purposely passed over a comparison of the Dufour
and the Soret eftect, though we have studied both exten-
sively. As these investigations revealed many interesting
results, we shall present them in a separate paper.

In fact, all the cross correlation functions shown in
this work are averages over Soret and Dufour —type
functions. The Dufour-type CF is defined by Eq. (3),
while the Soret-type CF may be obtained by interchang-
ing the time dependence in Eq. (3). In a later paper, we
shall report our studies on the potential parameter
dependence of the Soret coefficient.
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